Table of Contents

Nimsoft_check_package_version	2
1 – Overview	3
2 – Setup/Install	4
3 – Usage	5
3.1 Parameters	5
3.1.1 SQL filters (to create server list)	5
3.1.2 Regex filters (applied to servers coming from sql query)	5
3.1.3 Generic parameters	6
3.2 Recommendations	7
3.3 Examples	8
3.3.1 Check probes to upgrade for a specific origin	8
3.3.2 Check upgrade for a specific probe/package	10
3.3.3 Upgrade probes except robot_update	12
3.3.4 Upgrade all hubs with the latest robot_update	13
3.3.5 Upgrade all hubs	13
3.3.6 Upgrade all hubs with the latest packages	13
3.3.7 Upgrade all non hub robots with the latest robot_update	14
3.3.8 Upgrade all non hub robots with latest probes	14
3.3.9 Check if java_jre needs to be upgraded	14
4 – Logic	15
4.1 Version logic	16
5 - Nimsoft_generic.dat (settings)	17
5.1 SQL driver	19
5.2 ODBC System DSN	20
6 - Create Windows Perl environment	27

[bookmark: _Toc102468265]Nimsoft_check_package_version

New in 1.1:
· parameter –cc. When set to “y”, we will add an extra callback to each robots controller to obtain the real installed probe version.
· Modified the logic to decide on Hot Fixes installed. Names like 9.20HT1 or 9.20_HF1 or 9.20-hf1 will be internally renamed to 9.201, so that in a compare they are logically greater than the original 9.20 version.
· If a check is done with –cc”y” and the target robot is not responding, we will not generate an job_add command and the local controller version will be reported as “-“.
New in 1.2:
· parameter –hu: robot with hub include. Can be y: yes, n: no or o: only hub robots, default: y
· New regex filter –ii/ie: ip filter include/exclude
· If you run with –cc”y” we will show a message for each 50 callbacks we execute, so you know we are still busy or you can see what robot probe is causing a wait
· Added 3 extra examples with the hub upgrade steps after you upgrade to a new UIM version (3.2.4, 3.2.5 and 3.2.6)
· Add sql and regex filters in report field explanation
New in 1.3:
· Parameter –ja: will activate an extra callback to check if java_jre is installed on a robot. Can be: n: no (default), y: yes or o: only java_jre will be checked
New in 2.0:
· Version 2.0 takes a totally new approach, instead of starting with a list of robots and probes, version 2 start with a list of robots and from there it build a list of installed packages on each robot. From there the name change into: nimsoft_check_package_version

[bookmark: _Toc102468266]1 – Overview

In the past, visiting UIM clients, it was always difficult to have a clear view of what versions of probes was installed on all robots.
Upgrading some of these probes/robots based on client based exceptions or logic was not always easy because the probe deployment command/gui was sometimes missing selection options.
Especially service providers want to handle robots by “origin” or by “user tags” because their clients have different service contracts and could use some more overview and control.
A first goal is to give you an overview report of the current status. This overview report can then be refined by the several filter parameters so that you can upgrade by division/region/client/ip range/….
A second goal is to help you deploy the needed/wanted upgrades by generating PU job_add commands in a .txt file.
Version 1.0 of this tool was starting with a list of probes installed on each robot, but this approach was missing a lot of components/packages, like java_je, vredist, mcs templates. For this reason version 2.0 will take the list of installed packages on a robot as starting point and from there check if there are newer local archive versions available.
This tool “nimsoft_check_package_version” will try to:
· List packages that have a newer version available in your local archive
· Generate “distsrv job_add” commands in an external file to help you to deploy these updated versions (via PU command)
· Create HTML report with origin, hub, robot, ip, package, old version, new version, os_major, os_minor, user_tag1, user_tag2.
· SQL LIKE filters to limit the selection at the highest level (before the regex filters)
· Regex filtering on origin, hub, robot, ip, package, os_major, os_minor, user_tag1 and user_tag2
The goal is that you start by execute/run first a report limited with an SQL LIKE parameter (-lo, -lh, lr, -lp) and in a second step add regex include/exclude filters to obtain the result exactly like you want.
At that moment the PU txt file is there to help you to do the real upgrade.
Note1: we will never execute or deploy automatically, all PU commands are only generated in a text file for manual execution later.
Note2: if you are missing some parameters or filters or examples, please let me know.
Note3: the risk with the new 2.0 approach is that we will encounter “old” packages that or not applicable anymore or packages that were used to do a 1-time operation. But the advantage is that we see important non-probe packages, like: java_jre, vcredist_x64 or MCS templates, appearing in the report. Therefor it’s it’s important that you use the regex “–pe” (Probe Exclude) parameter to exclude your one-shot packages.

