
 Date: 10-2009

Version 8.2

CA Wily Introscope®

Java Agent Guide

6000 Shoreline Court, Suite 300
South San Francisco, CA 94080

Copyright © 2009, CA. All rights reserved.

Wily Technology, the Wily Technology Logo, Introscope, and All Systems Green are registered
trademarks of CA.

Blame, Blame Game, ChangeDetector, Get Wily, Introscope BRT Adapter, Introscope
ChangeDetector, Introscope Environment Performance Agent, Introscope ErrorDetector, Introscope
LeakHunter, Introscope PowerPack, Introscope SNMP Adapter, Introscope SQL Agent, Introscope
Transaction Tracer, SmartStor, Web Services Manager, Whole Application, Wily Customer Experience
Manager, Wily Manager for CA SiteMinder, and Wily Portal Manager are trademarks of CA. Java is a
trademark of Sun Microsystems in the U.S. and other countries. All other names are the property of
their respective holders.

For help with Introscope or any other product from CA Wily Technology, contact Wily Technical
Support at 1-888-GET-WILY ext. 1 or support@wilytech.com.

If you are the registered support contact for your company, you can access the support Web site
directly at www.ca.com/wily/support.

We value your feedback

Please take this short online survey to help us improve the information we provide you. Link to the
survey at: http://tinyurl.com/6j6ugb

If you have other comments or suggestions about Wily documentation, please send us an e-mail at
wily-techpubs@ca.com.

US Toll Free 888 GET WILY ext. 1
US +1 630 505 6966
Fax +1 650 534 9340
Europe +44 (0)870 351 6752
Asia-Pacific +81 3 6868 2300
Japan Toll Free 0120 974 580
Latin America +55 11 5503 6167

www.ca.com/apm

mailto:support@wilytech.com
http://www.ca.com/wily/support
http://tinyurl.com/6j6ugb
mailto:wily-techpubs@ca.com
http://www.ca.com/apm

Contents  iii

CONTENTS

Table of Contents

SECTION I Java Agent Installation and ProbeBuilding 9

Chapter 1 The Java Agent Overview 11

The Introscope environment 12

Planning a Java Agent implementation 13

Implementing the Java Agent 15

Java Agent Configuration Options 16

Chapter 2 Installing and Configuring the Java Agent 19

Before you start 20

Installing the Java Agent 22

Configuring connection to the Enterprise Manager 36

Configuring the Java Agent name 40

Configuring ProbeBuilder options 41

Upgrading multiple agent types 41

Uninstalling the Java Agent 42

Chapter 3 AutoProbe and ProbeBuilding Options 45

Configuring JVM AutoProbe 46

Configuring ProbeBuilder options 56

Dynamic ProbeBuilding 56

ProbeBuilding class hierarchies (JVM 1.5) 59

Removing line numbers in bytecode 60

Chapter 4 AutoProbe for Application Servers 63

Before you start 64

Configuring WebLogic Server 64

Configuring WebSphere Application Server (WAS) 66

Configuring WebSphere z/OS 67

iv  Contents

CA Wily Introscope Java Agent

Configuring Sun ONE 68

Configuring Oracle 10g 70

Configuring HTTP servlet tracing 70

Modifying Java2 Security Policy 71

Chapter 5 ProbeBuilder Directives 73

ProbeBuilder Directives overview 74

Applying ProbeBuilder Directives. 82

Creating custom tracers. 84

Creating advanced custom tracers 89

Using Blame Tracers to mark blame points 94

Supplementary directives and tracers information 96

SECTION II Java Agent Operations and Management 97

Chapter 6 Java Agent Naming 99

Understanding the Java Agent name 100

Agent naming considerations for clustered applications 103

Specifying an agent name using a Java system property 104

Specifying an agent name using a system property key 104

Obtaining an agent name from the application server 104

Enabling automatic agent naming 107

Advanced automatic agent naming options 107

Enabling cloned agent naming in clustered environments 109

Chapter 7 Java Agent Monitoring and Logging 111

Configuring connection metrics 112

Turning off socket metrics 113

Configuring logging options 113

Managing ProbeBuilder Logs 117

Chapter 8 Using Virtual Agents to Aggregate Metrics 119

Understanding Virtual Agents 120

Virtual Agent requirements 120

Configuring Virtual Agents 121

Chapter 9 Configuring Java Agent Failover 123

Understanding agent failover 124

Defining backup Enterprise Managers 124

Contents  v

Java Agent Guide

Defining failover connection order 125

Configuring failback to primary Enterprise Manager 126

Configuring domain/user information 126

SECTION III Tailoring and Extending Data Collection 127

Chapter 10 Configuring Access to Application Server Data 129

Application server management data 130

Configuring startup class for WebLogic 8.1 or 9.0 130

Configuring a custom service in WebSphere 5.0, 6.0, or 6.1 131

Chapter 11 Configuring Boundary Blame 133

Understanding Boundary Blame 134

Using Blame tracers 140

Disabling Boundary Blame 140

Chapter 12 Configuring Transaction Trace Options 141

Controlling automatic Transaction Tracing behavior 142

Configuring cross-process Transaction Tracing 143

Extending transaction trace data collection 144

Disabling the capture of stalls as Events 146

Chapter 13 Configuring the Introscope SQL Agent 147

The SQL Agent overview 148

The SQL Agent files 149

Supported JDBC drivers and datasources. 149

Configure the SQL Agent for WebSphere or WebLogic 150

SQL statement normalization 152

Turning off statement metrics. 160

Turning off Blame metrics 160

SQL metrics . 161

Chapter 14 Enabling JMX Reporting 163

Introscope Java Agent JMX support 164

Default JMX metric conversion process 164

Using primary key conversion to streamline JMX metrics 165

Managing metric volume with JMX filters 166

Configuring JMX reporting 167

Enabling JSR-77 data for WAS 6.x 169

vi  Contents

CA Wily Introscope Java Agent

Chapter 15 Configuring Platform Monitoring 171

Understanding platform monitors 172

Enabling platform monitors on Windows Server 2003 172

Enabling platform monitors on AIX 172

Disabling platform monitors 173

Troubleshooting platform monitoring 174

Chapter 16 Configuring WebSphere PMI 177

Java Agent support for WebSphere PMI 178

Enabling PMI in WebSphere 178

Configuring PMI in Introscope. 179

Viewing WebSphere Agent PMI data 179

Chapter 17 Enabling WebLogic Diagnostic Framework 181

Java Agent support for WebLogic Diagnostic Framework (WLDF) . . 182

Understanding WLDF Metric conversion 182

Enabling WLDF reporting 183

Appendix A Java Agent Properties 185

Configuring IntroscopeAgent.profile location 186

Command-line property overrides 187

Agent failover . 188

Agent HTTP tunneling 188

Agent HTTP tunneling—proxy server 189

Agent HTTPS tunneling 190

Agent metric aging 190

Agent metric clamp 193

Agent naming . 194

Agent thread priority 196

Agent to Enterprise Manager connection 196

AutoProbe . 197

Blame . 198

CPU utilization . 199

Cross-process tracing in WebLogic Server 199

Dynamic instrumentation 199

ErrorDetector . 200

Extensions . 201

JMX . 202

Contents  vii

Java Agent Guide

LeakHunter . 204

Logging . 206

Metric count . 208

Platform monitoring 208

Socket metrics . 208

SQL Agent . 209

SSL communication 211

Stall metrics . 213

Transaction tracing 214

URL grouping . 216

WebSphere PMI 217

Wily CEM integration 220

WLDF metrics . 220

Appendix B Using the Introscope PBD Generator 221

About the Wily PBD Generator 222

Configuring the PBD Generator 222

Using the PBD Generator 223

Appendix C Manual ProbeBuilding 225

Before you begin 226

Using the ProbeBuilder wizard 227

Using the command-line ProbeBuilder 229

Running instrumented code 231

Switching back to non-instrumented code 231

The ProbeBuilder Wizard.lax file 232

Index . 233

viii  Contents

CA Wily Introscope Java Agent

Java Agent Installation and ProbeBuilding  9

SECTION I

Java Agent Installation and ProbeBuilding

The chapters in this section describe the Java Agent implementation process.

 The Java Agent Overview on page 11

 Installing and Configuring the Java Agent on page 19

 AutoProbe and ProbeBuilding Options on page 45

 ProbeBuilder Directives on page 73

 AutoProbe for Application Servers on page 63

10  Java Agent Installation and ProbeBuilding

CA Wily Introscope Java Agent

The Java Agent Overview  11

CHAPTER 1

The Java Agent Overview

This chapter explains the Java Agent deployment process.

The Introscope environment 12

Planning a Java Agent implementation 13

Implementing the Java Agent 15

Java Agent Configuration Options. 16

12  The Java Agent Overview

CA Wily Introscope Java Agent

The Introscope environment
CA Wily Introscope is an application management tool that provides end-to-end
performance management of your applications. The Java Agent is the component
of Introscope that collects performance data from your applications running on
Java Virtual Machines (JVMs), and sends it to the Introscope Enterprise Manager.
The Enterprise Manager processes the data received from the Java Agent and
sends it to the Introscope Workstation where you can review the information and
set up actions and alerts based on the data received.

The Java Agent allows Introscope to collect minute details about how your
applications are performing. Data is collected from your applications by the Java
Agent. What types of data collected depends on which ProbeBuilder Directives
(PBDs) files you choose to implement. Several standard PBDs are included when
you install the Java Agent, as well as specific PBDs for your application server.
Fine tuning the tracers and directives in the PBD files will deliver the metric
information you want to monitor for your environment.

The figure below illustrates the key components of an Introscope environment.

Planning a Java Agent implementation  13

Java Agent Guide

Planning a Java Agent implementation
It is important to develop the right Java Agent configuration for your applications
and the environments in which it runs. The figure below illustrates the key
processes in a Java Agent implementation process.

Discover Introscope functionality

The first step in developing an Introscope implementation involves “test driving”
the default Introscope Java Agent configuration. A default Java Agent
configuration demonstrates data collection functionality and is key to
understanding and evaluating the out-of-the box features of the Java Agent and
Introscope as a whole. When you install Introscope, a default Java Agent
configuration is included.

The Java Agent provides a variety of data collection options out-of-the box and
can be customized to collect more environment-specific data. However, the more
metrics a Java Agent collects, the more system resources it consumes.

When evaluating the environment, the primary goal is to understand the depth
and breadth of Introscope’s data collection and application management
features. As you refine your Java Agent configuration, you will streamline data
collection to balance the depth of data collection against overhead constraints
and configure Java Agent features that help manage and limit resource
consumption.

Determine configuration requirements

Before introducing Introscope into your environment, whether pre-production or
live, you should determine your data collection requirements. This information
will help you tailor the data collection behaviors of the Java Agent, and evaluate
the impact on overhead through alternative configurations of the Java Agent.

14  The Java Agent Overview

CA Wily Introscope Java Agent

Since Introscope is employed across an application lifecycle—in development,
test, and production—your monitoring goals, environmental constraints, and
service level requirements will change over time. You will need to configure Java
Agents differently in each phase or environment.

Java Agent configuration is a trade-off between visibility vs. overhead. The goal
is to obtain optimal visibility at a reasonable cost.

In pre-production environments, such as development and QA, you typically
configure a higher level of data collection to provide deeper visibility into the
performance characteristics of the application.

In production or production-like environments, you reduce the level of metric
reporting to control Java Agent overhead, and when appropriate, implement
optional configurations, such as Virtual Agents or agent failover.

If you intend to collect data from multiple environments, you will need to develop
an appropriate Java Agent configurations for each.

Define Java Agent configuration

After defining your configuration requirements based on your application and its
operating environment, you should create a “candidate” agent configuration.
Most Java Agent behaviors are configured in the agent profile. Some features
may also require some configuration in your application server, or required other
configuration steps.

Depending on the complexity of your configuration and the target environment,
you may choose to build up the agent configuration in stages, so that you can
evaluate the impact of each add-on component—such as LeakHunter,
ErrorDetector, or Introscope PowerPacks and ensure it is working before adding
more.

Evaluate Java Agent performance overhead

When evaluating a Java Agent configuration, verify that the metrics collected
provide sufficient visibility into application performance and availability, and that
the volume of metrics do not impose an unacceptable load on the operating
environment. The Java Agent should not report more metrics than are necessary
to identify and localize performance and availability problems.

To effectively understand and evaluate Java Agent overhead, you must
understand the performance characteristics of the application prior to Introscope-
enabling it.

Implementing the Java Agent  15

Java Agent Guide

For example, you can load test your application before and after implementing
out-of-the-box monitoring to verify impact. Similarly, a conservative approach is
to extend data collection in a controlled fashion—for instance, one PowerPack at
a time—and evaluate the impact of each add-on individually.

Occasionally, too many Java classes are selected for monitoring in a
ProdeBuilding Directive (PBD) file, causing the Java Agent to start incorrectly, or
to experience a “hang”. If this happens, use the AutoProbe.log file to identify the
classes that caused the Java Agent to hang and add a skip directive to the PBD
file, skipping the classes that may have caused the problem. For more
information about adding skip directives to your custom PBD files, see Skip
directives on page 92.

Validate and deploy Java Agent configuration

After you have verified that a candidate agent configuration provides the visibility
required for the target environment without imposing unacceptable overhead,
you should deploy the validated configuration to that environment.

In practice, the process of deploying a validated configuration includes installing
the validated configuration artifacts—specifically IntroscopeAgent.profile and
modified or custom .pbd files—to the target environment.

Implementing the Java Agent
The sections that follow describe the steps in implementing data collection and
the Java Agent directory structure and configuration artifacts.

Basic implementation

The Java Agent implementation process is as follows:

Step 1 Install the Java Agent on the target JVM. For more information, see Installing and
Configuring the Java Agent on page 19.

Step 2 Configure the properties in IntroscopeAgent.profile that govern the operating
and data collection behaviors of the Java Agent, including which PBDs to use
during the ProbeBuilding process and optional ProbeBuilding behaviors. For more
information, see AutoProbe and ProbeBuilding Options on page 45 and
ProbeBuilder Directives on page 73.

Step 3 Use a supported method of ProbeBuilding and desired PBDs to instrument your
applications, and configure ProbeBuilding options.

Step 4 Restart your application and start data collection.

16  The Java Agent Overview

CA Wily Introscope Java Agent

Java Agent Configuration Options
This section is an overview of configurable agent behaviors.

 Communications with Enterprise Manager, below

 Java Agent naming, below

 Virtual Agents, below

 Logging options, below

 Domains on page 17

 ProbeBuilding alternatives and options on page 17

 ProbeBuilder Directive (PBDs) on page 17

 Data collection and reporting option on page 17

Communications with Enterprise Manager

You must configure the location of the Enterprise Manager to which the Java
Agent reports. If you do not, the Java Agent will try to connect with the Enterprise
Manager on localhost port 5001 by default. If the agent will connect to an
Enterprise Manager cluster, you must configure it to connect to a Collector
Enterprise Manager. To enable an agent to failover to a secondary Enterprise
Manager, you must define connection properties and connection order as well.
For more information, see Configuring connection to the Enterprise Manager on
page 36.

Java Agent naming

You can define a Java Agent’s name explicitly or configure an automated
mechanism for agent naming. By default, the Java Agent profile explicitly assigns
an agent name, for instance “WebLogic Agent”. For more information, see Java
Agent Naming on page 99.

Virtual Agents

If you want multiple agents to monitor separate instances of a clustered
application, you must configure those agents as a Virtual Agents which allows you
to aggregate metrics at the application level. For more information, see Using
Virtual Agents to Aggregate Metrics on page 119.

Logging options

By default, the Java Agent writes information log messages to the console window
and log files. You can configure the Java Agent for more detailed logging. For
more information, see Configuring logging options on page 113.

Java Agent Configuration Options  17

Java Agent Guide

Domains

Unless you assign a Java Agent to a custom Introscope Domain, it is part of the
SuperDomain by default. For information about Domains and their use in
configuring user permission, see the Introscope Installation Guide.

ProbeBuilding alternatives and options

Introscope provides multiple methods of Introscope-enabling your applications:
JVM AutoProbe, Application Server AutoProbe, and Manual ProbeBuilder. JVM
AutoProbe is typically used in environments that support it, and is enabled by
default in the agent profiles for those environments. There are optional features,
such as dynamic instrumentation, available if your agent runs on JVM 1.5. For
more information, see AutoProbe and ProbeBuilding Options on page 45.

» Important Application Server Autoprobe is not supported on any JVM 1.5 and
above platforms.

ProbeBuilder Directive (PBDs)

The ProbeBuilder Directive (PBDs) used during the ProbeBuilding process
determine the metrics that the agent reports. You configure a list of the desired
PBDs or PBLs (lists of PBDs) in the agent profile. The default list specified in the
profile results in the typical level of probe-building, appropriate for production
environments where overhead is at a premium. You configure more detailed
probe building to obtain more metrics in development or QA environments in the
agent profile. You can further control the ProbeBuilding process by customizing
PBDs to skip classes or packages, or to instrument custom classes and custom or
private methods that the default PBDs do not specify. For more information, see
ProbeBuilder Directives on page 73.

Data collection and reporting option

Most data collection behaviors are controlled by Java Agent properties.

 Socket Metrics—By default, the Java Agent does not report input and output
bandwidth rate metrics for individual sockets. For more information, see
Turning off socket metrics on page 113.

 URL Groups for Blame Reporting—To control the way that metrics for front-
ends are aggregated and presented in the Investigator in WebView and the
Workstation, you must configure URL groups. The Java Agent profile contains
properties for specifying URL groups. For more information, see Using URL
groups on page 134.

 Stall Event Reporting—By default, the Java Agent reports stalls as events, and
stores them in the Transaction Event Database. You can disable this behavior,
or tailor the stall reporting behavior. For more information, see Disabling the
capture of stalls as Events on page 146.

18  The Java Agent Overview

CA Wily Introscope Java Agent

 JMX and JSR-77—You can optionally configure the Java Agent to report JMX
metrics, JSR-77 metrics, or WebLogic Diagnostic Framework metrics. For more
information, see Enabling JMX Reporting on page 163 and Enabling WebLogic
Diagnostic Framework on page 181

 Transaction Tracing Behavior—You can tailor the behavior of the automatic
transaction tracing the agent performs, and configure the collection of User IDs
for Servlet and JSP invocations. For more information, see Configuring
Transaction Trace Options on page 141.

 PMI—In WebSphere environments you can configure the reporting of
WebSphere Performance Monitoring Infrastructure (PMI) metrics. For more
information, see Configuring WebSphere PMI on page 177.

 Platform Monitoring—Platform monitors enable the agent to report system
metrics, including CPU statistics, to the Enterprise Manager. Platform monitors
on all operating systems except Windows Server 2003 and AIX are
automatically enabled upon agent installation. Windows Server 2003 and AIX
platform monitors require a minimal configuration to work. For more
information, see Configuring Platform Monitoring on page 171.

 SQL Agent—Introscope SQL Agent is installed automatically with the agent
installation. This agent extension provides visibility into the performance of
individual SQL statements. For more information, see Configuring the
Introscope SQL Agent on page 147.

Wily CEM integration

There are several steps you are required to perform to ensure that the Java Agent
integrates with a Wily CEM installation. See the CA Wily Customer Experience
Manager Integration Guide for more information about integrating your Java
Agent with Wily CEM.

Installing and Configuring the Java Agent  19

CHAPTER 2

Installing and Configuring the Java Agent

This chapter has instructions for installing the Java Agent.

Before you start 20

Installing the Java Agent 22

Configuring connection to the Enterprise Manager 36

Configuring the Java Agent name 40

Configuring ProbeBuilder options 41

Upgrading multiple agent types 41

Uninstalling the Java Agent 42

20  Installing and Configuring the Java Agent

CA Wily Introscope Java Agent

Before you start
This section lists some of the key information, decisions, and resources that
should be identified or obtained before you install and configure your Java Agent.

Application server support

The following table lists the application servers supported by the Java Agent, and
any requirements that application server has for functionality with the Java
Agent:

» Important The 8.0 Introscope Agent does not support web applications
running on Java 1.3.x. If you have a Java 1.3.x-based application,
use the Introscope 7.2 agent to manage that application. The
Introscope 8.0 Enterprise Manager supports agents back to
version 6.0.

Application
Server

Requirements

Apache Tomcat Apache Tomcat 4.1, 5.0, 5.5, or 6.0

JBoss Version 4.0.3 SP1, 4.0.2, or 4.2x

Fujitsu Interstage Japanese Version 6.0 (both Standard and Enterprise Edition)

Oracle 10g Oracle 10g version 10.0.3 Application Server and any required
updates.

SAP NetWeaver SAP NetWeaver 6.4 (NWO4)

Sun ONE Sun ONE application server and any required updates.