[bookmark: _Toc102468267]2 – Setup/Install

This tool comes in 2 formats: Perl source (.pl) and compiled version (.exe)
If you have already a Perl environment with the SDK_Perl running you can use the Perl source version. It can run with Perl versions 5.14 and 5.32. Perhaps you only need to add some extra Perl packages used by this tool. See chapter 6 for more information about a local Perl environment.
If you don’t have a Perl environment you can use the compiled version: (this version will take some extra time to start) nimsoft_check_package_version.exe.
· Copy the 4 setup files to a target utility directory of your choice:
· Nimsoft_check_package_version.pl/exe
· Nimsoft_generic.pm: perl sub routine to read the parameter file
· Nimsoft_generic.dat: parameter file (see chapter 5)
· Nimsoft_crypt.exe: only used to create a encrypted password used in the parameter file nimsoft_generic.dat
· See chapter 5 to setup and customize the parameters in nimsoft_generic.dat. This file contains all customer settings to run this tool (and is also common with several other tools).
· You are ready to try the tool by executing it without parameters, this will show you the help options:
[image:]
To run a first report, use 1 of the 4 SQL filter parameters to limit the scope of the run. Because for each selected robot the tool will execute 1 callback to the robot controller: inst_list_summary to obtain a list of installed packages.

[bookmark: _Toc102468268]3 – Usage

[bookmark: _Toc102468269]3.1 Parameters

The tool will get the latest available packages from your local archive. Therefore it’s important that you download locally in your archive the packages you want to check/upgrade.
By default the tool will read the DB tables: cm_nimbus_robot, cm_nimbus_probe and cm_computer_system and create a server list based on the optional SQL parameters.
For each server in this server list we will execute a controller callback: inst_list_summary. This will create a table with all installed packages on each selected robot.
It is preferred to use the SQL like filters because the regex filters are applied on all servers coming from the sql query, so it is important to keep the SQL selection as short as possible.
[bookmark: _Toc102468270]3.1.1 SQL filters (to create server list)

· -li: like origin (% will be added before and after your keyword)
· -lh: like hub
· -lr: like robot
· -lp: like probe
[bookmark: _Toc102468271]3.1.2 Regex filters (applied to servers coming from sql query)

· - oi/oe: origin include/exclude
· -hi/he: hub include/exclude
· -ri/re: robot include/exclude
· -ii/ie: ip filter include/exclude
· -pi/pe: package include/exclude
· -ai/ae: os_major include/exclude
· -ni/ne: os_minor include/exclude
· -1i/1e: user_tag1 include/exclude
· -2i/2e: user_tag2 include/exclude

[bookmark: _Toc102468272]3.1.3 Generic parameters

· -ex: report Exceptions only (y,n) default: y. Exceptions are the probes that need an upgrade.
Note1: one of the results of executing callbacks is that robots that are not responding to the callback are not candidate anymore for upgrade in this run.
Note2: some robots that are not responding can create some wait time for the callback. When an execution takes too much time, you can cancel that execution and retry it with the extra parameter –db”2”. This debug option will show a line in the output for each executed callback, so you can verify for what robot/probe you have that wait time.
· -hu: robot with a hub include
· Y: yes (default)
· N: no
· O: only hub robots will be reported
· -db: debug.
· 0: no debug (=default)
· 1: sql query server selection based on sql parameters
· 2: callback: inst_list_summary to each robot controller
· 3: local archive
· 4: regex filtering
· 5: report_detail
· 6: show used sql query
· -di: output directory (default: c:\temp)
· -fi: output file prefix (default: report_nimsoft_check_package_version)
Note: this tool will never execute a deploy or upgrade automatically, it will only generate a report and a txt file containing PU commands to perform a job_add callback to the distsrv porbe.