For Sun ONE version 7.0, the minimum Sun ONE versions
required for Introscope integration are:
 Sun ONE AS Platform Edition 7.0.0_01 (update 1)
 Sun ONE AS Standard Edition 7.0.0_01 (update 1)

To download the appropriate application server versions, see
http://wwws.sun.com/software/download/app_servers.html.

WebLogic Version 6.1, or higher, and any required patches.

WebSphere WebSphere application server 5.1, or higher, and any required
patches.

WebSphere on z/OS WebSphere application server 5.0, or higher, and any required
patches.

http://wwws.sun.com/software/download/app_servers.html
http://wwws.sun.com/software/download/app_servers.html

Before you start  21

Java Agent Guide

When the Java Agent is installed on an application server, after the server and
Java Agent start, a Wily log directory is created here: <Agent_Home>/wily/
logs. The application server process must have full read/write/execute
permissions on the Wily Java Agent directory. To accomplish this, install the Java
Agent on the same operating system as the user who runs the application server
process. Or, install the Java Agent as a different user, then use the chmod
command to bestow the necessary permissions.

Enterprise Manager connection information

The Java Agent runs on the JVM that runs the applications you wish to monitor,
and connects to the Introscope Enterprise Manager. If your agent reports to a
clustered Enterprise Manager you must configure it to connect to a Collector
Enterprise Manager.

If you have multiple Enterprise Managers, clustered or not, you can configure
your Java Agent to failover to an alternate Enterprise Manager if it disconnects
from its primary Enterprise Manager. For more information on connecting to an
Enterprise Manager, see Configuring connection to the Enterprise Manager on
page 36. For more information on agent failover to alternate
Enterprise Managers, see Configuring Java Agent Failover on page 123. For more
information on clustered Enterprise Managers, see the Introscope Configuration
and Administration Guide.

ProbeBuilding method and options

The Java Agent supports several methods of instrumenting your applications. CA
Wily recommends using JVM AutoProbe to dynamically instrument all classes
loaded by the JVM, adding probes that generate metrics from the Java bytecode.
JVM AutoProbe is supported if you use:

 Java 1.5 JVM or higher

 a Sun or IBM 1.4 JVM

 JRockit 1.3 or higher

 HP Hotspot 1.3 or higher

The majority of CA Wily Introscope users instrument their applications using JVM
AutoProbe.

» Note On OS/400, Application Server AutoProbe is not supported.

If your JVM does not support JVM AutoProbe, or you prefer to use another
method, you can either configure Application Server AutoProbe, as described in
AutoProbe for Application Servers on page 63, or perform the ProbeBuilding
process manually as described in Manual ProbeBuilding on page 225.

22  Installing and Configuring the Java Agent

CA Wily Introscope Java Agent

» Important CA Wily highly recommends using JVM AutoProbe to instrument
your applications. Other methods of instrumentation should only
be used if JVM AutoProbe fails.

Planning the installation, configuration, and evaluation process

Most Introscope deployments include one or more extension products such as
LeakHunter, Error Detector, or PowerPacks that extend data collection.

Before starting to implement the agent, map out the sequence of installations,
review and decide what configuration options are appropriate for the agent and
extension products, and identify at which points you wish to load test or
otherwise evaluate the configuration.

» Note The Java Agent will require at least 30MB of free disk space on the
system on which it will be installed.

Installing the Java Agent
There are two methods of installing a Java Agent:

 Use the Java Agent installer, which performs several tasks for you. For
more information, see The Java Agent installer, below.

OR

 Manually install the Java Agent, where you perform all installation tasks.
For more information, see Manual installation on page 29.

The Java Agent installer

The Java Agent installer has automated several of the installations tasks, making
it easier to deploy agents across large environments.

The table below lists the available Java Agent installers. Use the installer
appropriate for your environment:

Environment Installers

Windows  IntroscopeAgentInstaller8.0windows.zip
Contains IntroscopeAgent8.0windows.exe and a responsefile.

UNIX  IntroscopeAgentInstaller8.0unix.tar
Contains IntroscopeAgent8.0unix.bin and a responsefile.

Installing the Java Agent  23

Java Agent Guide

» Note The Java Agent installer must be launched with JVM 1.4 or later. If you
specify an application server JVM, that also must be version 1.4 or later.

» Important Users with applications running on Java 1.3 must use the 7.2
agent; the 8.0 agent does not support Java 1.3.

When you use the Java Agent installer, it performs the following tasks for you:

 Installs the Java Agent, including platform monitors and PBDs for the
target application.

 Edits certain settings in the IntroscopeAgent.profile, or installs an agent
profile provided by you.

 Generates the connector .jar, if appropriate.

 Installs custom PBDs, add-ons, or PowerPacks supplied by you in .zip or
.tar formats.

 Before exiting, the installer prints the location of a text file that contains
application server-specific "Next Steps".

Installing the Java Agent in GUI mode

The GUI mode of the Java Agent installer allows you to make selections from
drop-down menus.

To install the Java Agent using the installer in GUI mode:

1 Choose an installer that matches your target environment and open it.

» Important If you are installing the Java Agent on a UNIX system, you must
use the tar -xvf command to extract the .tar file. Do not use
unzip.

2 Follow the onscreen prompts to install the Java Agent. You will need to know the
following:

 The location of the application server root directory.

If you do not want to specify an application server root directory, you should
accept the default response (C:\ on Windows, / on UNIX).

 The application server type.

z/OS  IntroscopeAgentInstaller8.0zos.tar
Contains IntroscopeAgent8.0zOS.jar, a runinstaller.sh
script, a tmppath file, and a responsefile.

OS/400  IntroscopeAgentInstaller8.0os400.zip
Contains the IntroscopeAgent8.0os400.jar, a
runinstaller.sh script, and a responsefile.

Environment Installers

24  Installing and Configuring the Java Agent

CA Wily Introscope Java Agent

 Where you want the install directory to be located.

If you supplied a root directory on the first screen of the install process, the
installer suggests the application server root directory; if no root directory was
supplied, the default Introscope install directory is suggested.

 Whether you want to use a custom agent profile, or create a new agent
profile when the agent is installed.

 If you choose to use a custom agent profile, the installer will ask you for the
location of the this file. Supply the fully qualified path to the file location.

 If you choose to create a new agent profile, you must decide to use either
typical or full instrumentation, the agent and process name, and the
Enterprise Manager host and port.

» Note Empty values are allowed for both the agent and process name, and the
Enterprise Manager host and port. These values can be configured after
installation.

 The application server JVM. The installer will suggest a type based on
previous information you supplied.

 The instrumentation type.

 The location of a "pickup folder". Any .zip or .tar files in this folder are
extracted into the agent directory, by default <Agent_Home>/wily.

If unusable input is provided for any of the above options, the installer will
provide reasonable error messages explaining the problem and how to correct it.

3 When all information has been configured, click Install. The installer will install
the Java Agent and print the location of a text file containing:

 the specific steps the installer took to install the Java Agent.

 application server-specific "Next Steps".

Installing the Java Agent in console mode

The Java Agent installer in console mode is supported on most non-Windows
platforms. On these platforms, such as UNIX, z/OS, or OS/400, the console
installer launches automatically.

When using the Java Agent installer in console mode, the console will prompt you
to enter information about your installation. For example, you will need to know:

 The location of the application server root directory.

If you do not want to specify an application server root directory, you should
accept the default response (C:\ on Windows, / on UNIX).

Installing the Java Agent  25

Java Agent Guide

 The application server type. The Java Agent can monitor the following
application servers:

 Default

 JBoss

 Tomcat

 WebLogic

 WebSphere

 Sun One

 Oracle

 Interstage

 Where you want the install directory to be located.

 Whether you want to use a custom agent profile, or create a new agent
profile when the agent is installed.

 If you choose to use a custom agent profile, the installer will ask you for the
location of the this file. Supply the fully qualified path to the file location.

 If you choose to create a new agent profile, you must decide to use either
typical or full instrumentation, the agent and process name, and the
Enterprise Manager host and port.

» Note Empty values are allowed for both the agent and process name, and the
Enterprise Manager host and port. These values can be configured after
installation.

 The agent name and process name.

 Connection settings for the Enterprise Manager.

 The instrumentation type and level.

 The application server JVM.

 The location of a "pickup folder". Any .zip or .tar files in this folder are
extracted into the agent directory, by default <Agent_Home>/wily.

The console displays the selections you made during installation and asks for
confirmation of your selections. Once you have confirmed your settings, the Java
Agent is installed.

26  Installing and Configuring the Java Agent

CA Wily Introscope Java Agent

Installing the Java Agent in silent mode

The Java Agent can be installed in silent mode, which requires no interaction with
a GUI or console. Silent installations use the settings specified in a response file.

Installing the Java Agent using silent mode takes several steps:

Step 1 Open the SampleResponseFile.Agent.txt file, located in the same directory as
the executable agent installer.

Step 2 Edit the SampleResponseFile.Agent.txt file to reflect your preferred settings.

Step 3 Place the SampleResponseFile.Agent.txt file in any directory.

The silent installer performs these tasks:

 places Java Agent files on the filesystem

 edits the IntroscopeAgent.profile

 generates a connector .jar, if necessary

 copies certain .jar files into your application server directories, where
applicable

 generates a "Next Steps" readme file

The silent installer does not stop or start the application server, or modify the
application server classpath. These tasks need to be performed manually.

» Important The silent installer does not perform upgrades. By default, if the
silent installer detects a preexisting Java Agent in the specified
install directory, no installation will be performed. CA Wily
recommends you do not use this installer to overwrite an existing
Java Agent installation.

To install the Java Agent using the installer in silent mode:

1 Open the SampleResponseFile.Agent.txt.

2 Set the following properties:

 USER_INSTALL_DIR=

Specify the directory where the Java Agent files are to be installed. CA Wily
recommends selecting the application server's root directory.

On all platforms, the file path must end with a file separator. On Windows,
backslashes must be escaped. For example:

 On Windows: C:\\myAppServerHome\\

 On UNIX: /myAppServerHome/

Installing the Java Agent  27

Java Agent Guide

 silentInstallChosenFeatures=Agent,Documentation

Specify the agent features to install. This must be a comma-delimited list. Valid
values are Agent and Documentation, which are case-sensitive. If the
Documentation feature is included, basic documentation is installed into the
<Agent_Home>\wily directory.

 appServer=Default

Specify the application server type. Valid values are Default, JBoss, Tomcat,
WebLogic, WebSphere, Sun ONE, Oracle, or Interstage. Application server-
specific ProbeBuilder Directives (PBDs) are installed with the Java Agent.

 appServerHome=

You can also specify the home directory of the application server to monitor.
This is an optional configuration. To use it, uncomment and set the property.

The installer uses this information to copy certain .jar files into the application
server directories if necessary.

On all platforms, the path must end with a file separator. On Windows,
backslashes must be escaped. For example, on Windows:

C:\\apache\\tomcat\\5.0.30\\
D:\\bea\\weblogic700\\

 appServerJavaExecutable=

You can also specify the Java executable used to launch the monitored
application server. The silent installer uses this information to check the JVM
vendor and version, and generates a connector jar if necessary.

On Windows, backslashes in the path must be escaped. Some sample values
for this property are:

 On Windows: C:\\Program Files\\Java\\jre1.5.0_06\\bin\\java.exe

 On UNIX: /usr/bin/java

 instrumentationLevel=Typical

Specify the level of instrumentation to use. Valid values are Full or Typical,
which are case-sensitive.

The Full setting achieves more detailed reporting and is recommended for test
environments.

The Typical setting provides less detail with reduced overhead, and is
recommended for production environments.

 instrumentationType=JVM AutoProbe

Specify the ProbeBuilding method that is used to instrument the application.
Case-sensitive valid values are:

 JVM AutoProbe

 Application Server AutoProbe

 Manual ProbeBuilding

28  Installing and Configuring the Java Agent

CA Wily Introscope Java Agent

CA Wily recommends using JVM AutoProbe. See the AutoProbe and
ProbeBuilding Options on page 45 for more information on ProbeBuilding
methods.

 agentName=Default Agent

 processName=Default Process

Specify the agent and process names. Spaces and empty values are allowed.

 emHost=localhost

 emPort=5001

Specify the hostname and port of the Introscope Enterprise Manager to which
this agent will connect.

 #alternateAgentProfile=

You can choose to use a custom agent profile. Uncomment and specify the
absolute path to a custom agent profile. If you specify an alternate file, it will
be used instead of the default agent profile, and all of the properties in the
"Agent Settings" section of the SampleResponseFile.Agent.txt file will be
ignored, except for the instrumentationType property.

On Windows, backslashes must be escaped. Some sample values for this
property are:

 On Windows: C:\\customAgentProfiles\\CustomIntroscopeAgent.profile

 On UNIX: /home/iscadmin/customAgentProfiles/
CustomIntroscopeAgent.profile

 #pickupFolder=

You can also specify the absolute path to a "pickup folder". The pickup folder
provides a convenient way of installing extensions or add-ons alongside the
base agent. Any .zip or .tar files present in the pickup folder will be extracted
into the agent directory at install time. On all platforms, the path must end
with a file separator. On Windows, backslashes must be escaped. For example:

 On Windows: C:\\pickupFolderContainingAddOns\\

 On UNIX: /home/iscadmin/customAgentProfiles/
pickupFolderContainingAddOns/

3 Save the SampleResponseFile.Agent.txt.

4 Select the appropriate command format from the list below, and enter it at the
command line to invoke the installer:

installer.exe -f <absolute path to response file>
installer.bin -f <absolute path to response file>
java -classpath installer.jar install -f <absolute path to response file>

Installing the Java Agent  29

Java Agent Guide

Manual installation

Extract the Java Agent installer archive into a Java working directory—often the
application server’s home directory. For information about the directory structure
of the agent installation, see Java Agent installation directories and files on
page 31.

The Java Agent requires 30 MB of free disk space to be installed.

To manually install the Java Agent:

1 Select an installer archive for your specific JVM. For a list of installer archives,
see Java Agent installer archives, below.

2 Extract the files of the installer archive into a location your JVM can access.

» Important If you are installing the Java Agent on a UNIX system, you must
use the tar -xvf command to extract the .tar file. Do not use
unzip.

3 Configure the properties in IntroscopeAgent.profile to your specific
environmental needs. This file governs the Java Agent’s operating and data
collection behaviors, including which PBDs to use during the ProbeBuilding
process, optional ProbeBuilding behaviors, and the connection to the
Enterprise Manager. You will need to know the location of the files extracted in
step 2 above.

Configuration options for the IntroscopeAgent.profile are covered in the next
sections of this chapter and the rest of this Guide. See Configuring connection to
the Enterprise Manager on page 36 to get started.

4 Use a supported method of ProbeBuilding and desired PBDs to instrument your
applications, and configure ProbeBuilding options. For more information about
ProbeBuilding, see Configuring ProbeBuilder options on page 41.

5 Restart your application.

30  Installing and Configuring the Java Agent

CA Wily Introscope Java Agent

Java Agent installer archives

The table below lists the Java Agent installer archives for different application
servers and operating systems.

Application
Server

Installer Archive Packages

WebLogic  IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0weblogic.unix.tar

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0weblogic.windows.zip

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0weblogic.zOS.tar

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0weblogic.os400.zip

WebSphere  IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0websphere.unix.tar

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0websphere.windows.zip

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0websphere.zOS.tar

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0websphere.os400.zip

Sun ONE  IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0sunoneas.unix.tar

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0sunoneas.windows.zip

Oracle 10g  IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0oracleas.unix.tar

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0oracleas.windows.zip

SAP NetWeaver For SAP support only:

Windows:
IntroscopeForSAPNetWeaverConversionKit8.0.0.0.windows.
zip

Solaris, HP-UX, AIX, and Linux:
IntroscopeForSAPNetWeaverConversionKit8.0.0.0.unix.tar

Apache Tomcat  IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0tomcat.unix.tar

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0tomcat.windows.zip

Fujitsu Interstage  IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0interstage.unix.tar

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0interstage.windows.zip

Installing the Java Agent  31

Java Agent Guide

Java Agent installation directories and files

Installing a Java Agent creates the following directory structure:

wily\
connectors
docs
ext
hotdeploy
install
tools
UninstallerData

Java Agent operating and data collection behaviors are controlled by
configuration properties stored in the agent profile and the PBDs it references.

Contents of the wily directory

The wily directory contains:

 Agent.jar—The Java Agent executable .jar file

 WebAppSupport.jar—Contains startup classes that you can configure to
allow the Java Agent to obtain management information from an
application server.

 IntroscopeAgent.profile—The agent profile contains properties that
control the behavior of the agent and AutoProbe. Defaults are supplied for
many properties; the default values for certain properties vary, depending
on the application server your agent installation supports. You can also
change the location of the agent profile. For more information, see
Configuring IntroscopeAgent.profile location on page 186.

 ProbeBuilder Directives (PBDs)—Contains the standard ProbeBuilder
Directives (PBDs) and ProbeBuilder Lists (PBLs) provided with the Java

JBoss  IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0jboss.unix.tar

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0jboss.windows.zip

Other  IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0default.unix.tar

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0default.windows.zip

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0default.zOS.tar

 IntroscopeAgentFilesOnly-
NoInstaller8.0.0.0default.os400.zip

Application
Server

Installer Archive Packages

32  Installing and Configuring the Java Agent

CA Wily Introscope Java Agent

Agent, as well as application server-specific PBDs, which vary depending
on the application server your agent installation supports. For more
information on the standard PBDs and PBLs, see Default ProbeBuilder
Directive (PBD) files on page 75 and Default ProbeBuilder List (PBL) files on
page 76.

Contents of the wily\connectors directory

The wily\connectors directory contains:

 CreateAutoProbeConnector.jar—Used in configuring JVM AutoProbe in
supported environments.

Contents of the wily\docs directory

The wily\docs directory contains:

 IntroscopeInstallUpgradeGuide.pdf—how to install and upgrade other
components of Introscope.

 IntroscopeSizingGuide.pdf—contains background, instructions, best
practices, and tips for optimizing the sizing and performance of your
Introscope deployment and environment.

 JavaAgent.pdf (this guide)—details how to install and configure the
Introscope Java Agent.

Contents of the wily\hotdeploy directory

Directives placed in this directory will be automatically deployed to the Java
Agent. When you create custom PBDs, save them to this directory. When PBDs
are placed in this directory, you do not have to edit the IntroscopeAgent.profile
to pick up new or changed PBDs. Also, if you have enabled dynamic
ProbeBuilding, you do not have to restart your applications to apply new PBDs.

For more information about creating custom PBDs, see ProbeBuilder Directives
on page 73 and Creating custom tracers on page 84. For more information about
dynamic ProbeBuilding, see Dynamic ProbeBuilding on page 56.

» Note Any ProbeBuilder Lists (PBLs) placed in this directory will be ignored by
the Java Agent.

The hotdeploy directory allows Introscope administrators to deploy new
directives more quickly and easily, without editing the IntroscopeAgent.profile,
and potentially without restarting applications. This ability heightens the need for
caution. If your custom PBDs contain invalid syntax, or are configured to collect
too many metrics, the impact will be felt more quickly. Invalid PBDs will cause
AutoProbe to shut off and PBDs that collect too many metrics can affect
application performance.

Installing the Java Agent  33

Java Agent Guide

To address this, CA Wily recommends:

 testing and validating all directives in QA and performance environments
before pushing them out to production environments.

 ensuring that your server environment's change control process is updated
to reflect the new option for deploying PBDs.

Additionally, you can decide not to use the hotdeploy directory.

To unconfigure the hotdeploy directory:

1 Move any of the custom PBDs stored in the hotdeploy directory to the main
<Agent_Home>/wily directory.

2 Open the IntroscopeAgent.profile.

3 Remove hotdeploy from the introscope.autoprobe.directivesFile property.

4 Add the PBDs you want to use to the introscope.autoprobe.directivesFile, for
example:

introscope.autoprobe.directivesFile=default-
typical.pbl,custom1.pbd,custom2.pbd,custom3.pbd

5 Save the IntroscopeAgent.profile and restart the agent.

Contents of the wily\ext directory

The wily\ext directory contains:

 CEMTracer.jar—Used in environments that integrate Wily Customer
Experience Manager (CEM) with the Java Agent.

 ServletHeaderDecorator.jar—Used in environments that integrate Wily
CEM with the Introscope agent.

 Inheritance.jar—Used in Java 1.5 environments to enable AutoProbe to
instrument multiple levels of subclasses of a probed class.

 JavaI5DynamicInstrumentation.jar—Used in Java 1.5 environments to
enable dynamic instrumentation, which allows you to implement new and
changed PBDs without restarting the managed application or the agent.

 ProbeBuilder.jar—Contains ProbeBuilder executable.

 One of the following extensions to ProbeBuilder.jar

 BasicDirectiveLoader.jar

 SignedJARDirectiveLoader.jar

 UnifiedDirectiveLoader.jar

 SQLAgent.jar—Contains SQL Agent executable.