[bookmark: _Toc102468273]3.2 Recommendations

This tool can be a powerful help in upgrading all robots and probes/packages in your environment, but you must careful plan the execution.
· Create a separate execution to upgrade your hub robots, because during a robot update it will restart and all underlying robots will have a temporary connection lost. (-hu”0” -lp”controller”)
· Create a separate execution to upgrade the hub probes (-hu”o” –lp”hub”)
· Create a separate execution to upgrade all other probes/packages on your hubs (-hu”o” –pe”robot_update|hub”)
· Verify in each report if no one-shot packages are selected for upgrade (this can occur if local archive has a higher version than initially deployed)
· In all other executions use the parameter -hu”n” to exclude hub robots
· Use where possible selection parameters that will be used in the SQL query. (-lo, -lh, -lr and –lp)

Note1: if you start to run the report on your main UIM server (main hub, ump server, cabi server and sql server) you will probably be surprised in the number of packages that are not upgraded (at least I was). Pay attention in upgrading some base packages like java_jre or vredist packages; they can have an influence on your running probes.
Note2: at any point of the execution of the tool you can use ctrl+c to cancel the jib, example that you used no SQL limitation filter and that the tool is executing for all your robots. This will work, but can take some time, especially if you have some robots where a callback is not responding.

[bookmark: _Toc102468274]3.3 Examples

[bookmark: _Toc102468275]3.3.1 Check probes to upgrade for a specific origin

[image:]

 perl nimsoft_check_package_version.pl -lo"your_origin"
You could also use the regex origin filter “-oi”, but this would be less performing because the SQL query would select all robots in all origins and apply only then the –oi regex filter.
But you can use the regex filters to limit the robots or/and packages after SQL is selecting the robots in your specified origin.

· Output report: report_nimsoft_check_package_version.html
[image:]
By default only robot/probes/packages that need an upgrade are reported (-ex”y”). To have a full report, use ex”n”.
You can also see that in the version column we have 2 values:
· 1: value from controller callback: inst_list_summary
· 2: value available in local archive for deployment

· Output PU commands: report_nimsoft_check_package_version_pu.txt
[image:]
Goal is that you review/check the generated commands and use perhaps some extra regex filtering parameters to limit the selection or to exclude some probes.

[bookmark: _Toc102468276]3.3.2 Check upgrade for a specific probe/package

If you see in your local archive that a probe, example: cdm has a new version you can use this tool to:
· Have a report to see what robots need an update
· Have a txt file ready with all PU commands to execute the upgrade
[image:]

perl nimsoft_check_package_version.pl -lp"cdm" -ex"n"
If you need a regex filter of multiple probe names you can use: -pi”logmon|cdm|ntservices”
Note: if you use only the SQL selection parameter –lp”cdm”, we will fill in automatically also the same name in the regex filter parameter.

The reason is:
· The SQL selection only selects a list of robots, in this case all robots with the probe “cdm” installed.
· For each selected robot we will issue the controller callback: inst_list_summary to create a list of installed packages on each robot. This means that the package list will contain all packages installed, not only the cdm package.
· On this packages list all regex filters are applied and for this reason we repeat automatically the sql probe string into the regex probe string. (except if you override the –pi (Probe Include) parameter.)

· Report file: report_nimsoft_check_package_version.html
[image:]
Like we added the parameter –ex”n”, we receive a report of all robots that have the package cdm installed. The robots that need an upgrade are reported in red.
· PU txt file: report_nimsoft_check_package_version_pu.txt
[image:]
Note1: this command file has no path for PU, you can add the path or add /uim/bin in your path. In case the PU command is not yet available on your server you can deploy the PU command from your local archive.
Note2: in the cdm report you can see 2 1-time packages that are not in local archive anymore. (because they don’t have the local archive version between ()).