 Supportability-Agent.jar—Supportability extensions for use by Wily
Technical Support in agent support.

34  Installing and Configuring the Java Agent

CA Wily Introscope Java Agent

Contents of the wily\install directory

The wily\install directory contains:

 autogenerated.responsefile.<date_and_time_stamp>—an automatically
generated response file that reflects the settings you chose during
installation. This file can be used to replicate the installation on other
systems.

 Introscope_Agent_8.0_InstallLog.log—if you installed your Java Agent
using the agent installer, this log details the actions taken by the
automatic installer.

 IntroscopeAgentInstallation_README.txt—details the next steps you
should take after installing the Java Agent, based on the decisions you
made during the automatic installation.

 SampleResponseFile.Agent.txt—Sample silent responsefile

Contents of the wily\tools directory

The wily\tools directory contains:

 URLGrouper.jar—Contains the URLGrouper, a command-line utility that
analyzes web server log files and produces BRTA property settings for a
set of URL Groups. For more information about the URLGrouper, see
Running the URLGrouper on page 139.

Contents of the wily\UninstallerData directory

The wily\UninstallerData directory contains:

 Uninstall Introscope Agent .exe—Use this file to uninstall the Java Agent.

JBoss configuration

If you installed the Java Agent on a JBoss system using either installation
method, there are further configurations you must perform to enable the
reporting of JBoss metrics to Introscope. You must configure JBoss for
Introscope, and deploy web application support for JBoss. When deploying web
application support for JBoss, the Introscope service is deployed as a stand alone
XML service descriptor.

This functionality requires Introscope 8.0 or higher. It is compatible with JBoss
4.0.3 SP1, 4.0.2, and 4.2x. The JMX service can run with Introscope 6.0 but the
following error is logged:

8/16/05 01:40:25 PM PDT [ERROR] [IntroscopeAgent] Failed to activate JMX
data collection

Installing the Java Agent  35

Java Agent Guide

java.lang.IllegalArgumentException: The MBean server builder implementation
class org.jboss.mx.server.MBeanServerBuilderImpl was not found:
java.lang.ClassNotFoundException:
org.jboss.mx.server.MBeanServerBuilderImpl

This error can be ignored - JMX data collection has in fact been activated.

To configure JBoss for Introscope:

1 Modify the run.bat file in the bin directory of your JBoss installation by adding
the following:

rem ===
rem Enable Introscope
rem ===
rem Use this for Java 1.5
set JAVA_OPTS= -javaagent:%JBOSS_HOME%\wily\Agent.jar -

Dcom.wily.introscope.agentProfile=%JBOSS_HOME%\wily\IntroscopeAgent.pro
file %JAVA_OPTS%

rem Otherwise, use this
rem set JAVA_OPTS= -Xbootclasspath/

p:%JBOSS_HOME%\wily\connectors\AutoProbeConnector.jar;%JBOSS_HOME%\wily
\Agent.jar -
Dcom.wily.introscope.agentProfile=%JBOSS_HOME%\wily\IntroscopeAgent.pro
file %JAVA_OPTS%

rem===

» Note The above assumes you installed the Java Agent in the root directory of
your JBoss installation. If not, modify the file paths accordingly.

2 Save the run.bat file.

3 Open the IntroscopeAgent.profile located in the <Agent_Home>\wily directory
and set the following property:

introscope.agent.jmx.enable=true

4 Save the IntroscopeAgent.profile.

To deploy web application support for JBoss:

1 Place the WebAppSupport.jar file, located in the <Agent_Home>\wily directory of
your Java Agent installation, in to the /server/default/lib directory of your
JBoss installation.

» Note This assumes you are using the default configuration. If not, place the
file in the appropriate directory.

2 Create an XML file called introscope-jboss-service.xml with the following
content:

<?xml version="1.0" encoding="UTF-8"?>
<!--
 Introscope Custom Service for JBoss
-->

36  Installing and Configuring the Java Agent

CA Wily Introscope Java Agent

<service>
<mbean code="com.wily.introscope.api.jboss.IntroscopeCustomService"

name="user:service=IntroscopeCustomService"/>
</service>

3 Place the introscope-jboss-service.xml file in to the /server/default/deploy
directory of your JBoss installation

» Note This assumes you are using the default configuration. If not, place the
file in the appropriate directory.

JBoss PBDs and PBLs

When you install the Java Agent on a JBoss application server, JBoss-specific
PBDs and PBLs are installed in the <Agent_Home>\wily directory. Use these files
to taylor your JBoss data collection:

 jboss4x.pbd

 jsf.pbd

 jsf-toggles-full.pbd

 jsf-toggles-typical.pbd

 jboss-full.pbl

 jboss-typical.pbl

Configuring connection to the Enterprise Manager
To report metrics, the Java Agent must connect to an Enterprise Manager. You
configure how the agent connects to the Enterprise Manager by changing
properties in the IntroscopeAgent.profile, located in the <Agent_Home>/wily
directory. CA Wily recommends putting the Enterprise Manager on a system
separate from the agent systems.

The default communications settings in the IntroscopeAgent.profile enable an
agent to connect to an Enterprise Manager located on the same system as the
agent. To comply with the recommended deployment (different systems), you
must modify the IntroscopeAgent.profile to connect the agent to a remote
Enterprise Manager.

To configure Java Agent connection to the Enterprise Manager:

1 Open the IntroscopeAgent.profile.

2 Modify the following properties to specify the location of your remote
Enterprise Manager:

 introscope.agent.enterprisemanager.transport.tcp.host.DEFAULT

Defines the host name or IP address of the target Enterprise Manager.

 introscope.agent.enterprisemanager.transport.tcp.port.DEFAULT

Configuring connection to the Enterprise Manager  37

Java Agent Guide

Defines the Enterprise Manager listening port, which should be the same port
specified in the Enterprise Manager property:
introscope.enterprisemanager.port.DEFAULT . By default, this port is 5001.

» Note To change Enterprise Manager properties, open the
IntroscopeEnterpriseManager.properties file, located in the
<Introscope_Home>/config directory and modify the desired properties.
Save the file for your changes to be implemented.

 introscope.agent.enterprisemanager.transport.tcp.socketfactory.DEFAULT

Defines the socket factory used for connections to the Enterprise Manager.

» Note The default value of this property,
com.wily.isengard.postofficehub.link.net.DefaultSocketFactory, is
for plain socket communication.

3 Save the IntroscopeAgent.profile and start (or restart) the Java Agent.

For more information about connection properties, see Agent to Enterprise
Manager connection on page 196.

You can also configure alternate Enterprise Managers for the Java Agent to
connect to, should the connection to the primary Enterprise Manager be lost. For
more information on how to configure these Enterprise Managers, see
Configuring Java Agent Failover on page 123.

Connecting to the Enterprise Manager with HTTP tunneling

You can configure agents to communicate with an Enterprise Manager over HTTP.
This allows communication to pass through firewalls permitting only HTTP traffic.

CA Wily Technology does not recommend configuring agents to tunnel over HTTP
if a direct socket connection to the Enterprise Manager is feasible. Tunneling
imposes additional CPU and memory overhead on the managed host and
Enterprise Manager beyond that expected for a direct socket connection.

» Important HTTP/1.1 is required to enable agent HTTP tunneling.

To configure HTTP tunneling:

1 Open the IntroscopeAgent.profile.

2 Configure the agent to connect to the HTTP listening port of the
Enterprise Manager’s embedded web server, using an HTTP tunneling socket
factory. Use these properties to specify the agent tunneling connection:

 introscope.agent.enterprisemanager.transport.tcp.host.DEFAULT

Defines the host name or IP address of the target Enterprise Manager.

38  Installing and Configuring the Java Agent

CA Wily Introscope Java Agent

 introscope.agent.enterprisemanager.transport.tcp.port.DEFAULT

Defines the HTTP listening port of the Enterprise Manager's embedded web
server, which is usually specified in the Enterprise Manager property:
introscope.enterprisemanager.webserver.port. By default, this port is 8081.

» Note To change Enterprise Manager properties, open the
IntroscopeEnterpriseManager.properties file, located in the
<Introscope_Home>/config directory and modify the desired properties.
Save the file for your changes to be implemented.

 introscope.agent.enterprisemanager.transport.tcp.socketfactory.DEFAULT

Set the value to
com.wily.isengard.postofficehub.link.net.HttpTunnelingSocketFactory.

3 Save the IntroscopeAgent.profile.

Configuring a proxy server for HTTP tunneling

You can configure the HTTP tunneled agent to connect through a proxy server to
the Enterprise Manager. This is necessary for a forward-proxy server
configuration where the agent is running behind a firewall that only allows
outbound HTTP traffic routed through the proxy server.

These proxy server configuration properties apply only if the agent is configured
to tunnel over HTTP. The proxy server configuration applies to any configured
HTTP tunneled connection on the agent, not to a single connection. This is
especially important to consider when configuring failover between multiple
Enterprise Managers, where the connection to each Enterprise Manager is over
HTTP.

» Important HTTP/1.1 is required to enable agent HTTP tunneling. If you are
using HTTP tunneling, your proxy server must support HTTP Post.

To configure a proxy server for HTTP tunneling:

1 Open the IntroscopeAgent.profile.

2 Specify the proxy server properties:

 introscope.agent.enterprisemanager.transport.http.proxy.host on page 189

 introscope.agent.enterprisemanager.transport.http.proxy.port on page 189

3 If the proxy server requires the agent to authenticate with it, set these
properties:

 introscope.agent.enterprisemanager.transport.http.proxy.username on
page 189

 introscope.agent.enterprisemanager.transport.http.proxy.password on
page 189

4 Save the IntroscopeAgent.profile.

Configuring connection to the Enterprise Manager  39

Java Agent Guide

Connecting to the Enterprise Manager with HTTPS tunneling

The agent can connect to the Enterprise Manager using HTTP over Secure Sockets
Layer (SSL) by configuring properties in the IntroscopeAgent.profile.

To configure connection through HTTPS:

1 Open the IntroscopeAgent.profile.

2 Configure the agent to connect to the HTTPS listening port of the
Enterprise Manager’s embedded web server, using an HTTP tunneling socket
factory.

 introscope.agent.enterprisemanager.transport.tcp.host.DEFAULT

Defines the host name or IP address of the target Enterprise Manager.

 introscope.agent.enterprisemanager.transport.tcp.port.DEFAULT

Defines the HTTPS listening port of the Enterprise Manager's embedded web
server.

 introscope.agent.enterprisemanager.transport.tcp.port.
DEFAULT=8444

 introscope.agent.enterprisemanager.transport.tcp.socketfactory.DEFAULT
=com.wily.isengard.postofficehub.link.net.HttpsTunnelingSocketFactory

Set the value to:

com.wily.isengard.postofficehub.link.net.HttpsTunnelingSocketFactory.

3 Save the IntroscopeAgent.profile.

Connecting to the Enterprise Manager over SSL

The agent can also connect to the Enterprise Manager using just SSL.

To configure connection through SSL:

1 Open the IntroscopeAgent.profile.

2 Configure the agent to connect to the Enterprise Manager’s SSL listening port
using an SSL socket factory.

 introscope.agent.enterprisemanager.transport.tcp.host.DEFAULT

Defines the host name or IP address of the target Enterprise Manager.

 introscope.agent.enterprisemanager.transport.tcp.port.DEFAULT

Defines the Enterprise Manager's SSL listening port.

 #introscope.agent.enterprisemanager.transport.tcp.socketfactory.DEFAUL
T

Set the value to:

com.wily.isengard.postofficehub.link.net.SSLSocketFactory

40  Installing and Configuring the Java Agent

CA Wily Introscope Java Agent

3 If the agent needs to authenticate the Enterprise Manager, uncomment and set
the truststore property to the location of a truststore containing the
Enterprise Manager’s certificate.

 introscope.agent.enterprisemanager.transport.tcp.truststore.
DEFAULT

Set to either an absolute path or a path relative to the agent's working
directory. On Windows, backslashes must be escaped. For example:
C:\\my_truststore.

 introscope.agent.enterprisemanager.transport.tcp.trustpassword.DEFAULT

The truststore password. Uncomment and set only if needed.

» Note If no truststore is specified, the agent by default trusts all certificates.

4 If the Enterprise Manager requires client authentication, the agent must be
configured with a keystore. Set the keystore property to the location of a keystore
containing the agent's certificate:

 introscope.agent.enterprisemanager.transport.tcp.keystore.
DEFAULT

Set to either an absolute path or a path relative to the agent's working
directory. On Windows, backslashes must be escaped. For example:
C:\\keystore.

 introscope.agent.enterprisemanager.transport.tcp.keypassword.DEFAULT

The keystore password. Uncomment and set only if needed. By default no
keystore is specified.

 introscope.agent.enterprisemanager.transport.tcp.ciphersuites.DEFAULT

To restrict the enabled cipher suites, set this property to a comma-separated
list of cipher suites.

» Note If not specified, the default enabled cipher suites are used.

5 Save the IntroscopeAgent.profile.

Configuring the Java Agent name
The Java Agent profile provides default values for the agent name and Custom
Process name, which appear as nodes in the Investigator hierarchy of metrics
reported by the Java Agent.

Depending on your environment, you may wish to configure the Java Agent to
obtain a name automatically. For more information about agent naming, and
autonaming capabilities, see Java Agent Naming on page 99.

If desired, you can define the agent name and process name using these
properties in IntroscopeAgent.profile.

 introscope.agent.agentName—Name the application server that the Java
Agent is monitoring.The agentName value must start with an alphabetical

Configuring ProbeBuilder options  41

Java Agent Guide

character, and cannot contain a percent (%) character. See
introscope.agent.agentName on page 195 for a description.

 introscope.agent.customProcessName—Name the process being monitored.
See introscope.agent.customProcessName on page 195 for a description.

Configuring ProbeBuilder options
By default, AutoProbe will use the typical PBD set provided with the Java Agent,
which results in the collection of a moderate number of metrics. For instructions
on how to customize the metric collection level, or to configure optional
ProbeBuilding behaviors, see AutoProbe and ProbeBuilding Options on page 45.

Upgrading multiple agent types
Some environments have thousands of agents distributed across many different
application servers. For example, an environment might have 8,000 agents, with
3,000 agents on WebLogic, 2,000 on WebSphere, and 3,000 on JBoss.

It can become quite a burden to understand the environmental needs for
upgrading agents (which agents where need to be upgraded?), and to actually
perform the upgrade of all agents to a new version. To ease this burden, the
Introscope Java Agent 8.0 release includes superset agent packages, one
package for each of the following operating system platforms:

 IntroscopeAgentFilesOnly-NoInstaller8.0.0.0allappserver.windows.zip

 IntroscopeAgentFilesOnly-NoInstaller8.0.0.0allappserver.unix.tar

 IntroscopeAgentFilesOnly-NoInstaller8.0.0.0allappserver.zOS.tar

 IntroscopeAgentFilesOnly-NoInstaller8.0.0.0allappserver.os400.zip

» Important The superset packages do not include any files for SAP NetWeaver
at this time.

Each package contains:

 All application server-specific PBDs and PBLs

 All application server agent profiles, with the application server name
embedded in the file name. For example:

IntroscopeAgent.weblogic.profile
IntroscopeAgent.websphere.profile

» Note The default IntroscopeAgent.profile has not been included. See step 3
on page 42 for more information.

 All agent .jars and platform monitors suitable for the operating system
type

42  Installing and Configuring the Java Agent

CA Wily Introscope Java Agent

To upgrade multiple agent types using the superset agent packages:

» Important This upgrade method is not supported for SAP NetWeaver at this
time.

1 Select a superset package appropriate for the target operating system.

2 Extract the selected agent package into the application server’s home directory.
Follow the manual installation instructions for Java Agent installation. For more
information, see Manual installation on page 29.

» Note The extra PBDs and PBLs in the <Agent_Home>/wily directory that refer
to other application servers can be safely ignored.

3 If you have not already configured an IntroscopeAgent.profile, select the
appropriate IntroscopeAgent.<application_server_name>.profile, rename it to
IntroscopeAgent.profile, and configure the file for use with your environment.

» Note If you have already configured an IntroscopeAgent.profile, open the
corresponding IntroscopeAgent.<application_server_name>.profile
file in an editor and look for new properties you may want to use.
Transfer these properties to your existing IntroscopeAgent.profile.

Uninstalling the Java Agent
Uninstalling the Java Agent requires you to know where the Java Agent was
installed for each application being monitored.

If you used the Java Agent installer to install your Java Agent, the uninstaller can
be used to remove installed files. Launch the uninstaller and follow the on-screen
directions.

To uninstall the Java Agent from JVM 1.5.x, JVM 1.6.x, HP, JRockit JVMs, or WLS
6.1+:

1 Remove the Java Agent switches from the JVM command line. These include:

 -Xbootclasspath

 -javaagent

 any other Wily-specific arguments (for example:
Dcom.wily.introscope.agentProfile=xxxxx)

2 Reboot your application.

3 Manually delete the <Agent_Home>/wily directory, or run the uninstaller.

To uninstall the Java Agent from WebSphere Application Server 5.0, 5.1, or 6.0:

1 Connect to the Administration Console for your WebSphere Application Server.

2 Remove the Java Agent switches from the "Generic JVM Arguments".

3 Reboot your application.

Uninstalling the Java Agent  43

Java Agent Guide

4 Manually delete the wily directory, or run the uninstaller.

Uninstalling the Java Agent from z/OS

The recommended way to uninstall the Java Agent from z/OS is to delete the
<Agent_Home>/wily directory using an rm -rf command. This is necessary
because the executable uninstaller does not run properly on z/OS due to a third
party bug.

» Note For an active Introscope 8.0 installation on z/OS, it is important to keep
the UninstallerData folder intact. If you delete the UninstallerData
folder, you will not be able to upgrade to future versions of Introscope.
Do not delete the UninstallerData folder unless you have decided to
uninstall the entire instance.

44  Installing and Configuring the Java Agent

CA Wily Introscope Java Agent

AutoProbe and ProbeBuilding Options  45

CHAPTER 3

AutoProbe and ProbeBuilding Options

This chapter has information about ProbeBuilding options.

Configuring JVM AutoProbe. 46

Configuring ProbeBuilder options 56

Dynamic ProbeBuilding 56

ProbeBuilding class hierarchies (JVM 1.5) 59

Removing line numbers in bytecode 60

46  AutoProbe and ProbeBuilding Options

CA Wily Introscope Java Agent

Configuring JVM AutoProbe
CA Wily recommends using JVM AutoProbe to instrument the applications you
want to monitor. Configure JVM AutoProbe using the instructions that correspond
to your JVM:

 Sun, IBM, or HP JVM AutoProbe on page 46

 JRockit JVM AutoProbe on page 51

 JVM 1.5 AutoProbe on page 51

 JVM AutoProbe and OS/400 on page 51

 JVM AutoProbe and Apache Tomcat on page 52

It is important to know which version of Java your JVM uses. Different versions
of Java require a different configuration of AutoProbe:

» Note For a complete list of products which are integrated with Introscope, and
which JVMs are supported, see the Introscope Compatibility Guide on the
CA Wily Community Site: http://support.wilytech.com

Sun, IBM, or HP JVM AutoProbe

This section has instructions for creating and running the AutoProbe Connector
for a Sun, IBM, or HP JVM. If your JVM is v1.5, follow the instructions in JVM 1.5
AutoProbe on page 51.

Create AutoProbe Connector

1 Change the working directory to wily/connectors under the installation

directory.

2 Run the Create AutoProbe Connector tool using one of these commands:

 to specify the JVM using the JVM that is running the tool:
java -jar CreateAutoProbeConnector.jar -current

 to specify the JVM by passing the JVM directory on the command line:
java -jar CreateAutoProbeConnector.jar -jvm <directory>

The output is a file with the form: wily/connectors/AutoProbeConnector.jar

Java version Configuration used

Java 1.5 and later -javaagent syntax. See JVM 1.5 AutoProbe on page 51 for
more information.

Java 1.4 and earlier -Xbootclasspath syntax. See your specific JVM for more
information.

http://support.wilytech.com

Configuring JVM AutoProbe  47

Java Agent Guide

Run AutoProbe Connector

After you create the AutoProbe Connector for the Sun or IBM JVM, you run it. The
way you run the Connector depends on the application server you use. For more
information, see the following sections:

 Run AutoProbe Connector for WebLogic on page 47

 Run AutoProbe Connector for WebSphere 5.0, 5.1, or 6.0 on page 48

 Run AutoProbe Connector for SAP J2EE 6.20 on page 49

 Run AutoProbe Connector for NetWeaver 04/SAP J2EE 6.40 on page 49

 Run AutoProbe Connector for Sun ONE on page 50

 Run AutoProbe Connector for Oracle 10g on page 50

 Run AutoProbe Connector for other application servers on page 50

Run AutoProbe Connector for WebLogic

Different versions of WebLogic use different versions of Java to run. If you use
Java 1.4 or earlier, you will use the following steps to run the AutoProbe
connector. If you use Java 1.5 or later, see JVM 1.5 AutoProbe on page 51 for
more information.

For a comprehensive list of WebLogic versions and their corresponding JDKs, see
the Introscope Compatibility Guide on the Wily Community Site: http://
support.wilytech.com.

To run the AutoProbe Connector for WebLogic:

1 Edit the bootstrap classpath in the application startup script to include the
AutoProbeConnector.jar you created (such as startMedRecServer.cmd) using
this command:

-Xbootclasspath/p:PathToAutoProbeConnectorJar:PathToAgentJar

add the -X switch to the final start command at the end of the script, after the
JAVA_VM and JAVA_OPTIONS. The excerpt below shows the correct place to insert
the switch:

"$JAVA_HOME/bin/java" ${JAVA_VM} ${MEM_ARGS} ${JAVA_OPTIONS}
-Xbootclasspath/p:${WL_HOME}/wily/connectors/

AutoProbeConnector.jar:${WL_HOME}/wily/Agent.jar
-Dweblogic.Name=${SERVER_NAME}

-Dweblogic.management.username=${WLS_USER}
-Dweblogic.management.password=${WLS_PW}
-Dweblogic.ProductionModeEnabled=${PRODUCTION_MODE}
-Djava.security.policy="${WL_HOME}/server/lib/weblogic.policy"
weblogic.Server

http://support.wilytech.com
http://support.wilytech.com

48  AutoProbe and ProbeBuilding Options

CA Wily Introscope Java Agent

2 If you are using something other than the default bootstrap classpath, add the
Agent.jar and AutoProbeConnector.jar files to the beginning of your customized
bootstrap classpath.

Run AutoProbe Connector for WebSphere 5.0, 5.1, or 6.0

1 Start the WebSphere Administrator’s Console, and navigate to the JVM
Settings section for the application server you want to modify:

 For WebSphere 6.0: navigate to Application Servers > your_server > Java
and Process Management > Process Definition > Java Virtual Machine.

 For WebSphere 5.1/5.0: navigate to Application Servers > your_server >
Process Definition > Java Virtual Machine

2 Set the Generic JVM Arguments field in the following format:

-Xbootclasspath/p:<Path-To-
AutoProbeConnector.jar>AutoProbeConnector.jar;<Path-To-
Agent.jar>Agent.jar

-Dcom.wily.introscope.agentProfile=<path-to-
IntroscopeAgent.profile>IntroscopeAgent.profile

-Dcom.wily.introscope.agent.agentName=<your-agent-Name>

For example:

-Xbootclasspath/p:<AppServerHome>/wily/connectors/
AutoProbeConnector.jar:<AppServerHome>/wily/Agent.jar

-Dcom.wily.introscope.agentProfile=<path-to-
IntroscopeAgent.profile>IntroscopeAgent.profile

-Dcom.wily.introscope.agent.agentName=<your-Agent-Name>

Use a semicolon (;) as a path separator on Windows systems.

» Note The /p: option in the command above prepends the supplied path to the
default bootstrap classpath.

For example: If you installed the Java Agent in c:\Program
Files\IBM\WebSphere\AppServer\profiles\default, the Generic JVM
Arguments field would be set to:

-Xbootclasspath/p:C:/PROGRA~1/IBM/WebSphere/AppServer/profiles/
default/wily/connectors/AutoProbeConnector.jar;C:/PROGRA~1/IBM/
WebSphere/AppServer/profiles/default/wily/Agent.jar

-Dcom.wily.introscope.agentProfile=C:/PROGRA~1/IBM/WebSphere/
AppServer/profiles/default/wily/IntroscopeAgent.profile

-Dcom.wily.introscope.agent.agentName=WebSphereAgent

For troubleshooting Java Agent start-up problems, review the basic
WebSphere Application Server log (i.e native_stderr.log). If an incorrect
configuration is placed in the Generic JVM Arguments section and you
experience errors starting the server, please review and correct the generic
JVM arguments in the server.xml file.

3 Click OK.

Configuring JVM AutoProbe  49

Java Agent Guide

4 Apply the changes in the Administrator’s Console.

5 The default for file encoding for WebSphere 5.x and 6.0 on z/OS is now ASCII,
but Introscope expects an EBCDIC file format. When you configure JVM
AutoProbe for z/OS, click on Custom Properties and add the name value pair:

name: com.wily.introscope.default.encoding
value: Cp1047

» Note This step is for z/OS operating systems only.

6 In WebSphere environments with Java2 Security enabled, for AutoProbe to run
correctly, it may be necessary to add permissions to your Java2 Security Policy.
If Java2 Security is enabled, follow the instructions in Modifying Java2 Security
Policy on page 71.

7 Restart WebSphere.

In a moment you will see WebSphere metrics in your Introscope Workstation.

Run AutoProbe Connector for SAP J2EE 6.20

1 Open the file:

<drive>:\usr\sap\<J2EE_ENGINE_ID>\j2ee\j2ee_<INSTANCE>\cluster\
server\cmdline.properties

2 Append these commands to JavaParameters section:

-Xbootclasspath/p:PathToAutoProbeConnectorJar;PathToAgentJar
-Dcom.wily.introscope.agentProfile=<path-to-IntroscopeAgent.profile>
-Dcom.wily.introscope.agent.agentName=<yourAgentName>

For example:

-Xbootclasspath/
p:C:\usr\sap\P602\j2ee\j2ee_00\ccms\wily\connectors\AutoProbeConnector.
jar;C:\usr\sap\P602\j2ee\j2ee_00\ccms\wily\Agent.jar

-Dcom.wily.introscope.agentProfile=C:\usr\sap\P602\j2ee\
j2ee_00\ccms\wily\IntroscopeAgent.profile

3 Restart the SAP server.

Run AutoProbe Connector for NetWeaver 04/SAP J2EE 6.40

1 Run the SAP J2EE Configtool.

2 Select the server to modify.

3 Add these new java parameters in the Java Parameters field:

 -Xbootclasspath/p:PathToAutoProbeConnectorJar;PathToAgentJar

 -Dcom.wily.introscope.agentProfile=<path-to-IntroscopeAgent.profile>

For example:

-Xbootclasspath/p:D:/usr/sap/ccms/wily/connectors/
AutoProbeConnector.jar;D:/usr/sap/ccms/wily/Agent.jar

50  AutoProbe and ProbeBuilding Options

CA Wily Introscope Java Agent

-Dcom.wily.introscope.agentProfile=D:/usr/sap/ccms/wily/
IntroscopeAgent.profile

» Note For NetWeaver 6.40 on Windows, the slashes for these java parameters
must be forward slashes.

4 Click Disk to save.

5 Repeat steps 2 - 4 for each server.

6 Restart the SAP server.

7 To verify that Configtool changes were made, open the file:
<drive>:\usr\sap\ccms\P66\JC00\j2ee\cluster\instance.properties

8 Look for a line beginning with ID<server_id>.JavaParameters, and confirm that
it contains the lines you entered.

Run AutoProbe Connector for Sun ONE

1 Log in as Administrator or Root.

You must be logged in with Administrator or Root permissions to add Introscope
information to startup scripts for Sun ONE 7.0.

2 Open the server.xml file, located at:
<SunONE install dir>/domains/domain1/server1/config/

» Note The item separator is a colon (:).

3 Add this line to the server.xml file:

<jvm-options>
-Xbootclasspath/p:PathToAutoProbeConnectorJar:PathToAgentJar
</jvm-options>

For example:

<jvm-options>
-Xbootclasspath/p:/sw/sun/sunone7/wily/connectors/

AutoProbeConnector.jar:/sw/sun/sunone7/wily/Agent.jar
</jvm-options>

Run AutoProbe Connector for Oracle 10g

To run the AutoProbe Connector, modify the bootstrap classpath:

-Xbootclasspath/p:wily/connectors/AutoProbeConnector.jar:PathToAgentJar

Run AutoProbe Connector for other application servers

To run the AutoProbe Connector, add the Agent.jar and the AutoProbe Connector
to the Application Server bootstrap classpath using this command:

-Xbootclasspath/p:wily/connectors/AutoProbeConnector.jar:PathToAgentJar

Configuring JVM AutoProbe  51

Java Agent Guide

JRockit JVM AutoProbe

To configure the JRockit JVM for AutoProbe, start the JRockit JVM using these
command-line options:

 For JRockit 7.0, SP2 and previous:

-Djrockit.preprocessor.class=com.wily.introscope.api.weblogic.
PreProcessor

-Xbootclasspath/a:PathToAgentJar

 For JRockit 7.0, SP3 and above, and for WebLogic JRockit 8.1:

-Xbootclasspath/a:PathToAgentJar
-Xmanagement:class=com.wily.introscope.api.jrockit.

AutoProbeLoader

 For WebLogic 9.0 with JRockit 5.0:

JAVA_VENDOR=BeaJAVA_OPTIONS=%JAVA_OPTIONS% -javaagent:PathToAgentJar

JVM 1.5 AutoProbe

If you use JVM 1.5 from any vendor, configure AutoProbe to use Java 1.5 JVM by
adding these options to the JVM command line:

-javaagent:PathToAgentJar
-Dcom.wily.introscope.agentProfile=PathToAgentProfile

JVM AutoProbe and OS/400

JVM AutoProbe only functions with OS/400 under certain conditions.

Java 1.4

Under Java 1.4, you can use JVM AutoProbe with OS/400 if you have the following
in your environment:

 JVM versions 1.4.2 (64-bit only)

 WAS 5.1 or 6.0

 The following Program Temporary Fixes (PTFs) applied:

 MF41376

 MF41469

 MF41505

 SI27807

 SI27807

 SI27808

 V5R3M0

52  AutoProbe and ProbeBuilding Options

CA Wily Introscope Java Agent

 V5R3M5

 V5R4M0

 Specify the following JVM system properties:

-Xbootclasspath/p:/QIBM/ProdData/Java400/jdk14/lib/
instrumentation.jar:Agent.jar

-agentlib:QJVAIAGENT=Agent.jar
-Dos400.jvmti.force.jitc
-Dcom.wily.introscope.agentProfile=PathToAgentProfile

» Note Substitute your own system's paths to the Java home, the agent jar and
the agent profile.

It is not necessary to generate a connector jar when using JVM 1.4 AutoProbe and
OS/400 in this configuration.

Java 1.5

Under Java 1.5, you can also use JVM AutoProbe with OS/400 if you have the
following in your environment:

 Java 1.5 (32-bit mode)

Configure AutoProbe to use Java 1.5 JVM by adding these options to the JVM
command line:

-javaagent:PathToAgentJar
-Dcom.wily.introscope.agentProfile=PathToAgentProfile

 WAS 6.1

JVM AutoProbe and Apache Tomcat

You can install the Java Agent on an Apache Tomcat application server.
Depending on which method you used to install the Java Agent on the Tomcat
application server, there are further configurations you must make to ensure the
Java Agent operates and reports metrics correctly.

If you used the Java Agent installer:

Step 1 Follow the installer instructions. See The Java Agent installer on page 22 for more
information.

Step 2 Edit the IntroscopeAgent.profile as desired. There are multiple ways to
configure the profile - see Configuring connection to the Enterprise Manager on
page 36, Configuring the Java Agent name on page 40, Configuring ProbeBuilder
options on page 41 for more information.

Step 3 Configure the Tomcat PBD with your tracing decisions. See Tomcat PBD tracing
options on page 53 for more information.

Configuring JVM AutoProbe  53

Java Agent Guide

Step 4 Edit the Tomcat startup script to add Wily specific code. See Editing the startup
script on page 54 for more information.

If you manually installed the Java Agent:

Step 1 Follow the manual installation instructions. See Manual installation on page 29 for
more information.

Step 2 Edit the IntroscopeAgent.profile as desired. There are multiple ways to
configure the profile - see Configuring connection to the Enterprise Manager on
page 36, Configuring the Java Agent name on page 40, and Configuring
ProbeBuilder options on page 41 for more information.

Step 3 Configure the Tomcat PBD with your tracing decisions. See Tomcat PBD tracing
options on page 53 for more information.

Step 4 If you are using application server AutoProbe, create the AutoProbeConnector
jar. See AutoProbe for Application Servers on page 63 for more information.

Step 5 Copy the WebAppSupport.jar from the <Agent_Home>/wily root directory into
tomcat_root/common/endorsed and <Agent_Home>/wily/ext directories.

Step 6 Edit the Tomcat startup script to add Wily specific code. See Editing the startup
script on page 54 for more information.

Tomcat PBD tracing options

Once you have installed the Java Agent on an Apache Tomcat application server,
there are some tracing options that must be configured. You must determine if:

 you want to use unformatted or formatted session tracing (see step 2 below).

 you want to trace Apache sessions or HTTP sessions (see step 3 below).

 you want to use unformatted or formatted DBCP tracing (see step 4, below).

Once you have determined the above, you configure the PBD for your APache
Tomcat version.

To configure your Tomcat PBDs:

1 Open the PBD for the version of your Apache Tomcat application server from the
wily directory. The following PBDs are available for configuration:

 tomcat41x.pbd

 tomcat50x.pbd

 tomcat55x.pbd

» Note Configure only one of the PBDs, and delete the ones you are not using.

54  AutoProbe and ProbeBuilding Options

CA Wily Introscope Java Agent

2 In the HTTP Session Configuration section of the toggles-full.pbd or
toggles-typical.pbd, select and uncomment the formatting option you want to
use. Use one of the following:

 FormattedSessionTracing produces metrics that are easier to read, but
may not work on all Tomcat installations.

 UnformattedSessionTracing produces metrics that may not be as easy to
read, but this option functions in all Tomcat installations. This option is enabled
by default.

» Note Use one of the formatting options, not both.

3 Also in the HTTP Session Configuration section, decide which type of session
you are going to trace and do one of the following:

 If you are tracing Apache sessions, uncomment these two session options:

TurnOn: ApacheStandardSessionTracing
TurnOn: SuperpagesSessionTracing

» Note These session options are enabled by default.

 If you are tracing HTTP sessions, you must comment out the above session
options and uncomment the following:

#TurnOn: HTTPSessionTracing

4 In the DBCP Configuration section of the PBD, determine which type of DBCP
formatting you want to use and uncomment one of the following:

 TurnOn: FormattedDBCPTracing

FormattedSessionTracing will produce metrics with better readability, but may
not work on all Tomcat installs.

 TurnOn: UnformattedDBCPTracing

This option is default setting.

5 Save the Tomcat PBD.

If the Tomcat PBD you modified is in the hotdeploy directory, you do not need to
restart your Java Agent. If the PBD is in another directory, you must restart your
Java Agent.

Editing the startup script

To ensure the Java Agent starts with the Apache Tomcat application server, you
must edit the start up script to include some code from Wily. Here is an example
from Tomcat 5.0:

To edit the start up script:

1 Open the catalina.bat file, usually located in the <tomcat_root>/bin
directory.

Configuring JVM AutoProbe  55

Java Agent Guide

2 Insert the following code into the startup script, customizing paths, etc., to suit
your own location and configuration:

:: ----- Wily Introscope ---------------------------------------
:: Place this code right before the commented-out start command
:: Only put Wily on the classpath when starting Tomcat
if not "%ACTION%" == "start" goto skipWilyVars
set WILY_HOME=S:\sw\apache\tomcat\5.0.30\wily

» Note Comment in the section below for JDK version 1.4, or comment in the
following section for JDK version 1.5, but not both versions.

:: NOTE: Configuration below for jdk versions <= 1.4
set WILY_ARGS=-Xbootclasspath/

p:"%WILY_HOME%\connectors\AutoProbeConnector.jar;%WILY_HOME%\Agent.jar;
%WILY_HOME%\WebAppSupport.jar"

:: NOTE: Configuration below for jdk versions >= 1.5
::set WILY_ARGS=-javaagent:"%WILY_HOME%\Agent.jar"
set WILY_NAME=-Dcom.wily.introscope.agent.agentName=NewTomcatAgent
set WILY_OPTS=-

Dcom.wily.introscope.agentProfile="%WILY_HOME%\IntroscopeAgent.profile"
%WILY_NAME%

echo Using WILY_HOME: %WILY_HOME%
echo Using WILY_ARGS: %WILY_ARGS%
echo Using WILY_NAME: %WILY_NAME%
echo Using WILY_OPTS: %WILY_OPTS%
:skipWilyVars

::Comment out the original start command
::%_EXECJAVA% %JAVA_OPTS% %CATALINA_OPTS% %DEBUG_OPTS% -

Djava.endorsed.dirs="%JAVA_ENDORSED_DIRS%" -classpath "%CLASSPATH%" -
Dcatalina.base="%CATALINA_BASE%" -Dcatalina.home="%CATALINA_HOME%" -
Djava.io.tmpdir="%CATALINA_TMPDIR%" %MAINCLASS% %CMD_LINE_ARGS% %ACTION%

::Print the command line before executing it
echo About to execute command: %_EXECJAVA% %WILY_ARGS% %WILY_OPTS%

%JAVA_OPTS% %CATALINA_OPTS% %DEBUG_OPTS% -
Djava.endorsed.dirs="%JAVA_ENDORSED_DIRS%" -classpath "%CLASSPATH%" -
Dcatalina.base="%CATALINA_BASE%" -Dcatalina.home="%CATALINA_HOME%" -
Djava.io.tmpdir="%CATALINA_TMPDIR%" %MAINCLASS% %CMD_LINE_ARGS% %ACTION%

%_EXECJAVA% %WILY_ARGS% %WILY_OPTS% %JAVA_OPTS% %CATALINA_OPTS%
%DEBUG_OPTS% -Djava.endorsed.dirs="%JAVA_ENDORSED_DIRS%" -classpath
"%CLASSPATH%" -Dcatalina.base="%CATALINA_BASE%" -
Dcatalina.home="%CATALINA_HOME%" -Djava.io.tmpdir="%CATALINA_TMPDIR%"
%MAINCLASS% %CMD_LINE_ARGS% %ACTION%

3 Save the catalina.bat file.

56  AutoProbe and ProbeBuilding Options

CA Wily Introscope Java Agent

Configuring ProbeBuilder options
By default, AutoProbe will use the typical PBD set provided with the Java Agent,
which results in the collection of a moderate number of metrics. The following
sections have instructions on how to customize the metric collection level, and
how to configure optional ProbeBuilding behaviors.

Full or typical tracing options

In Introscope, ProbeBuilder List (PBL) files govern which tracer groups are used
in the instrumentation process. The introscope.autoprobe.directivesFile
property specifies one or more PBL files.

Introscope provides two versions of each default PBL—a full version which
enables a larger set of Tracer Groups than the typical version which results in
more detailed metric reporting, and a typical version that enables a smaller set
of Tracer Groups, resulting in less detailed metric reporting, and as a result,
reduced overhead. By default, introscope.autoprobe.directivesFile specifies
the typical version of the default PBL file.

To change the tracing level between full and typical:

 Specify the name of the PBL file you wish to use in
introscope.autoprobe.directivesFile.

For example, to use the Full version of the standard PBL for WebLogic Server, set
the property to:

introscope.autoprobe.directivesFile=weblogic-full.pbl

and restart the managed application.

» Note For more information on full and typical system directives files and
customizing the TYPICAL settings, see ProbeBuilder Directives overview
on page 74.

Dynamic ProbeBuilding
Introscope uses dynamic ProbeBuilding (also called dynamic instrumentation) to
implement new and changed PBDs without restarting managed applications or
the agent itself. This is useful for making corrections to PBDs, or to temporarily
change data collection levels during triage or diagnosis without interrupting
application service.

» Important Dynamic instrumentation is only available for use with Java 1.5 or
higher. Dynamic instrumentation is dependant on Java 1.5
capabilities, so previous versions of Java are not able to use this
Introscope function.

Dynamic ProbeBuilding  57

Java Agent Guide

When dynamic instrumentation is enabled, Introscope periodically checks for new
and changed PBDs. To minimize overhead, Introscope selectively re-instruments
classes affected by the modified PBDs. To improve performance, the scope of
dynamic agent re-instrumentation is limited to reloading only those classes
whose instrumentation has changed when PBDs were edited.

When a PBD edited or added to the hotdeploy directory, only user directives (such
as adding or removing directives for a class, or toggling tracer groups) are re-
instrumented. System directives (such as adding a tracer or changing a new
tracer mapping) are not re-instrumented. Arrays, interfaces, and classes
specified in Skip directives are not re-instrumented, as well as any
transformations. In addition, you can exclude all classes loaded by particular
classloaders from the re-instrumentation process and limit the scope of the re-
instrumentation process to specific class packages.

For more information about the hotdeploy directory, see Contents of the
wily\hotdeploy directory on page 32.

Dynamic instrumentation is not enabled by default.