[bookmark: _Toc102468277]3.3.3 Upgrade probes except robot_update

The SQL selection parameter for the robot_update package is: controller (1 of the 4 modules in robot_update)
The regex selection on the package name needs to use: robot_update (that is the package name)
If you want a report of the installed robot versions for a specific origin:
Perl nimsoft_check_package_version.pl –lp”controller” –ex”n” –lo”origin”
If you want to check all packages, except the robot_update package for a specific origin:
Perl nimsoft_check_package_version.pl –pe”robot_update” -lo”origin”
[image:]

perl nimsoft_check_package_version.pl -pe"robot_update" ex”n” –lo”origin”
-pe”robot_update”: exclude the real package name “robot_update”
-ex”n”: report on all robots/probes, not only those that need an upgrade
-lo”origin”: limit, at SQL query level, the number of robots for a specific origin.
Note: it is recommended to add in this example, for performance reasons, some SQL LIKE filter; else you will process all robots and all packages records.
[bookmark: _Toc102468278]3.3.4 Upgrade all hubs with the latest robot_update

In this tool we check the package “robot_update” against the probe: controller.
perl nimsoft_check_package_version.pl -hu"o" -lp"controller"
· -hu”o”: select only robots with a hub
· -lp”controller”: limit the search/report on probe controller on SQL level
Note: the names “spooler” and “hdb” are suppressed by this tool
[bookmark: _Toc102468279]3.3.5 Upgrade all hubs

After the hub robots are upgraded we can upgrade the hubs (where needed)
perl nimsoft_check_package_version.pl -hu"o" -lp"hub" -ex"n"
· -hu”o”: select only hubs
· -lp”hub”: select only the hub probe on SQL level
· -ex”n”: report on all hubs, not only those to upgrade

[bookmark: _Toc102468280]3.3.6 Upgrade all hubs with the latest packages

After the initial 20.4 release several packages had several updated versions for the log4j problem(s).
Therefore it’s important to download all available packages into local archive and run:
perl nimsoft_check_package_version.pl -hu"o" -pe"robot_update|hub" -ex"n"
· -hu”o”: only select hubs (at sql level)
· -pe”robot_update|hubr”: don’t check for the robot_update and hub packages because it’s not recommended to mix probe and hub and robot updates
· -ex”n”: we want to see a report with all probes/packages reported, the probes/packages to upgrade will be displayed in red.
Note: you can also limit the execution with –lo”origin”, so that only that 1 origin will be checked.
[bookmark: _Toc102468281]3.3.7 Upgrade all non hub robots with the latest robot_update

Now that all hubs are up to date we can start checking/upgrading the non-hub robots
Perl nimsoft_check_package_version.pl –hu”n” –lp”controller” –ex”n” –lo”origin”
· -hu”n”: do not select hub robots
· -lp”controller”: only check for robot_update at SQL level
· -ex”n”: report also on robots that don’t need an upgrade
· -lo”origin”: limit the report on 1 origin

[bookmark: _Toc102468282]3.3.8 Upgrade all non hub robots with latest probes

Perl nimsoft_check_package_version.pl –hu”n” –lo”origin” –ex”n”

· -hu”n”: do not select hub robots
· -lo”origin”: only select robots for a specific origin
· -ex”n”: report also on probes that don’t need an upgrade
· -pe”robot_update”, if you didn’t upgrade all robot with the latest robot_update, it is recommended to exclude package robot_update

[bookmark: _Toc102468283]3.3.9 Check if java_jre needs to be upgraded

The fact that java_jre is installed and what version is used is not stored on a central place in UIM.
Perl nimsoft_check_package_version –lo”origin” –ex”n” –pi”java_jre”
· -lo”origin”: limit the execution to a specific origin
· -ex”n”: report also on java_jre that has the latest version
· -pi”java_jre” use the regex probe include on “java_jre”
[image:]
Note: Java_jre upgrade must be tested before rolling out on a lot of probes at the same times. In some cases a probe doesn’t start anymore with a newer version of java_jre.

[bookmark: _Toc102468284]
4 – Logic

· Open nimsoft_generic.dat to read all local environment parameters (domain name, uim userid and encrypted password, sql server, sql user and encrypted password,…)
· Create server list based on sql query on tables: cm_nimbus_probe, cm_nimbus_robot, cm_computer_system. This server list can be limited by 4 sql parameters.
· For each server in the server list we will try to create a callback to the robot controller: inst_list_summary. This will create a table with all installed packages, version, build and install date
· Create a table with all local archive packages with the highest version available
· Based on the table created with the installed packages we will apply all regex filters
· On records (=packages) that pass all regex filers we will decide if the installed package has a higher package available
· If –ex”y” we will only report on packages that need an upgrade
· If –ex”n”, we will report on all packages, but packages that have a higher version available are displayed in red

Note1: like there is no real standard in package versions and build we use the version number to decide if an upgrade is possible.
But sometimes you can have a HotFix or Test Fix number in the version number. There we “try” to apply a little logic to decide if the version is higher or not. This is done by removing the string “T” or “HF” from the version so that 3.34HF1 becomes 3.341. This version is than higher than the original 3.34 version.
Note2: it’s important to note that you have 2 selection steps in this tool:
· Sql selection to limit the number of robots. So you can select only robots that have probe “xxx” installed.
· Regex filtering on the full list of packages installed on the robots selected by the SQL query.