If a class is re-instrumented so that it no longer reports data for a metric, the
metric is still displayed in the Introscope Investigator. Existing metrics do not
disappear from the Investigator window if their classes are re-instrumented.

When configuring dynamic instrumentation, CA Wily recommends that you base
your changes on tracer groups. For example, if you want to control the level of
instrumentation for the tracer group XYZ, you should create two tracer groups:

 XYZTracing - regular tracing options

 XYZTracingLite - fewer components are traced

Once these two tracer groups have been created, you can toggle between them,
turning off XYZTracing and turning on XYZTracingLite. By toggling between the
two tracer groups you can view the impact that dynamic instrumentation has on
your environmental performance and adjust the tracing groups accordingly. This
would affect all classes being traced as part of each tracer group.

» Important Due to a limitation in Java 1.5, access to some class bytes is not
available, with the following effects:

 Modifications to the j2ee.pbd file may not be picked up, and
metrics may continue to be published under old names.

 Some exceptions may appear in the agent log.

To avoid this issues, restart the application server after modifying
the j2ee.pbd file.

58  AutoProbe and ProbeBuilding Options

CA Wily Introscope Java Agent

» Important Changes to directives not using tracer groups are not supported.
For example: changes in any directive like TraceAllMethods that
does not have an IfFlagged switch are not be supported.
However, Introscope does not ship any out of the box directives
without tracer groups or flags.
Changes to skips or transformations are also not supported.

For more information on tracer groups, see Default tracer groups and toggles files
on page 76, Turning tracer groups on or off on page 79, and Adding classes to a
tracer group on page 79.

To configure dynamic ProbeBuilding:

1 Open the IntroscopeAgent.profile file, usually located in the <Agent_Home>/
wily directory.

2 Verify that the property, introscope.autoprobe.enable, is set to true.

3 Uncomment the following properties and set values:

 introscope.autoprobe.dynamicinstrument.enabled=true

This property enables dynamic instrumentation.

» Note You must restart the managed application before changes to this
property take effect.

 introscope.autoprobe.dynamicinstrument.pollIntervalMinutes=1

The polling interval in minutes to check for PBD changes. The default is set to
one minute intervals.

» Note You must restart the managed application before changes to this
property take effect.

 introscope.autoprobe.dynamicinstrument.classFileSizeLimitInMegs=1

Some classloader implementations have been observed to return huge class
files.This is to prevent memory errors.

» Note You must restart the managed application before changes to this
property take effect.

 introscope.autoprobe.dynamic.limitRedefinedClassesPerBatchTo=10

Re-defining too many classes at a time might be very CPU intensive. In cases
where the changes in PBDs trigger a re-definition of a large number of classes,
this property batches the process at a comfortable rate.

» Important The following properties are no longer available for use and have
been removed from the IntroscopeAgent.profile:
introscope.autoprobe.dynamicinstrument.instrumentList=all,

com.x.y,foo.a.b

introscope.autoprobe.dynamicinstrument.avoidClassLoaders=S

ystem,com.myappserver.

ProbeBuilding class hierarchies (JVM 1.5)  59

Java Agent Guide

4 Save changes to the IntroscopeAgent.profile.

5 Restart the managed application (if appropriate).

ProbeBuilding class hierarchies (JVM 1.5)
In pre-1.5 JVMs, Introscope does not automatically instrument classes in the
deeper levels of class hierarchy—only the classes that explicitly extend a probed
class. For more information, see Instrumenting and inheritance on page 93.

On JVM 1.5, you can configure Introscope to instrument multiple levels of
subclasses of a probed class—the Tracer Groups in the associated internal
directive will be updated appropriately, and the classes will be dynamically
instrumented. Directive changes will be written to a log file as well.

If you prefer to update your PBDs manually, you can disable directive updates
and use the log file to determine appropriate updates.

Enable instrumentation of multiple levels of subclasses

Follow these steps to configure Introscope to dynamically update internal
directives.

To enable instrumentation of multiple levels of subclasses:

1 Verify that dynamic instrumentation is enabled as described in Dynamic
ProbeBuilding on page 56.

2 Open the IntroscopeAgent.profile.

3 To enable instrumentation of multiple levels of subclasses, uncomment this
property setting:

introscope.autoprobe.hierarchysupport.enabled=true

4 Save the IntroscopeAgent.profile.

Configure periodic polling for uninstrumented subclasses

When multi-level subclass instrumentation is enabled, Introscope will check for
uninstrumented subclasses at application startup.

To configure Introscope to poll for uninstrumented subclasses:

1 Open the IntroscopeAgent.profile.

2 Uncomment this property setting:

introscope.autoprobe.hierarchysupport.runOnceOnly=false

3 To change the frequency with which Introscope polls for uninstrumented
subclasses from its default value of 5, uncomment this property and set it to the
desired polling frequency:

60  AutoProbe and ProbeBuilding Options

CA Wily Introscope Java Agent

introscope.autoprobe.hierarchysupport.pollIntervalMinutes

4 Optionally, you can limit the number of times Introscope polls uninstrumented
subclasses by uncommenting this property and setting it to the desired limit:

introscope.autoprobe.hierarchysupport.executionCount

5 Save the IntroscopeAgent.profile.

Disable directive updates

If multi-level subclass instrumentation is enabled, when Introscope detects
uninstrumented subclasses, by default, it updates internal directives
appropriately to ensure the classes are instrumented. If you prefer to update
PBDs manually, you can disable internal directive updates by uncommenting this
property in the IntroscopeAgent.profile:

introscope.autoprobe.hierarchysupport.disableDirectivesChange=true

Controlling directive logging

When multi-level subclass instrumentation is enabled, you must uncomment the
following properties in the IntroscopeAgent.profile to have multi-level subclass
instrumentation logs created. When these properties are configured, a log file
named pbdupdate.log is created in the <Agent_Home>/wily directory (by default),
or in the custom location (if specified). The multi-level instrumentation details are
written to the agent logs.

log4j.additivity.IntroscopeAgent.inheritance=false
log4j.logger.IntroscopeAgent.inheritance=INFO,pbdlog
log4j.appender.pbdlog.File=pbdupdate.log
log4j.appender.pbdlog=com.wily.introscope.agent.AutoNamingRollingFileAppen

der
log4j.appender.pbdlog.layout=com.wily.org.apache.log4j.PatternLayout
log4j.appender.pbdlog.layout.ConversionPattern=%d{M/dd/yy hh:mm:ss a z} [%-

3p] [%c] %m%n_

You must restart the managed application before changes to these properties
take effect.

Removing line numbers in bytecode
When you instrument application bytecode, the AutoProbe or ProbeBuilder
preserves the bytecode line numbers by default. Preserving bytecode line number
information is helpful when using debuggers, or when obtaining stack trace
information.

Removing line numbers in bytecode  61

Java Agent Guide

You can turn off this feature, (which will remove all line numbers when AutoProbe
or ProbeBuilder instruments the application code), by adding a system property
on the Java command line.

To remove line numbers in bytecode when using AutoProbe or ProbeBuilder:

 define the following system property on the Java command line with the -D
option:

com.wily.probebuilder.removeLineNumbers=true

62  AutoProbe and ProbeBuilding Options

CA Wily Introscope Java Agent

AutoProbe for Application Servers  63

CHAPTER 4

AutoProbe for Application Servers

This chapter provides instructions for configuring AutoProbe for application
servers. AutoProbe dynamically instruments all applications loaded by a specific
application server.

Before you start 64

Configuring WebLogic Server 64

Configuring WebSphere Application Server (WAS) 66

Configuring WebSphere z/OS 67

Configuring Sun ONE 68

Configuring Oracle 10g 70

Configuring HTTP servlet tracing 70

Modifying Java2 Security Policy 71

64  AutoProbe for Application Servers

CA Wily Introscope Java Agent

Before you start
This chapter provides instructions for configuring AutoProbe for application
servers. This is one of three ways to instrument your applications. The other two
methods of instrument applications supported by CA Wily are:

 AutoProbe for Java Virtual Machines. For more information, see Configuring
JVM AutoProbe on page 46. This is the recommended method of instrumenting
your code.

 Manual ProbeBuilding. For more information, see Manual ProbeBuilding on
page 225.

» Important Use only one method of instrumentation.

The instructions in this chapter assume that you have performed the following
installation and configuration tasks:

 Installing the Java Agent on page 22

 Configuring connection to the Enterprise Manager on page 36

 Configuring the Java Agent name on page 40

 Configuring ProbeBuilder options on page 41

» WARNING Application Server AutoProbe is not supported on any JVM 1.5 and
above platforms.

Configuring WebLogic Server
The following sections detail how to configure WebLogic installations to use
AutoProbe to instrument applications. Use instructions for your specific version
of WebLogic.

WebLogic Server 6.1

To configure WebLogic Server 6.1 to use AutoProbe:

1 Edit the Java classpath in the WebLogic Server startup script to include the wily/
Agent.jar file.

2 Configure Tracer Groups to collect servlet data. For more information, see
Configuring HTTP servlet tracing on page 70.

Configuring WebLogic Server  65

Java Agent Guide

WebLogic Server 6.1 SP3

To configure WebLogic Server 6.1 SP3 to use AutoProbe:

1 Edit the Java classpath in the WebLogic Server startup script (for example,
StartPetstore.cmd) to include the wily/Agent.jar file.

2 Set this property on the Java command line with the -D option, to activate
Introscope AutoProbe:

-Dweblogic.classloader.preprocessor=

com.wily.introscope.api.weblogic.PreProcessor

3 Configure Tracer Groups to collect servlet data. For more information, see
Configuring HTTP servlet tracing on page 70.

WebLogic Server 7.0

To configure WebLogic Server 7.0 to use AutoProbe:

1 Edit the Java classpath in the WebLogic Server startup script (startWLS.cmd) to
include the wily/Agent.jar file.

2 Set this property on the Java command line (in the same startup script
startWLS.cmd) with the -D option, to activate Introscope AutoProbe:

-Dweblogic.classloader.preprocessor=

com.wily.introscope.api.weblogic.PreProcessor

3 Configure Tracer Groups to collect servlet data. For more information, see
Configuring HTTP servlet tracing on page 70.

WebLogic Server 8.1, 9.0, or 9.1

To configure WebLogic Server 8.1, 9.0, or 9.1 to use AutoProbe:

1 Edit the classpath in the application startup script (such as
startMedRecServer.cmd) to include the wily/Agent.jar file.

2 Set the following property in the application startup script on the Java command
line with the -D option to activate Introscope AutoProbe:

-Dweblogic.classloader.preprocessor=

com.wily.introscope.api.weblogic.PreProcessor

3 Configure Tracer Groups to collect servlet data. For more information, see
Configuring HTTP servlet tracing on page 70.

66  AutoProbe for Application Servers

CA Wily Introscope Java Agent

Configuring WebSphere Application Server (WAS)
The following sections detail how to configure WebSphere Application Server
(WAS) installations to use AutoProbe to instrument applications. Use the
instructions for your specific version of WebSphere.

WebSphere 6.0/5.1/5.0

To configure WebSphere 6.0/5.1/5.0 to use AutoProbe:

1 Add the Agent.jar to the runtime extensions directory for WebSphere at
<product_installation_root>/lib/ext.

2 In WebSphere, start the Administrator’s Console and go to the JVM Settings
section for the application server you want to modify:

 For WebSphere 6.0, navigate to Application Servers > your_server > Java
and Process Management > Process Definition > Java Virtual Machine.

 For WebSphere 5.0, navigate to Application Servers > your_server >
Process Definition > Java Virtual Machine.

3 Set the Generic JVM Arguments field to specify the classloader plug-in and the
location of the IntroscopeAgent.profile file. You will set EITHER the
com.wily.introscope.agentProfile,

OR

com.wily.introscope.agentResource. The argument will then have the following
value (there are several properties set in one argument):

-Dcom.ibm.websphere.classloader.plugin=com.wily.introscope.api
.websphere.WASAutoProbe
-Dcom.wily.introscope.agentProfile=<path to IntroscopeAgent.profile>

OR

-Dcom.ibm.websphere.classloader.plugin=com.wily.introscope.api
.websphere.WASAutoProbe
-Dcom.wily.introscope.agentResource=<path to Resource containing

IntroscopeAgent.profile>

» Note Although the examples shown break across lines, make sure that your
argument does not have any breaks.

4 Apply the changes in the Administrator’s Console.

5 Restart the Web Application Server.

6 Configure Tracer Groups to collect servlet data. For more informaiton, see
Configuring HTTP servlet tracing on page 70.

Configuring WebSphere z/OS  67

Java Agent Guide

Java2 Security Policy

If you have Java2 Security enabled, you may need to add permissions to your
Java2 Security Policy. For more information, see Modifying Java2 Security Policy
on page 71.

Configuring WebSphere z/OS
The following sections detail how to configure WebSphere on z/OS installations
to use AutoProbe to instrument applications. Use instructions for your specific
version of WebSphere on z/OS.

WebSphere 5.x and 6.0 for z/OS

To WebSphere 5.x and 6.0 for z/OS to use AutoProbe:

1 In WebSphere, start the Administrator’s Console, and go to the JVM Settings
section for the application server you want to modify.

2 Select Application Servers > <your server> > Process Definition.

3 You should see two items, Control and Servant. Click Servant, then
JavaVirtualMachine.

4 Set the Generic JVM Argument field to specify the classloader plug-in, and the
location of the IntroscopeAgent.profile file. You will set EITHER the
com.wily.introscope.agentProfile,

OR

com.wily.introscope.agentResource. The argument will then have the following
value (there are several properties set in one argument):

-Dcom.ibm.websphere.classloader.plugin=com.wily.introscope.api
.websphere.WASAutoProbe

-Dcom.wily.introscope.agentProfile=<path to IntroscopeAgent.profile>
OR
-Dcom.ibm.websphere.classloader.plugin=com.wily.introscope.api

.websphere.WASAutoProbe
-Dcom.wily.introscope.agentResource=<path to Resource containing

IntroscopeAgent.profile>

5 Place the Agent.jar file in the <WebSphere Instance dir>/lib/ext directory.

» Note Do not place the Agent.jar file in the WebSphere installation directory.

The following shows examples of the wrong and right directory:

NO: /usr/lpp/zWebSphere/V5R0M0/lib/ext
YES: /WebSphere/V5R0M0/AppServer/lib/ext

68  AutoProbe for Application Servers

CA Wily Introscope Java Agent

6 The default for file encoding for WebSphere 5.x and 6.0 on z/OS is now ASCII,
but Introscope expects EBCDIC file format. When you configure JVM AutoProbe
for z/OS, click on Custom Properties and add the name value pair:

name: com.wily.introscope.default.encoding
value: Cp1047

» Note This step is for z/OS operating systems only.

7 Confirm that all newly created Introscope files and directories within the ./wily
directory are read-accessible by the WebSphere process.

8 Confirm that all *.log files (written by the Java Agent and ProbeBuilder) in the ./
wily folder have write-access to the WebSphere process. These include:

 all the Introscope files and directories

 the Introscope files inside <WAS instance dir>/lib/ext

9 Restart WebSphere application server.

10 When WebSphere says “open for e-business,” open the Administrator’s Console.
Metrics should start reporting.

11 Configure Tracer Groups to collect servlet data. For more informaiton, see
Configuring HTTP servlet tracing on page 70.

Java2 Security Policy

If you have Java2 Security enabled, you may need to add permissions to your
Java2 Security Policy. For more information, see Modifying Java2 Security Policy
on page 71.

Configuring Sun ONE
The following sections detail how to configure Sun ONE installations to use
AutoProbe to instrument applications. Use instructions for your specific version
of Sun ONE.

Sun ONE 7.0

To configure Sun ONE 7.0 to use AutoProbe:

» Note The use of “...” in the .xml examples below indicates that there is
additional information in the .xml code (not relevant to the example) that
is not shown.

1 In order to add Introscope information to startup scripts for Sun ONE 7.0, you
must be logged in as Administrator or Root.

2 Open the server.xml file, located at:

<Sun ONE install dir>/domains/domain1/server1/config/

Configuring Sun ONE  69

Java Agent Guide

» Note The item separator is a colon (:).

3 Add the full path of wily/Agent.jar to the “server-classpath” property of the
java-config element in the server.xml file. For example:

<java-config ... server-classpath="/sw/sun/sunone7/wily/Agent.jar:..."
...>

4 Add the following to the java-config element:

 Add the bytecode-preprocessors property and set it to the value
com.wily.introscope.api.sun.appserver.SunONEAutoProbe.

For example:

<java-config ... bytecode-
preprocessors="com.wily.introscope.api.sun.appserver.SunONEAutoProbe"
>

 Add a jvm-options element to define the location of the agent profile. Define
either com.wily.introscope.agentProfile, or
com.wily.introscope.agentResource.

The following is an example of com.wily.introscope.agentProfile:

<java-config ...>
...
<jvm-options>-Dcom.wily.introscope.agentProfile=/sw/sun/sunone7/wily/

IntroscopeAgent.profile </jvm-options>
</java-config>

The following is an example of com.wily.introscope.agentResource:

<java-config ...>
...
<jvm-options>-Dcom.wily.introscope.agentResource=<virtual path to>/

IntroscopeAgent.profile</jvm-options>
</java-config>

 OPTIONAL: If you configured com.wily.introscope.agentResource, add the
resource file to the server classpath.

5 Configure Tracer Groups to collect servlet data. For more informaiton, see
Configuring HTTP servlet tracing on page 70.

70  AutoProbe for Application Servers

CA Wily Introscope Java Agent

Configuring Oracle 10g
The following sections detail how to configure Oracle 10g installations to use
AutoProbe to instrument applications. Use instructions for your specific version
of Oracle 10g.

Oracle 10g 10.0.3

To configure Oracle 10g 10.0.3 to use AutoProbe:

1 Add Agent.jar to the application server classpath.

2 Set the system property oracle.classpreprocessor.classes with the value of

com.wily.introscope.api.oracle.OracleAutoProbe.

3 Set the system property oracle.j2ee.class.preprocessing with the value of
true.

4 Run this command at the command line:

-Dcom.wily.introscope.probebuilder.oracle.enable=true

5 Restart the Oracle Application Server 10g, using this command:

java -Doracle.classpreprocessor.classes=com.wily.introscope.api.

oracle.OracleAutoProbe -Doracle.j2ee.class.preprocessing=true

-Dcom.wily.introscope.probebuilder.oracle.enable=true -classpath

oc4j.jar:<path to wily install dir>/wily/Agent.jar
com.evermind.server.OC4JServer -config <path to oracle install
dir>/config/server.xml

6 Configure Tracer Groups to collect servlet data. For more informaiton, see
Configuring HTTP servlet tracing on page 70.

Configuring HTTP servlet tracing
Before you use AutoProbe with your application servers to instrument your
applications, you must configure Tracer Groups in the toggles-full.pbd and
toggles-typical.pbd files. This will enable servlet data to be collected.

You will turn one Tracer Group off, and turn another Tracer Group on.

To configure HTTP servlet tracing:

1 Navigate to the <your-application-server-home>/wily/toggles-full.pbd file
and open it.

2 Go to the HTTP Servlets Configuration section of the PBD.

3 Turn off the HTTPServletTracing Tracer Group by placing a pound sign at the
beginning of the line. For example:

Modifying Java2 Security Policy  71

Java Agent Guide

#TurnOn: HTTPServletTracing

4 Turn on the HTTPAppServerAutoProbeServletTracing Tracer Group by removing
the pound sign from the beginning of the line. For example:

TurnOn: HTTPAppServerAutoProbeServletTracing

5 Repeat steps 2-4 for <your-app-server-home>/wily/toggles-typical.pbd file.

Modifying Java2 Security Policy
If you have Java2 Security enabled, you may need to add the following
permissions to your Java2 Security Policy.

To add permissions to your Java2 Security Policy:

 Edit the file <WebSphere home>/properties/server.policy to include the

following:

// permissions for Introscope AutoProbe
grant codeBase "file:${was.install.root}/-" {
permission java.io.FilePermission "${was.install.root}${/
}wily${/}-", "read";
permission java.net.SocketPermission "*", "connect,resolve";
permission java.lang.RuntimePermission "setIO";
permission java.lang.RuntimePermission "getClassLoader";
permission java.lang.RuntimePermission "modifyThread";
permission java.lang.RuntimePermission "modifyThreadGroup";
permission java.lang.RuntimePermission "loadLibrary.*";
permission java.lang.RuntimePermission "accessClassInPackage.*";
permission java.lang.RuntimePermission "accessDeclaredMembers";
};
grant {
permission java.util.PropertyPermission "*", "read,write";
};

» Note Line breaks are shown for user readability and are not needed when
adding the permissions to the server.policy file.

72  AutoProbe for Application Servers

CA Wily Introscope Java Agent

ProbeBuilder Directives  73

CHAPTER 5

ProbeBuilder Directives

This chapter describes how to create and modify ProbeBuilder Directives.

ProbeBuilder Directives overview 74

Applying ProbeBuilder Directives 82

Creating custom tracers 84

Creating advanced custom tracers 89

Using Blame Tracers to mark blame points 94

Supplementary directives and tracers information 96

74  ProbeBuilder Directives

CA Wily Introscope Java Agent

ProbeBuilder Directives overview
ProbeBuilder Directive (PBD) files tell the Introscope ProbeBuilder how to add
probes, such as timers and counters, in order to instrument an application. PBD
files govern what metrics your agents report to the Introscope Enterprise
Manager.

Introscope includes a set of default PBD files. You can also create custom
Introscope PBD files to track any classes or methods to obtain specific
information about your applications. See Default ProbeBuilder Directive (PBD)
files on page 75, Default ProbeBuilder List (PBL) files on page 76, and Creating
advanced custom tracers on page 89 for more information.

There are two kinds of files used to specify ProbeBuilder Directives:

 ProbeBuilder Directive (PBD) files

A ProbeBuilder Directive (PBD) file contains directives used by ProbeBuilder to
instrument your applications. This determines which metrics the agents report
to the Enterprise Manager.

 ProbeBuilder List (PBL) files

A ProbeBuilder List (PBL) file contains a list of multiple PBD filenames. Different
PBL files can refer to the same PBD files.

If you are using Introscope AutoProbe, the relevant PBD and PBL files for your
specific application server are placed in the <ApplicationServer_Home>/wily
directory when you install the Java Agent.

Components traced by default PBDs

The default Introscope PBD files implement tracing of the following Java
components:

 Oracle JDBC
 JSP Tag Libraries
 JSP IO Tag Libraries
 JSP DB Tag Libraries
 Struts
 Servlets
 Java Server Pages (JSPs)
 Enterprise JavaBeans (EJBs)
 Java Database Connectivity (JDBC)
 Network Sockets
 Remote Method Invocation (RMI)
 Extensible Markup Language (XML)

 Java Transaction API (JTA)
 Java Naming and Directory Interface

(JNDI)
 Java Message Service (JMS)
 Common Object Request Broker

Architecture (CORBA)
 User Datagram Protocol (UDP)
 File Systems
 Threads
 System Logs
 Thrown and Caught Exceptions (off by

default)

ProbeBuilder Directives overview  75

Java Agent Guide

Default ProbeBuilder Directive (PBD) files

The Java Agent has the following default PBD files:

PBD File Name Description

errors.pbd This file configures Error Detector by specifying what code-level
events constitute serious errors. By default, only front- and
back-end errors are considered serious. That is, only errors
that will be manifest as a user-facing error page or that indicate
a problem with a backend system (ADO.NET, Messaging, etc.).

j2ee.pbd This file provides tracer groups for common Java 2
components. Please use either toggles-full.pbd or toggles-
typical.pbd to TurnOn specific tracing.

java2.pbd This file provides tracer groups for common Java 2
components. Please use either toggles-full.pbd or toggles-
typical.pbd to TurnOn specific tracing.

jvm.pbd This file provides directives which implement support for
various Java Virtual Machines. It is intended to be used with
the Introscope default files.

oraclejdbc.pbd This file provides tracer groups for Oracle JDBC components.
Comment or uncomment the TurnOn directives to alter the set
of Oracle JDBC components that are traced.

ServletHeader
Decorator.pbd

This file is used to enable the Servlet Header Decorator which
is part of the integration solution with the CEM product.

sqlagent.pbd This is the configuration file for SQL Agent instrumentation.
Instrument your JDBC vendor's .zip/.jar with it, possibly
updating the Connection, Statement, and ResultSet
configuration to indicate your vendor-specific types. In most
cases you will not need to edit this file.

sql-agent-
summary-metrics-
6.1.pbd

This is the configuration file for SQL Agent instrumentation
summary metrics, which give high level metrics for JDBC.
Always use this PBD file when using the sqlagent-6.1.pbd file.

struts.pbd

summary-metrics-
6.1.pbd

taglibs.pbd

76  ProbeBuilder Directives

CA Wily Introscope Java Agent

The Java Agent also installs application server-specific PBDs, which vary
depending on the application server you are monitoring.

Default ProbeBuilder List (PBL) files

There are two sets of PBL files available with each agent:

The Java Agent also installs application server-specific PBLs, which vary
depending on the application server you are monitoring.

Tracer groups are found in PBD files, and referred to in PBL files. They cause the
reporting of information about a set of classes. In PBD files, tracer group
information is referred to by the term flag. For example,
TraceOneMethodIfFlagged or SetFlag are defining tracer group information.

Default tracer groups and toggles files

A tracer group consists of a set of tracers that is applied to a set of classes. For
example, there are tracer groups which report the response times and rates for
all RMI classes.

toggles-full.pbd This file provides on/off switches in the form of TurnOn
directives for the tracing provided in other directives files. Most
tracer groups are turned on.

For more information about turning tracers on or off, see
Default tracer groups and toggles files on page 76 and
Turning tracer groups on or off on page 79.

toggles-typical.pbd This file provides on/off switches in the form of TurnOn
directives for the tracing provided in other directives files. Only
a small section of tracer groups are turned on.

For more information about turning tracers on or off, see
Default tracer groups and toggles files on page 76 and
Turning tracer groups on or off on page 79.

PBD File Name Description

PBL File Name Description

default-full.pbl
(default)

References PBD files in which most tracer groups are
turned on. Introscope uses this set by default to
demonstrate full Introscope functionality.

default-typical.pbl A subset of tracer groups in the referenced PBD files are
turned on. The typical set includes common settings, and
is the set you can customize for a particular environment.

ProbeBuilder Directives overview  77

Java Agent Guide

You can refine the gathering of metrics on your systems by turning on or off
certain tracer groups. This affects overhead usage, either increasing or
decreasing it, depending on how you configure the tracer groups.

Tracer groups are modified in the toggles-full.pbd and the toggles-
typical.pbd files, which are referred to by the default-full.pbl and default-

typical.pbl files. This table lists the default tracer groups and their default
configurations:

Name Definition Default
full

setting

Default
typical
setting

CorbaTracing CORBA method invocations on on

EntityBeanTracing Entity EJB method invocations on on

SessionBeanTracing Session EJB method
invocations

on on

MessageDrivenBeanTracing Message-driven EJB method
invocations

on on

J2eeConnectorTracing J2EE connector information on on

JavaMailTransportTracing Mail sending times on on

JDBCQueryTracing JDBC queries on on

JDBCUpdateTracing JDBC updates on on

JMSListenerTracing JMS message processing times on on

JMSConsumerTracing JMS message processing times on on

JMSPublisherTracing JMS message broadcast times on on

JMSSenderTracing JMS message broadcast times on on

JSPTracing JSP service responses on on

RMIClientTracing RMI client method invocations on on

RMIServerTracing RMI server method invocations on on

HTTPServletTracing HTTP servlet service responses on on

Note: If you are using Application Server AutoProbe, turn on this tracer group:
HTTPAppServerAutoProbeServletTracing

StrutsTracing Execution times of actions in
the Struts framework

on on

InstanceCounts Counts number of instances of
object type identified with
tracer group.

on on

Note: Nothing will be traced until classes are identified with this tracer groups.

FileSystemTracing File system bytes written and
read

on off

78  ProbeBuilder Directives

CA Wily Introscope Java Agent

Generally, the default toggles PBD files should not be edited. However, you can
refine the gathering of metrics by turning on or off certain tracer groups. Tracer
groups can be modified in the toggles files by:

 Turning on/off tracer groups to save on system overhead

 Adding classes to a tracer group

Tracer groups report information only when turned on (uncommented) and are
activated with the keyword TurnOn.

JAXMListenerTracing JAXM message sends on off

JNDITracing JNDI lookup times on off

JSPDBTagsTagLibraryTracin
g

Jakarta DB Tags custom tag
library for reading and writing
from a SQL database

on off

JSPIOTagLibraryTracing Jakarta IO custom tag library
for a variety of input and
output tasks

on off

JTACommitTracing Commit times using JTA on off

EJBMethodLevelTracing EJB activity at method level on off

SocketTracing Network socket bandwidth on off

UDPTracing Network socket bandwidth on off

ThreadTracing Number of active threads by
class

on off

XMLSAXTracing Time spent parsing XML
document

on off

XSLTTracing XML transformation time on off

JSPTagLibraryTracing Processing time of custom JSP
tags

off off

Name Definition Default
full

setting

Default
typical
setting

ProbeBuilder Directives overview  79

Java Agent Guide

Setting toggles to gather additional metric information

The following toggles, when turned on, cause the collection of additional metrics,
across all APIs, for Wily-provided tracer groups that are enabled. You must add
these toggles to your full or typical toggle file to change the configuration.

Turning tracer groups on or off

You can refine the gathering of metrics on your systems by turning on or off
certain tracer groups.

To turn a tracer group on:

1 Locate the toggles-full.pbd or toggles-typical.pbd file (depending on which file
type (<appserver>-full.pbl or <appserver>-typical.pbl is in use by AutoProbe
or the Java Agent). These files are found within the <appserver home>/wily
directory or <Introscope_Home>/config/systempbd directory.

2 Locate the tracer group to turn on, and uncomment the line by removing the
pound sign from the beginning of the line. The directive in the following example
is turned on, and will cause the tracing of all HTTP Servlets.

TurnOn: HTTPServletTracing

» Note Any uncommented (turned on) directive for a tracer group causes the
tracer group to be used.

To turn a tracer group off:

 Comment the tracer group by placing a pound sign at the beginning of the line,
as in the following example:

#TurnOn: HTTPServletTracing

Adding classes to a tracer group

You can turn on tracing for a particular class by adding the class to an existing
tracer group. To identify a class as being part of a tracer group, use one of the
Identify keywords.

Name Definition Default
full
setting

Default
typical
setting

DefaultStalledMethod Tracing Stalled method tracing on on

DefaultConcurrent
InvocationTracing

Concurrent invocation
information

on off

DefaultRateMetrics Invocation rate metrics off

80  ProbeBuilder Directives

CA Wily Introscope Java Agent

For example, to add the class, com.myCo.ejbentity.myEJB1, to the tracer group,
EntityBeanTracing:

IdentifyClassAs: com.myCo.ejbentity.myEJB1 EntityBeanTracing

The identify keywords are:

 IdentifyInheritedAs

 IdentifyClassAs

 IdentifyCorbaAs

For a list of identify keywords, see Supplementary directives and tracers
information on page 96.

EJB subclass tracing

By default, entity and session EJB-related directives add probes only for EJBs that
directly and explicitly implement the entity, session, or message-driven EJB
interfaces.

Often, an application’s EJBs are subclasses of classes which directly and explicitly
implement the entity or session EJB interface. These are not tracked by default
by Introscope.

For EJB subclasses to be tracked by Introscope, they must be added to the
appropriate tracer group. To do this, add entries that refer to the direct ancestors
of the EJB subclasses to be tracked.

From these models, replace <entity.bean.ancestor.class> or
<session.bean.ancestor.class> with the fully-qualified class name of the
immediate ancestor of the EJBs to be instrumented.

For entity EJBs:

IdentifyInheritedAs: <entity.bean.ancestor.class> EntityBeanTracing

For session EJBs:

IdentifyInheritedAs: <session.bean.ancestor.class> SessionBeanTracing

The examples below are based on this class hierarchy:

mySessionEJB implements javax.ejb.SessionBean
mySessionEJBsubclass1 extends mySessionEJB

mySessionEJBsubclass1a extends mySessionEJBsubclass1
mySessionEJBsubclass1b extends mySessionEJBsubclass1

mySessionEJBsubclass2 extends mySessionEJB

The tracer group, SessionBeanTracing, causes the tracking of mySessionEJB:

The following tracer traces mySessionEJBsubclass1 and mySessionEJBsubclass2.

IdentifyInheritedAs: mySessionEJB SessionBeanTracing

ProbeBuilder Directives overview  81

Java Agent Guide

The following tracer traces mySessionEJBsubclass1a and
mySessionEJBsubclass1b.

IdentifyInheritedAs: mySessionEJBsubclass1 SessionBeanTracing

» Note This example does not use packages. If your code is in a package, it
needs to include the package name with the class name. See
Supplementary directives and tracers information on page 96 for more
information.

EJB 3.0 annotations

The follow directive allows you to group any class containing the given class-level
annotation into tracer groups. This directive supports EJB 3.0. EJBs conforming
to the 3.0 specifications do not explicitly implement any well-known interface, but
instead are entirely enabled via annotations. To easily identify EJB 3.0 classes,
use this directive:

IdentifyAnnotatedClass <annotation-name> <flag-name>

To use this directive, create a directive class and directive parser class for the
new directive. You must then add a matcher class to examine your bytecode to
determine if a class contains a given annotation.

» Note This directive does not support method-level annotations.

82  ProbeBuilder Directives

CA Wily Introscope Java Agent

Applying ProbeBuilder Directives
The way in which you apply PBDs depends on the method you choose to use. CA
Wily recommends you use AutoProbe to implement your PBDs. You can also use
the ProbeBuilder Wizard, or the command line ProbeBuilder to implement your
PBDs.

Using AutoProbe

When you are ready to implement a PBD file, add it to the hotdeploy directory.
AutoProbe looks for PBD files in the directory that contains the
IntroscopeAgent.profile file (by default, this is the <Agent_Home>/wily
directory), and the <Agent_Home>/wily/hotdeploy directory. AutoProbe resolves
filenames relative to these directories. If you have moved the location of your
wily directory, be sure to map the file path to the correct directory.

To implement PBDs using AutoProbe:

1 Save modified standard PBD or PBLs to the <Agent_Home>/wily directory.

2 Copy custom PBDs into the <Agent_Home>/wily/hotdeploy directory. Any PBDs
added to this directory will be implemented without having to update or modify
the introscope.autoprobe.directivesFile property in the
IntroscopeAgent.profile.

» Note If you have enabled dynamic instrumentation, the PBDs in the hotdeploy
directory are picked up live from the folder—no reboot is required. For
more information about dynamic instrumentation, see Dynamic
ProbeBuilding on page 56.

3 Save the IntroscopeAgent.profile.

4 Restart the application.

Using the ProbeBuilder Wizard or command-line ProbeBuilder

When you are ready to implement a PBD file, add it to the hotdeploy directory.
The Command-line ProbeBuilder looks for any custom directive files in the same
directory where ProbeBuilder is run from, and the <Agent_Home>/wily/hotdeploy
directory. The Command-line ProbeBuilder resolves filenames relative to these
directories.

The steps to implement ProbeBuilder Directives using the ProbeBuilder Wizard or
command-line ProbeBuilder are the same as using AutoProbe. See Using
AutoProbe on page 82 for more information.

Applying ProbeBuilder Directives  83

Java Agent Guide

Instrumenting with new and changed PBDs

For new or changed directives to take effect, your applications must be
instrumented using the latest PBDs. This process varies depending on the
ProbeBuilding method you use.

Using AutoProbe on JVM 1.5 systems

You can configure dynamic instrumentation, allowing changed PBDs to take effect
without application or Java Agent restart. This enables you to perform PBD
corrections, or perform triage-driven instrumentation without interrupting
application service. For more information see Dynamic ProbeBuilding on page 56.

Using AutoProbe on Pre-JVM 1.5 systems

New and changed ProbeBuilder Directive files or ProbeBuilder List files take effect
the next time the application server loads the application classes.

The Java Agent automatically detects when changes have been made to
directives specified by the introscope.autoprobe.directivesFile property and
reloads the directives. As application classes are reloaded by the application
server, they are re-instrumented in accordance with the latest ProbeBuilder
Directives.

If your managed applications are not running when you add or change directives,
when you next start the applications, they will be instrumented using the updated
directives.

If your managed applications are running, you do not need to restart the
application server to apply the new or changed directives, but it is necessary to
load, or reload, the managed application classes.

How you cause the classes to reload depends upon the application server you use.
For instance, on SAP NetWeaver 6.40, a redeploy is sufficient. Other
environments may require a production redeploy.

Using the ProbeBuilder Wizard

1 The Custom Directives screen will list the PBD files you placed in the hotdeploy
directory described in Using the ProbeBuilder Wizard or command-line
ProbeBuilder on page 82.

2 Select the custom directives files to use. For more information on running
ProbeBuilder Wizard, see Using the ProbeBuilder wizard on page 227.

84  ProbeBuilder Directives

CA Wily Introscope Java Agent

Using the command-line ProbeBuilder

» Important CA Wily recommends using the command-line ProbeBuilder as
your last option for Introscope-enabling your latest PBDs.

1 Stop your managed application.

2 Run the command-line ProbeBuilder or the ProbeBuilder Wizard, supplying the
custom PBD and PBL files in the command line. For more information on the
command-line ProbeBuilder, see Using the command-line ProbeBuilder on
page 229).

3 Start the managed application.

4 If they are not already running, start the Enterprise Manager and the
Workstation.

Creating custom tracers
You can further refine your metric collection by creating custom PBD files.
Creating custom directives, by creating tracers to track application specific
measurements, require the use of specific syntax and keywords. To write custom
tracers, you must define:

 The directive type (indicating generically how many class(es) or method(s) to
trace)

 The specific class(es) or method(s) to trace

 The type of information to trace in the class(es) or method(s) (for example, a
time, a rate, or a count)

 The fully-qualified metric name (including the resource path) under which to
present this information

Custom PBDs are stored in the <Agent_Home>/wily/hotdeploy directory. Any
PBDs added to this directory will be implemented without having to update or
modify the introscope.autoprobe.directivesFile property in the
IntroscopeAgent.profile. If you have enabled dynamic instrumentation, the
PBDs in the hotdeploy directory are picked up live from the folder — no reboot is
required. For more information about dynamic instrumentation, see Dynamic
ProbeBuilding on page 56.

Once a custom PBD is created, Introscope treats it as if it was an out-of-the-box
PBD. You can set alerts on the metrics created, save them to SmartStor, or use
them in the creation of custom dashboards in the Introscope Workstation.

» Note Be sure to choose methods to trace carefully, as more methods traced
means more overhead.

Creating custom tracers  85

Java Agent Guide

Common custom tracer example

A BlamePointTracer is the most commonly used tracer. This tracer generates five
separate metrics for associated methods or classes:

 Average Response Time (ms)

 Concurrent Invocations

 Errors Per Interval

 Responses Per Interval

 Stall Count

The following is an example of a BlamePointTracer. A BlamePointTracer has been
set for a method called search in class petshop.catalog.Catalog.
PetShop|Catalog|search is the name of the node under which the BlamePoint
metrics will be displayed in the Introscope Investigator.

TraceOneMethodOfClass: petshop.catalog.Catalog search BlamePointTracer
"PetShop|Catalog|search"

Tracer syntax

In addition to simple keywords that associate tracers into groups or enable/
disable groups, PBD files contain tracer definitions. For Introscope to recognize
and process your tracers, you must use a specific syntax when constructing
custom tracers. A tracer is composed of a directive and information about the
method or class to trace, in the following format:

<directive>: [arguments]

where [arguments] is a list, and is directive-specific. Arguments used in trace
directives include <Tracer-Group>, <class>, <method>, <Tracer-name>, and
<metric-name>.

86  ProbeBuilder Directives

CA Wily Introscope Java Agent

» Note Depending on the directive used, only a subset of these parameters are
required.

Tracer arguments Definition

<directive> There are six main directives available for custom tracing:
 TraceOneMethodOfClass—traces a specified method in

the specified class.
 TraceAllMethodsOfClass—traces all methods in the

specified class.
 TraceOneMethodIfInherits—traces one method in all

direct subclasses or direct interface implementations of the
specified class or interface.

 TraceAllMethodsIfInherits—traces all methods in all
direct subclasses or direct interface implementations of the
specified class or interface.

Note: Only concrete, implemented methods can be traced
and report metric data while running. An abstract
method specified in a custom tracer results in no
metric data being reported.

 TraceOneMethodIfFlagged—traces one method if the
specified class is included in a tracer group that has been
enabled with the TurnOn keyword.

 TraceAllMethodsIfFlagged—traces all methods if the
specified class is included in a tracer group that has been
enabled with the TurnOn keyword.

<Tracer-Group> The group to which the tracer is associated.

<class> A fully qualified class or interface name to trace. Fully
qualified classes include the full assembly name of the class
as well as the name, for example:
[MyAssembly]com.mycompany.myassembly.MyClass

Note: The assembly name must be enclosed in [] brackets.

<method> The method name (e.g. MyMethod)

OR

the full method signature with return type and parameters
(for example,
myMethod;[mscorlib]System.Void([mscorlib]
System.Int32). For more information on method signatures,
see Signature differentiation on page 89.)