[bookmark: _Toc102468285]4.1 Version logic

An example report version field:
[image:]
The first value is the version that is installed on your robot; coming from the controller callback: inst_list_summary.
The second value is the version available in your local archive.
Packages that are selected for upgrade will be displayed in red.
There is some special coding to try to understand HotFixes or Test Fixes and –MC packages. This is also the weak point, because there is NO naming standard at all for these types of packages.
[bookmark: _Toc102468286]
5 - Nimsoft_generic.dat (settings)

All custom reporting tools use a common parameter file: nimsoft_generic.dat

-- UMP server & port & http/https
uim_server=ump_server_name
uim_port=80
uim_https=http

--- Nimsoft userid and crypted password (via nimsoft_crypt.exe)
uim_user=administrator
uim_password=gWL/M/ij/

--- Nimsoft domain, hub and robot to create address to the main hub
uim_domain=xxx_domain
uim_hub=xxx_hub
uim_robot=xxx

--- SQL server, userid, crypted password (via nimsoft_crypt.exe) and databasename
sql_server=sql_server_name
sql_user=sa
sql_password=gWL/M/ij/
sql_db=CA_UIM
sql_type=mssql
- sql_driver: "SQL Server" (=default) or a manual installed newer driver, example: "ODBC Driver 17 for SQL Server" (* no quotes around driver name *)
sql_driver=SQL Server
- in case you need to use a not current logged on Windows user
sql_dsn=
--- end of parameters ---

The 2 passwords are stored in an encrypted form. To generate this encrypted password, use:

nimsoft_crypt.exe your_password

As output, you will receive the string that you can copy as encrypted password in the above file.

Note1: this nimsoft_generic.dat is common between multiple tools. It is possible that the tool you are working with is not using all variables in this file.
Note2: if you use "sql_user=trusted" and use also "sql_password=" we will connect to MSSQL via a trusted connection. (=your logged on userid)
Note3: the uim_robot must be defined in the format/case that UIM recognize them. (like it's displayed in IM)
Note4: sql_driver: previously we used the hardcoded sql driver “SQL Server” that is by default installed in Windows systems. But when you want to connect to TLS 1.2 MSSQL you need to install (manually) a newer MSSQL driver (example: ODBC Driver 17 for SQL Server)
Note5: In case you receive a "communication error" while using a non-simulation execution of the tool, try to use the: /uim_domain/uim_hub/uim_robot values like you use it in nimsoft_generic.dat in the command:

pu -u administrator -p ??? /bgbulab47_domain/bgbulab47_hub/bgbulab47/discovery_server get_snmp_devices

This commands must give a normal output like:

[image:]

These names are case sensitive.

Note6: in case you want to use a user defined system DSN to perform the logon the MSSQL you can use the sql_dsn parameter. Else keep this parameter blank.

[bookmark: _Toc102468287]5.1 SQL driver

By default you will find the SQL driver: “SQL Server” installed on your Windows server.
But if you want/need to use TLS, it’s possible that you need a newer/updated version of the driver.
With the parameter: sql_driver you can than enter the driver name, without surrounding quotes, that you installed.
[image:]
Drivers can be found under: Administrative tools – ODBC Data Sources.
[image:]
Under the tab: Drivers you can find the installed and available SQL drivers that you can use. You need to enter the “Name” as value of the parameter.