Creating custom tracers  87

Java Agent Guide

This table describes tracer names and what they trace:

<Tracer-name> Specifies the tracer type to be used. For example,
BlamePointTracer. See the Tracer name table below for
descriptions of tracer names.

<metric-name> Controls how the collected data is displayed in the Introscope
Workstation.

The following examples describe three ways to specify the
name and location of a metric at different levels of the metrics
tree.
 metric-name—the metric appears immediately inside the

agent node.
 resource:metric-name—the metric appears inside one

resource (folder) below the agent node.
 resource|sub-resource|sub-sub-resource:metric-

name—the metric appears more than one resource (folder)
level deep below the agent node. Use pipe characters (|) to
separate the resources.

Tracer name What it traces

BlamePointTracer Provides a standard set of metrics including
average response time, per interval counts,
concurrency, stalls, and errors for a blamed
component.

ConcurrentInvocationCounter Reports the number of times a method has
started but not yet finished. The result is
reported under the metric name specified in
the tracer, <metric-name>, in the Investigator
tree. An example use of this tracer would be
counting the number of simultaneous database
queries.

DumpStackTraceTracer Dumps a stack trace to the instrumented
application's standard error for methods to
which it is applied. The exception stack trace
thrown by the Dump Stack Tracer is not a true
exception—it is a mechanism for printing the
method stack trace.

This feature is useful for determining callpaths
to a method.

» WARNING This feature imposes heavy
system overhead. It is
strongly recommended that
this tracer only be used in a
diagnostic context where a
sharp increase in overhead is
acceptable.

Tracer arguments Definition

88  ProbeBuilder Directives

CA Wily Introscope Java Agent

Custom method tracer examples

The following are examples of method tracers. In the following example, quotes

("") are used around the metric names because there are spaces in the metric

names.

Average tracer example

This tracer tracks the average execution time of the given method in milliseconds.

TraceOneMethodOfClass: com.sun.petstore.catalog.Catalog search
BlamedMethodTimer "Petstore|Catalog|search:Average Method Invocation
Time (ms)"

Rate tracer example

This tracer counts the number of times the method is called per second, and
reports this rate under the specified metric name.

TraceOneMethodOfClass: com.sun.petstore.catalog.Catalog search
BlamedMethodRateTracer "Petstore|Catalog|search:Method Invocations Per
Second"

Per interval counter tracer example

This method tracer counts the number of times the method is called per interval,
and reports the per interval count under the specified metric name.

MethodCPUTimer Average CPU time (in milliseconds) used
during method execution and reports it under
<metricname> in the metrics tree.

Note: This tracer is supported on any
operating system that supports
platform monitoring.

MethodTimer Average method execution time in milliseconds
and reports it under the metric name specified
in the tracer, <metric-name>, in the metrics
tree.

PerIntervalCounter Number of invocations per interval. This
interval will change based on the view period of
the consumer of the data (for example, the
View pane in the Investigator). It is reported
under the metric name specified in the tracer,
<metric-name>, in the Investigator tree.

Tracer name What it traces

Creating advanced custom tracers  89

Java Agent Guide

TraceOneMethodOfClass: com.sun.petstore.catalog.Catalog search
PerIntervalCounter "Petstore|Catalog|search:Method Invocations Per
Interval"

The interval is determined by the monitoring logic in the Enterprise Manager,
such as the Graph frequency.

The preview pane in the Investigator defaults to 15 second intervals.

Counter tracer example

This tracer counts the total number of times the method is called.

TraceOneMethodOfClass: com.sun.petstore.cart.ShoppingCart placeOrder
BlamedMethodTraceIncrementor "Petstore|ShoppingCart|placeOrder:Total
Order Count"

Combined counter tracers example

These tracers combine incrementor and decrementor Tracers to keep a running
count.

TraceOneMethodOfClass: com.sun.petstore.account.LoginEJB login
MethodTraceIncrementor "Petstore|Account:Logged In Users"

TraceOneMethodOfClass: com.sun.petstore.account.LogoutEJB logout
MethodTraceDecrementor "Petstore|Account:Logged In Users"

Creating advanced custom tracers
The following sections detail creating advanced customs tracers, such as single-
metric tracers, skips, and combined custom tracers.

Advanced single-metric tracers

Directives and tracers track methods, classes, and sets of classes. A single-metric
tracer reports a specific metric for a specific method, which is the smallest unit
that Introscope can track. Single-metric tracers can be created in several ways:
through the method signature, by substituting keywords, or by manipulating the
metric name parameters.

Signature differentiation

Tracers can be applied to a method based on the method signature.

To trace a single instance of a method with a specific signature, append the
signature to the method name (including return type) specified using the internal
method descriptor format.

90  ProbeBuilder Directives

CA Wily Introscope Java Agent

For example, myMethod(Ljava/lang/String;)V traces the instance of the method
with a string argument and void return type.

For complete information about this format, see the Sun Java Virtual Machine
Specification, section 4.3.3, Method Descriptors, and section 4.3.2, Field
Descriptors: http://java.sun.com/docs/books/vmspec/2nd-edition/html/
VMSpecTOC.doc.html.

Metric name keyword-based substitution

Keyword-based substitution allows runtime substitution of values into the metric
name.

The parameters in the metric name in the tracer are substituted at runtime for
the actual values into the metric name. This feature can be used with any
directive.

» Note If Introscope processes a class which does not have a package, it will
replace {packagename} with the string “<Unnamed Package>”.

Keyword-based substitution: Example 1

If the metric name for a tracer in the pbd file is:

"{packagename}|{classname}|{method}:Response Time (ms)"

and the tracer is applied to method myMethod with a runtime class of myClass
that is in package myPackage, the resulting metric name would be:

"myPackage|myClass|myMethod:Response Time (ms)"

Keyword-based substitution: Example 2

If a tracer with a metric name in the .pbd file of

"{packageandclassname}|{method}:Response Time (ms)"

was applied to the same method, the resulting metric name would be

"myPackage.myClass|myMethod:Response Time(ms)"

Parameter Runtime substitution

{method} Name of the method being traced

{classname} Runtime class name of the class being traced

{packagename} Runtime package name of the class being traced

{packageandclassname} Runtime package and class name of the class being traced

http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html

Creating advanced custom tracers  91

Java Agent Guide

» Note Note the . between the package and class instead of the | in the first
example.

Metric-name-based parameters

You can create a single-method tracer that creates a metric name based on
parameters passed to a method using the
TraceOneMethodWithParametersOfClass keyword, using this format:

TraceOneMethodWithParametersOfClass: <class-name> <method> <tracer-

name> <metric-name>

Parameters can be used in the metric name. This is accomplished by substituting
the value of parameters for placeholder strings in the metric name. The
placeholder strings to use are “{#}” where # is the index of the parameter to
substitute. The indices start counting at zero. Any number of parameter
substitutions can be used in any order. All parameters are converted to strings
before substitution into the metric name. Object parameters other than strings
should be used with caution because they are converted using the toString()
method.

» WARNING If you are unclear about what string the parameter will be
converted to, do not use it in the metric name.

Metric-name-based example

A Web site uses a class named order, with a method named process. The method
has parameters for different kinds of orders, either book or music.

You can create a tracer like this:

TraceOneMethodWithParametersOfClass: order process(LJava/lang/string;)V
MethodTimer “Order|{0}Order:Average Response Time (ms)”

This tracer produces metrics like these:

Order
BookOrder

Average Response Time (ms)
MusicOrder

Average Response Time (ms)

You can also use the TraceOneMethodWithParametersIfInherits keyword. For
more information on both keywords, see Supplementary directives and tracers
information on page 96.

92  ProbeBuilder Directives

CA Wily Introscope Java Agent

Skip directives

Certain packages, classes, or methods can be skipped by AutoProbe or
ProbeBuilder by using skip directives. By default, the Java Agent and fundamental
Java classes and packages are skipped by AutoProbe or ProbeBuilder. For more
information, see Supplementary directives and tracers information on page 96.

For a complete list of skip directives used with the Java Agent, see the Directive
& Tracer Type Definitions guide. See Supplementary directives and tracers
information on page 96 for more information about this guide.

Counting object instances

The InstanceCounts tracer group counts the number of instances of the particular
object types associated with it (for information on associating object types with
the InstanceCounts tracer group using the standard IdentifyClassAs and
IdentifyInheritedAs directives, see Adding classes to a tracer group on page 79).
Any instances explicitly allocated in your code will be counted. Subtypes will also
be counted. Objects created through different mechanisms, such as
deserialization or cloning, might not be counted. Tracing using this tracer group
could potentially incur incremental performance (and memory) impact,
depending on the number of instances counted.

Turning on InstrumentPoint directives

There are two types of directives identified by the keyword, InstrumentPoint:
those that trace exceptions, and one that causes agent initialization when the
application starts up (instead of when the first Probe is run).

Exceptions

The following directives are used to turn on tracing of exceptions either where
thrown or caught. They can cause performance degradation so they are not
turned on by default. To turn either of these on, uncomment the appropriate line:

#InstrumentPoint: ThrowException
#InstrumentPoint: CatchException

Agent initialization

The agent initialization instrument point directive does not cause additional
overhead and is turned on by default in both full and typical PBD sets.

#InstrumentPoint: AgentInitialization

If multiple ProbeBuilder Directive files are used, any settings (such as tracer
groups, Skips, InstrumentPoints, Custom Method Tracers) turned on in any file
take effect.

Creating advanced custom tracers  93

Java Agent Guide

Combining custom tracers

You can use multiple tracers that affect the same metric, in effect combining
them. This is most commonly used with incrementors and decrementors.

This example creates a metric named Logged-in Users. With a class user and
methods login and logout, create the following tracers:

TraceOneMethodOfClass user login MethodTraceIncrementor “Logged-in Users”
TraceOneMethodOfClass user logout MethodTraceDecrementor “Logged-in Users”

This increments the metric Logged-in Users when someone logs in and
decrements Logged-in Users when someone logs out.

Instrumenting and inheritance

Introscope does not automatically instrument classes in the deeper levels of a
class hierarchy in pre-1.5 JVMs.

When subclasses of a probed class more than one level deep are loaded, the new
and overridden methods are not automatically instrumented. Likewise, classes
that do not explicitly name a probed interface as being implemented, even though
they implement the interface indirectly, will not be instrumented either.

For example, assume a class hierarchy in which ClassB extends ClassA, and
ClassC extends ClassB, like so:

Interface/ClassA
ClassB

ClassC

When you instrument ClassA, ClassB is also instrumented because it explicitly
extends ClassA. However, Introscope does not instrument ClassC because ClassC
does not explicitly extend ClassA. To instrument ClassC you must explicitly
identify ClassC.

In pre-1.5 Java environments, to ensure that subclasses are instrumented, follow
the instructions in EJB subclass tracing on page 80.

If you run under JVM 1.5, you can configure Introscope to instrument multiple
levels of subclasses of a probed class. For instructions, see ProbeBuilding class
hierarchies (JVM 1.5) on page 59.

If you wish to instrument a private method, you may need to use more specific
tracers. For more information about directives and tracers for custom PBDs,
please see the Directive & Tracer Type Definitions document on the Wily
community site.

https://community.wilytech.com/entry!default.jspa?categoryID=414&externalID=1927

94  ProbeBuilder Directives

CA Wily Introscope Java Agent

Java 1.5 annotations

Introscope 8.0 allows the use of Java 1.5 annotations when creating custom
metrics. For more information on Java 1.5 annotations, see the following articles:

 http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html

 http://www.developer.com/java/other/article.php/3556176

Use IdentifyAnnotatedClassAs to place the class in a tracer group, then use
TraceXYZIfFlagged directives to instrument the methods in the class. For
example:

SetFlag: AnnotationTracing TurnOn: AnnotationTracing
IdentifyAnnotatedClassAs: com.test.MyAnnotation AnnotationTracing
TraceAllMethodsIfFlagged: AnnotationTracing BlamePointTracer

"Target|MyTarget|{classname}"

In the example, com.test.MyAnnotation is the annotation name. When creating
your own annotations, use a term in your code. Classes containing the annotation
name are identified.

Using Blame Tracers to mark blame points
Introscope’s Blame Technology works in a managed Java Application to enable
you to view metrics at the application tiers: the front and backends of your
application. This capability, referred to as boundary blame, allows users to triage
problems to the application frontend or backend.

For information about how Introscope determines frontends and backends, and
about options for configuring URL Groups to control how metrics for frontends are
aggregated, see Configuring Boundary Blame on page 133.

The following sections describe how you can use tracers to explicitly mark the
frontends and backends in your application.

Blame Tracers

Introscope provides tracers for capturing front and backend metrics:
FrontendMarker and BackendMarker. These tracers explicitly mark a frontend and
backend, respectively.

You can use FrontendMarker and BackendMarker to instrument your own code,
for instance code that accesses a backend, to cause Introscope to capture and
present metrics for custom components in the Investigator tree.

http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html
http://www.developer.com/java/other/article.php/3556176

Using Blame Tracers to mark blame points  95

Java Agent Guide

If no FrontendMarker is configured, the first component in the blame stack will
be the default frontend. In some environments this may not be desirable. For
example, if your environment includes Introscope Browser Response Time
Adapter (BRTA), by default the browser component will appear as the default
frontend. In this case, you might configure servlets as frontends.

If no BackendMarker is configured, Introscope will infer a backend—any
component that opens a client socket will be a default backend if none is explicitly
marked.

It is useful to use BackendMarker:

 to assign a desired name to an item that Introscope detects as a backend.

 to mark custom Java sockets that Introscope does not instrument.

 for native sockets that are called through the Java Native Interface (JNI), to
identify a Java/JNI bridging method as the backend.

FrontendMarker and BackendMarker are instances of BlamePointTracer which
provides metrics such as average response time, per interval counts,
concurrency, stalls, and errors for a blamed component. A BlamePointTracer can
be applied to middle components for a more granular Blame Stack.

Blame Tracers in standard PBDs

Two of the standard PBDs provided with Introscope, j2ee.pbd and sqlagent.pbd,
implement Boundary Blame Tracing.

 HttpServletTracer in j2ee.pbd is an instance of FrontendMarker.

 SQLBackendMarker in sqlagent.pbd is an instance of BackendMarker.

The following Blame Tracers used in previous versions of Introscope still exist,
but are not typically used in Introscope PBDs:

 BlamedMethodTimer

 BlamedMethodRateTracer

 BlamedMethodTraceIncrementor

 BlamedMethodTraceDecrementor

Boundary Blame and Oracle backends

In the current version of Introscope, Oracle databases are not detected based on
the socket connection—SQL Agent must be available for Introscope to
automatically detect Oracle backends.

To enable Introscope to detect Oracle backends in the absence of SQL Agent,
make the following modification to oraclejdbc.pbd:

96  ProbeBuilder Directives

CA Wily Introscope Java Agent

In this portion of oraclejdbc.pbd:

#Socket data from the Oracle driver reports too many metrics
SkipPackagePrefixForFlag: oracle.jdbc. SocketTracing
SkipPackagePrefixForFlag: oracle.net. SocketTracing

comment out the skips, as shown below:

#Socket data from the Oracle driver reports too many metrics
#SkipPackagePrefixForFlag: oracle.jdbc. SocketTracing
#SkipPackagePrefixForFlag: oracle.net. SocketTracing

Supplementary directives and tracers information
For a complete list of the tracers and directives used with the Introscope Java
Agent, see the Directive & Tracer Type Definitions guide, available on the Wily
Technology Community site, here: https://community.wilytech.com/
kbclick.jspa?categoryID=414&externalID=1927

To access the Wily Technology Community site, you first need to register for an
account using your corporate email address, here:
https://community.wilytech.com/account!default.jspa

Once you have completed the account information, CA Wily will contact you
within 3-5 business days to confirm your registration. If you do not register with
a corporate email address, your request for access will be denied.

https://community.wilytech.com/kbclick.jspa?categoryID=414&externalID=1927
https://community.wilytech.com/kbclick.jspa?categoryID=414&externalID=1927
https://community.wilytech.com/account!default.jspa

Java Agent Operations and Management  97

SECTION II

Java Agent Operations and Management

The chapters in this section have information about Java Agent administration
and operations.

 Java Agent Naming on page 99

 Java Agent Monitoring and Logging on page 111

 Using Virtual Agents to Aggregate Metrics on page 119

 Configuring Java Agent Failover on page 123

98  Java Agent Operations and Management

CA Wily Introscope Java Agent

Java Agent Naming  99

CHAPTER 6

Java Agent Naming

This chapter has information about agent naming, related environmental and
deployment considerations, and options for automatically naming your agents.

Understanding the Java Agent name. 100

Specifying an agent name using a Java system property 104

Specifying an agent name using a system property key 104

Obtaining an agent name from the application server 104

Advanced automatic agent naming options 107

Enabling cloned agent naming in clustered environments 109

100  Java Agent Naming

CA Wily Introscope Java Agent

Understanding the Java Agent name
This section explains alternatives for assigning a name to the Java Agents in your
Introscope environment.

Aspects of the Java Agent name

Each Java Agent running in your Introscope environment has a name, whether
you assigned one explicitly, configured a method of automatically assigning a
name, or simply started up an instrumented application that the Java Agent
monitors.

The Java Agent name is important because it is central to many views and
presentations in the Introscope clients, and it is key to the process of associating
monitoring logic with target applications.

The Investigator tree in the Workstation and WebView has a node for an Java
Agent when your instrumented application is up and has started reporting metrics
to the agent. The Investigator tree on the following page shows agents named
domain1//Adminserver, running on host qw32vtest01 under the WebLogic
process.

Understanding the Java Agent name  101

Java Agent Guide

When you configure management logic in the Workstation—for instance,
Dashboards, Alerts, and Actions—the agent name is a component in the regular
expressions you define that identify the applications to which the management
logic applies.

How the agent determines its name

The Java Agent uses the following sequence to determine its name. If it finds a
name using the first method, it accepts that name and connects to the Enterprise
Manager. If it doesn’t find a name using the first method, it tries the second
method, and so on. If it doesn’t find a name using any method, it calls itself
“Unknown Agent.”

Step 1 Name specified in Java system property

Host Machine
Process

agent

Custom metric host
Custom metric process

SuperDomain

User-defined
Domains

Custom metric agents

102  Java Agent Naming

CA Wily Introscope Java Agent

The agent name is defined using a Java system property on the command line.
Using this method will override any other agent naming method. See Specifying
an agent name using a Java system property on page 104.

Step 2 Name specified in System Property Key in the IntroscopeAgent.profile

The agent name is obtained from a Java system property specified in a property
in the IntroscopeAgent.profile. See Specifying an agent name using a system
property key on page 104.

Step 3 Name obtained automatically from the Application Server

If you use certain versions of WebLogic or WebSphere, the agent name can be
automatically obtained from the application server using automatic agent naming
functionality. You can configure a time delay, to give the agent as much time as
necessary to determine its name before connecting to the Enterprise Manager.
See Obtaining an agent name from the application server on page 104.

Step 4 Name specified explicitly in agent profile

The agent name is defined in the IntroscopeAgent.profile, in the property
introscope.agent.agentName. This was the standard method for naming agents
in early Introscope versions. Use this option if you already have an agent profile
for every application. For more information, see Configuring the Java Agent name
on page 40.

How Introscope resolves agent naming conflicts

The fully qualified agent name—comprised of host name, process name and agent
name—is typically unique to each agent in an Introscope environment. Agents
with the same agent name usually have a unique fully-qualified agent name
because their host name and process names are likely to be different. Multiple
agents will have the same fully-qualified agent name only if they reside on the
same host, monitor the same process, and have the same agent name.

If an agent tries to connect to an Enterprise Manager to which an agent with the
same fully-qualified agent name is already connected, the Enterprise Manager
appends a unique identifier to the name of the newly connecting agent. The
identifier consists of a percent (%) character and a digit. This mechanism ensures
that multiple agents that connect using the same fully-qualified name can be
uniquely identified for the duration of the connection. The Enterprise Manager
renames the first duplicate agent to connect by appending “%1” to its agent
name.

For instance, assume that two agents with the fully qualified agent name:

hostPA|processNIM|PodAgent

Agent naming considerations for clustered applications  103

Java Agent Guide

connect to the Enterprise Manager, one after the other. The Enterprise Manager
renames the second agent:

PodAgent%1

If other agents with the same fully qualified name connect, they are renamed, in
succession, PodAgent%2, PodAgent%3, PodAgent%4, and so on, where the digit
following the percent character is the next number in sequence.

When a renamed agent disconnects, the suffix it was assigned can be re-used.
For example, if PodAgent%1 disconnects while PodAgent remains connected, the
next agent with the fully qualified name hostPA|processNIM|PodAgent to connect
will be renamed PodAgent%1.

Reuse of suffix identifier makes it possible that the Enterprise Manager might
assign the same suffix to a particular agent’s name from connection to
connection. However, on subsequent connections, a given agent could just as
well be renamed differently. Having an agent’s name vary from connection to
connection is problematic when querying historical data—it is preferable to
configure a naming strategy that avoids the Enterprise Manager renaming
agents.