[bookmark: _Toc102468288]5.2 ODBC System DSN

In nimsoft_generic.dat you have several possibilities to define access to the CA_UIM database.
The easiest way is to use an internal MSSQL user:
· sql_user: sql userid
· sql_password: password value encrypted with nimsoft_crypt

If you want to access the CA_UIM database with the current logged on user, you can use:
· sql_user: trusted
· sql_password:
(the value kept empty)

If you want to use a Windows user to logon to SQL, not the current logged on user, you must use a pre-defined ODBC System DSN. The name you give to this System DSN is entered as value:
· sql_user: windows user
· sql_password: encrypted windows password
· sql_dsn: name given to the ODBC System DSN
Note1: If you use one of the tools as probe or in a probe with a logon as Windows User, you MUST run the Nimsoft Service also with a Windows User (not needed to be the same Windows User)

Under Administrative tools you can find:
[image:]
Select: ODBC Data Sources
[image:]
Select the tab: System DSN - Add
[image:]
Select you ODBC driver and double click on that driver name:
[image:]
It’s the “name” that you will define, in this case: bgbulab57_dsn, that you need to enter as value in the sql_dsn parameter.
Select: next (and keep the defaults on that screen)
[image:]
Select: next
[image:]
Change the default database to: CA_UIM
Select: next (and keep the defaults on the next screen)
[image:]
Select finish:
[image:]
Select “test data source”:
[image:]
Your new System DSN is now defined:
[image:]

[bookmark: _Toc102468289]6 - Create Windows Perl environment

This tool contains the Perl source and compiled Perl.
If you want to create a Perl environment that can run this Perl source & optionally compile the source yourself, you can follow the documented steps.
Once the Perl environment is created you can compile the Perl source:

pp -C -o c:\unibat\nimsoft_check_package_version.exe c:\unibat\nimsoft_check_package_version.pl
pp -C -o c:\unibat\nimsoft_check_package_version_mysql.exe -l="C:\strawberry\c\bin\libmysql__.dll" c:\unibat\nimsoft_check_package_version.pl

Note1: you must execute this PP command from a command prompt with as directory where you placed:
1. nimsoft_check_package_version.pl
1. nimsoft_generic.pm
Note2: the -l option is needed to include all dll modules to be able to execute the compiled module on an external server without Perl installed.

0. download from: http://strawberryperl.com/releases.html the file:
0. strawberry-perl-5.14.2.1-64bit.msi (it's a must that you download version 5.14.2)
Note: with UIM 20.4 a newer Perl SDK was released that support also Perl 5.32 (strawberry-perl-5.32.0.1-64bit.msi)
0. install the msi in: c:\Strawberry64 (as an example)
0. verify that the following directories are in the system path:
2. C:\strawberry64\perl\bin
2. C:\strawberry64\perl\site\bin
2. C:\strawberry64\c\bin
0. refresh the command prompt or reboot the activate the path
0. deploy the probe: SDK_Perl to the main UIM server (this creates: C:\Program Files (x86)\Nimsoft\perllib)
Note: UIM package: SDK_PERL version 20.40_HF (or higher) can be used with Perl 5.32
0. copy the directories under: C:\Program Files (x86)\Nimsoft\perllib to C:\strawberry64\perl\lib
0. now you are ready to install additional packages via cpan (from command prompt): (you need internet access because these modules are get directly from cpan):
0. cpan install Crypt::RC4
0. cpan install XML::Simple
0. cpan install HTTP::Request
0. cpan install DBD::ODBC (here you will receive some messages, but it's normal)
0. cpan install MIME::Base64
0. cpan install Time::Piece
0. cpan install Time::Seconds
0. cpan install LWP::UserAgent
0. (cpan install -f WWW::Mechanize) (generates messages and can take a long time to complete)
0. cpan install PAR::Packer
0. cpan install MIME::Lite
0. cpan install Data::GUID
0. cpan install Sys::HostAddr
0. (cpan install XML::LibXML)
0. cpan –fi Statistics::LineFit
0. cpan install Math::Spline
0. cpan install DBD::CSV
0. (cpan install DBD::Chart)
0. cpan install Net::SNMP
0. pip http://strawberryperl.com/package/kmx/perl-modules-patched/Crypt-OpenSSL-Random-0.04_patched.tar.gz
0. (cpan -fi Net::SSL::ExpireDate) (generates a lot of messages and can take some time)
0. cpan install Win32::Console
0. cpan install Term::ANSIColor
0. cpan install Win32::Console::ANSI

Note: the lines between () are not needed to run the probe or utility but are packages that are also installed on the original Perl directory received from CA services. (and can be needed if you run other customized reports/tools/probes)

1

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image1.png

image2.png