Agent naming considerations for clustered
applications

If you run multiple instances of the same application, Introscope attempts to
resolve identical agent names, including custom metric agents, by appending the
agent name with a character and a random number. Wily recommends, however,
that you tell Introscope how to resolve the naming.

The options for resolving identical agent naming are:

 Tell Introscope that the agents in question are cloned agents by enabling
cloned agent naming (described in Enabling cloned agent naming in clustered
environments on page 109.)

 Define unique agent names yourself and make separate agent profiles for each
agent (described in Configuring unique names for application instances on
page 110.)

 Let Introscope uniquely name each agent using its own naming scheme
(described in How Introscope resolves agent naming conflicts on page 102.)

104  Java Agent Naming

CA Wily Introscope Java Agent

Specifying an agent name using a Java system
property

To specify an agent name using Java system property:

 On the Java command line, supply the desired name using this property:

com.wily.introscope.agent.agentName

Specifying an agent name using a system property
key

This method is the second the agent uses to look for its name. Use this method
if you want the agent to be named from the value of an existing Java system

property in your deployment.

To specify an agent name using the System Property Key:

1 Open the IntroscopeAgent.profile.

2 Under the Agent Name section, specify the Java system property that will provide
the agent name in this property:

introscope.agent.agentNameSystemPropertyKey

» Note If the Java system property specified here doesn’t exist, this property
will be ignored.

3 Restart the application server.

Obtaining an agent name from the application server
You can configure the agent to extract the application server instance name
automatically from the application server, and use that information to name
itself. This eliminates the need to configure individual agent names in a separate
agent profile file. The agent can also rename itself if there are changes in the
application server environment. This enables you to deploy an agent profile
across a large number of environments that might consist of a mix of application
server platforms.

Obtaining an agent name from the application server  105

Java Agent Guide

Application servers that support agent naming

Automatic agent Naming is supported when you use Introscope with these
supported application server versions:

The name of the application server displayed in the Introscope Workstation is
determined by a Java J2EE API. This sometimes causes the name of the
application servers to display differently in the Workstation because all
application servers implement the API differently. The names of multiple
application servers may be formatted differently in the Workstation, and even the
same application server name may be formatted differently from release to
release.

How automatic agent naming works

When automatic agent naming is enabled, the agent starts, and looks for name
information from the application server. The agent waits until an agent name is
obtained before attempting to connect to the Enterprise Manager.

When the agent locates naming information, Introscope edits the information to
make the agent name compliant with Introscope agent naming rules.

Agent names on supported application servers are comprised of several pieces of
information, which differ according to application server.

 For WebLogic, the agent name is comprised of:

Domain (data center) + cluster + instance (of WLS)

 For WebSphere, the agent name is comprised of:

cell (domain) + process (instance of WAS)

When information is obtained, segments are separated by forward slashes—for
example:

medrec/MyCluster/MedRecServer

Any forward slashes in the segment name are converted to underscores. For
example, if a Domain is named Petstore/West, it will be converted to
Petstore_West.

 WebLogic 6.1  WebSphere 6.0.x distributed

 WebLogic 7.0  WebSphere 6.1.x distributed

 WebLogic 8.1  WebSphere 5.0.x distributed

 WebLogic 9.x  WebSphere 5.1 distributed

 WebLogic 10.0  Jboss 4.0.x

 Jboss4.2x

106  Java Agent Naming

CA Wily Introscope Java Agent

» Note When constructing the agent name that appears in Introscope,
Introscope edits the information to make the agent name compliant with
Introscope agent naming rules:

 characters such as pipes, colons, or percentage signs are replaced by
underscores

 names that begin with any character other than a letter will have the letter “A”
prepended to them

 empty names are replaced by “UnnamedAgent” (so as to be distinguishable
from the “UnknownAgent” condition)

Automatic agent naming and renamed agents

Using automatic agent naming, the agent always tries to obtain the most current
application-server-specific agent name. The agent periodically checks for a new
name.

If a change to application server configuration results in an agent name change,
the agent automatically renames itself. In the Investigator tree, the agent
appears to disconnect. The disconnected agent remains in the Investigator tree,
and unmounts automatically after the unmount time period has elapsed, or can
be unmounted manually.

The renamed agent reconnects to the Enterprise Manager and appears in the
Investigator tree. The agent logs these changes.

See Advanced automatic agent naming options on page 107, for information on
configuring automatic agent naming properties for Enterprise Manager
connection delay, and rename checking interval time.

Enabling automatic agent naming  107

Java Agent Guide

Enabling automatic agent naming
To enable automatic agent naming:

1 In the IntroscopeAgent.profile, set
introscope.agent.agentAutoNamingEnabled to true.

2 Make these application server-specific changes:

 For WebLogic, create an Introscope Startup Class. See Configuring startup
class for WebLogic 8.1 or 9.0 on page 130.

 For WebSphere, create an Introscope Custom Service. See Configuring a
custom service in WebSphere 5.0, 6.0, or 6.1 on page 131.

 For JBoss, create an XML file. See To deploy web application support for JBoss:
on page 35.

Advanced automatic agent naming options
You can change these automatic agent naming configurations if appropriate.

Naming options How to change

Initial Enterprise
Manager Connection
Delay

When using the automatic agent naming feature, the agent
waits up to a configurable amount of time before connecting to
the Enterprise Manager while trying to find agent name
information. The default delay is 120 seconds.

To change the delay value:

1 Open the IntroscopeAgent.profile.
2 Under the Agent Name section, configure the desired delay

in the property
introscope.agent.agentAutoNamingMaximumConnectionD
elayInSeconds.

3 Restart the application server.

108  Java Agent Naming

CA Wily Introscope Java Agent

Agent Rename
Check Interval

When using the automatic agent naming feature, the agent
periodically checks to see if the naming information from the
application server has changed. The default interval is ten
minutes.

To change this interval:

1 Open the IntroscopeAgent.profile.
2 Under the Agent Name section, configure the desired

interval in the
introscope.agent.agentAutoRenamingIntervalInMinute
s property.

3 Restart the application server.

Turning Off Agent
Log File Automatic
Naming

By default, when the agent name is found automatically, either
by information provided by a Java system property or
application server, the log files associated with that agent are
named automatically using that same information. However,
you can turn off this automatic log naming, and continue to
use the agent log name specified in the
IntroscopeAgent.profile.

To turn off agent log file automatic naming:

1 Open the IntroscopeAgent.profile.
2 Set the property,
introscope.agent.disableLogFileAutoNaming, to a value
of true.

3 Save the IntroscopeAgent.profile.
4 Restart the application server.

Naming options How to change

Enabling cloned agent naming in clustered environments  109

Java Agent Guide

Disabling agent naming for WebSphere

Agent automatic naming is enabled by default for all WebSphere platforms, but
is not supported in WebSphere 5.x and 6.0 for z/OS. If you use one of these
WebSphere versions, you must disable the automatic agent naming feature.

1 Open the IntroscopeAgent.profile.

2 Set the value of the property introscope.agent.agentAutoNamingEnabled, to
false.

Enabling cloned agent naming in clustered
environments

If two agents exist with the same name monitoring the same host and process
and are not uniquely named by a user, the name is appended with a number.
Cloned agent naming enables you to correlate an agent with a particular
application instance in a clustered application.

You are running cloned agents if you:

 are running agents that share a host, process, or Java Agent name with one or
more other agents, or

 are running two or more agents that are using the same agent profile.

Cloned agent naming scenario

With the Java Agent cloning property turned on, if you have four Java Agents, all
named AgentX, the Enterprise Manager names the agents AgentX-1, AgentX-2,
AgentX-3 and AgentX-4. If AgentX-1 disconnects and then reconnects, it will still
use AgentX-1 as its name. With this naming, you will never have more Java Agent
names in the database than the number of Java Agents originally cloned.

Enabling cloned agent naming in the agent profile

To enable cloned agent naming:

1 Stop your managed application and the Java Agent.

2 Open the IntroscopeAgent.profile and set the following property to true:

introscope.agent.clonedAgent=true

3 Save the IntroscopeAgent.profile.

4 Restart your managed application and the Java Agent.

110  Java Agent Naming

CA Wily Introscope Java Agent

Configuring unique names for application instances

If you monitor multiple instances of the an application on the same machine, you
can configure unique agent names explicitly:

1 Create a separate agent profile for each application.

2 Uniquely name each agent in the agent profile.

3 Specify which agent profile each application should use.

Java Agent Monitoring and Logging  111

CHAPTER 7

Java Agent Monitoring and Logging

While the Introscope and the Java Agent monitors your applications, Introscope
can also monitor the health and activity of the Java Agent itself. This chapter
contains information on monitoring your agents health, as well as logging options
for the Java Agent.

Configuring connection metrics 112

Turning off socket metrics 113

Configuring logging options 113

Managing ProbeBuilder Logs 117

112  Java Agent Monitoring and Logging

CA Wily Introscope Java Agent

Configuring connection metrics
By default, Introscope generates metrics on the connection status of agents
connected to an Enterprise Manager, which you can monitor. Java Agent
connection metrics appear in the Workstation Investigator under the Enterprise
Manager process (the custom metric host):

Custom Metric Host (Virtual) \ Custom Metric Agent (Virtual) \ Agents \
[Host_Name] \ [Agent Process Name] \ [Agent_Name] \ ConnectionStatus

Connection metrics have these values:

 0—No data about the agent is available

 1—agent is connected

 2—agent is slow to report

 3—agent is disconnected

An agent disconnecting also generates a “What’s Interesting” event. As with
other events, users can query for agent disconnects using the historical query
interface. Agent disconnect events are part of the data used in assessing
application health in the Overview tab in the Investigator.

Once an agent disconnects from the Enterprise Manager, Introscope continues to
generate disconnected state metrics until the agent is timed out. When an agent
times out, no additional connection metrics are generated or reported to the
Enterprise Manager.

To configure the agent connection time out:

1 Open the IntroscopeEnterpriseManager.properties file located in the
<Introscope_Home>/config directory.

2 Modify this property:

introscope.enterprisemanager.agentconnection.metrics.agentTimeoutInMinu
tes

The time increment is in minutes.

3 Save the IntroscopeEnterpriseManager.properties

For information about Enterprise Manager properties, see the Introscope
Configuration and Administration Guide.

Turning off socket metrics  113

Java Agent Guide

Turning off socket metrics
Metrics that trace per-socket bandwidth have a potential for high overhead. If the
collection and reporting of network metrics are consuming a lot of processor or
I/O time, you can turn off the reporting of the socket metric information.

To turn off reporting of socket metrics:

1 Open the IntroscopeAgent.profile file, located in the <Agent_Home>\wily
directory.

2 Modify this property to have a value of false:

introscope.agent.sockets.reportRateMetrics=false

3 Save the IntroscopeAgent.profile.

Configuring logging options
When the Java Agent is installed on an application server, after the server starts
up a log directory is created here: <Agent_Home>/wily/logs. The application
server process must have full read/write/execute permissions on the Wily Java
Agent directory. To accomplish this, install the Java Agent on the same operating
system as the user who runs the application server process. Or, install the Java
Agent as a different user, then use the chmod command to bestow the necessary
permissions.

The Java Agent has the option to run in verbose mode. Verbose mode records
higher levels of details about actions and agent interactions with your
environment. This information is useful in solving issues with your environment
or agent functionality.

Introscope uses Log4J functionality for these functions. If you want to use other
Log4J functionality, please see Log4J documentation:

http://jakarta.apache.org/log4j/docs/documentation.html.

Running the agent in verbose mode

Running the agent in verbose mode records higher levels of information to the
agent log.

To run the agent in verbose mode:

1 Open the IntroscopeAgent.profile, located in the <Agent_Home>\wily directory.

2 Modify this property, replacing the existing INFO with
VERBOSE#com.wily.util.feedback.Log4JSeverityLevel:

log4j.logger.IntroscopeAgent=VERBOSE#com.wily.util.feedback.Log4JSever
ityLevel, console, logfile

http://jakarta.apache.org/log4j/docs/documentation.html

114  Java Agent Monitoring and Logging

CA Wily Introscope Java Agent

3 Save the IntroscopeAgent.profile.

» Note Changes to this property take effect immediately and do not require the
managed application to be restarted.

Redirecting agent output to a file

The property that controls the agent logging in verbose mode also controls where
the agent log is output and the location of this log file (see Running the agent in
verbose mode on page 113 for more information).

To redirect agent output to a file:

1 Open the IntroscopeAgent.profile, located in the <Agent_Home>\wily directory.

2 Find the property: log4j.logger.IntroscopeAgent

The options for this property are:

 console: the information in the logfile is sent to the console

 logfile: the information in the logfile is sent to a logfile. If this is selected, the
location of the log file is configured using the log4j.appender.logfile.File
property. See Changing the name or location of the agent logfile, below.

For example, if you wanted the agent to report in verbose mode to just a logfile,
the property would be set to:

log4j.logger.IntroscopeAgent=VERBOSE#com.wily.util.feedback.Log4JSever
ityLevel,logfile

If you wanted the agent to report to both a logfile and console, you would include
both logfile and console in the property.

» Note By default the agent log, IntroscopeAgent.log is written to the
<Agent_Home>\wily\logs directory. If you configured agent autonaming
options, the agent log files are also automatically named, as described
in Agent log files and automatic agent naming on page 115.

3 Save the IntroscopeAgent.profile.

Configuring logging options  115

Java Agent Guide

Changing the name or location of the agent logfile

You can also change the location and name of a logfile by modifying a property.

To change the name or location of the logfile:

1 Open the IntroscopeAgent.profile, located in the <Agent_Home>\wily directory.

2 Locate the log4j.appender.logfile.File property.

If logfile was specified in the log4j.logger.IntroscopeAgent property, the
location of the log file is configured using the log4j.appender.logfile.File
property. See step 2 in Redirecting agent output to a file on page 114 for more
information.

» Note System properties (Java command line -D options) are expanded as part
of the file name. For example, if a Java command starts with
-Dmy.property=Server1, then log4j.appender.logfile.File=logs/
Introscope-${my.property}.log is expanded to:
log4j.appender.logfile.File=logs/Introscope-Server1.log.

3 Set the location and name of the log file, using a fully qualified path to the new
location and file. For example:

log4j.appender.logfile.File=C:/Logs/AgentLog1.log

4 Save the IntroscopeAgent.profile.

Agent log files and automatic agent naming

If you use the automatic agent naming functionality, by default the log files
associated with an agent are named automatically using the same information
used to name the agent.

Automatic agent naming affects the log file in the following way:

 If the original name of the logfile does not end in .log, a period and log is
added.

 All characters that are not letters or digits will be replaced by underscores

 If advanced Log4J functionality is used, the agent logfile automatic naming
capability might not work.

The following examples show how an agent logfile is named. The examples use
an agent name of DOM1//ACME42, where DOM1 is the WebLogic domain, and ACME42
is the instance of the agent.

When an agent log file is created (named AutoProbe.log by default), if the agent
name is not yet available, a timestamp is included in the filename:

AutoProbe.20040416-175024.log

116  Java Agent Monitoring and Logging

CA Wily Introscope Java Agent

Once the agent name becomes available, the logfile is renamed using the agent’s
automatic name:

AutoProbe.DOM1_ACME42.log

You can disable automatic log naming - see Advanced automatic agent naming
options on page 107 for more information.

Logging considerations for WebSphere z/OS

There are some things to consider when logging in a WebSphere z/OS
environment.

Tagging log output as EBCDIC

Beginning with version 5.0, WebSphere for z/OS changed its default encoding
from EBCDIC CP1047 to ASCII ISO8859-1. Because z/OS is normally an EBCDIC
machine, any logging data written by the Java Agent or AutoProbe must be
tagged to use EBCDIC as the final output stream, instead of ASCII.

To tag data as EBCDIC instead of ASCII:

1 Open the IntroscopeAgent.profile, located in the <Agent_Home>\wily directory.

2 Add these properties to the IntroscopeAgent.profile:

log4j.appender.console.encoding=IBM-1047
log4j.appender.logfile.encoding=IBM-1047

3 Save the IntroscopeAgent.profile.

Eliminating startup timing issues with logging facilities

A new property has been added for WebSphere z/OS 5.0 and later, which is used
to eliminate any startup timing window exposures that can occur with the
Introscope logging facilities.

To eliminate the timing window exposures:

1 Open the IntroscopeAgent.profile, located in the <Agent_Home>\wily directory.

2 Add this property to the IntroscopeAgent.profile:

introscope.agent.logger.delay=100000

The value is in milliseconds, so the default delay in this example is 100 seconds.

3 Save the IntroscopeAgent.profile.

Managing ProbeBuilder Logs  117

Java Agent Guide

Managing ProbeBuilder Logs
ProbeBuilder logs the probes it added during the instrumentation process and the
PBDs it used.

ProbeBuilder log name and location

The ProbeBuilder log file location is determined by where you specify Java classes
with the ProbeBuilder Wizard or with the Command-Line ProbeBuilder. For a
directory, the log file is located inside the destination directory. For a file, the log
file is located next to the destination file.

The ProbeBuilder log file is called:

<original-directory-or-original-file>.probebuilder.log

<original-directory> or <original-file> is the Java class location that you
specify with the ProbeBuilder Wizard or with the Command-Line ProbeBuilder.

Only the most recent log is kept; all previous log files are overwritten.

AutoProbe log name and location

AutoProbe will always attempt to log the changes it makes. By default the
AutoProbe log file is named AutoProbe.log.

To change the name or location of the AutoProbe log:

1 Open the IntroscopeAgent.profile, located in the <Agent_Home>\wily directory.

2 Locate the introscope.autoprobe.logfile property and modify the log name and
location, using a fully qualified file path. Non-absolute names are resolved
relative to the location of the IntroscopeAgent.profile file.

» Note When loading the agent profile from a resource on a classpath,
AutoProbe is unable to write to the AutoProbe log file, because the
IntroscopeAgent.profile file is located within a resource.

You must restart the managed application before changes to this property take
effect.

3 Save the IntroscopeAgent.profile.

118  Java Agent Monitoring and Logging

CA Wily Introscope Java Agent

Using Virtual Agents to Aggregate Metrics  119

CHAPTER 8

Using Virtual Agents to Aggregate Metrics

This chapter has information about configuring and using Virtual Agents.

Understanding Virtual Agents 120

Virtual Agent requirements. 120

Configuring Virtual Agents 121

120  Using Virtual Agents to Aggregate Metrics

CA Wily Introscope Java Agent

Understanding Virtual Agents
You can configure multiple physical agents into a single Virtual Agent. A Virtual
Agent enables an aggregated, logical view of the metrics reported by multiple
agents.

A Virtual Agent is useful if you manage clustered applications with Introscope—a
Virtual Agent comprised of the agents that monitor different instances of the
same clustered application appears in Introscope as a single agent. This allows
metrics from multiple instances of a clustered application to be presented at a
logical, application level, as opposed to separately for each application instance.

You can view performance and availability data for a specific application instance,
by scoping your views and interactions in terms of a single agent.

Virtual Agent requirements
A Virtual Agent can only contain agents that report to the same Enterprise
Manager. If you have multiple stand-alone Enterprise Managers, you will need a
Virtual Agent for each Enterprise Manager.

Agents that report to Enterprise Managers within a single cluster can belong to
the same Virtual Agent, regardless of the Collector Enterprise Manager to which
they report. See the CA Wily Introscope Configuration and Administration Guide for
more information about clustering.

Consider these conditions when configuring Virtual Agents:

 An agent can be assigned to multiple Virtual Agents.

 Virtual Agents cannot include other Virtual Agents.

 If you define multiple Virtual Agents, they must have unique names, including
custom metric agents—all agents in a cluster must have unique names.

Configuring Virtual Agents  121

Java Agent Guide

Configuring Virtual Agents
You configure Virtual Agents using the agentclusters.xml file, located in the
<Introscope_Home>/config directory of the Enterprise Manager to which the
agents report. If you run clustered Enterprise Managers, you configure Virtual
Agents using the agentclusters.xml file in the config directory of the cluster’s
Manager of Managers (MOM).

The sample agentclusters.xml below defines a Virtual Agent named
BuyNowAppCluster, in the Introscope SuperDomain. The Virtual Agent includes all
agents, on any host, whose agent name starts with BuyNow.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<agent-clusters xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="agentclusters0.1.xsd" version="0.1"
<agent-cluster name="BuyNowAppCluster" domain="SuperDomain" >

<agent-specifier>.*\|.*\|BuyNow.*</agent-specifier>
<metric-specifier>Frontends\|.*</metric-specifier>

</agent-cluster>
</agent-clusters>

The root element, <agent-clusters>, is required. The <agent-cluster> element
defines a Virtual Agent, and has two required attributes:

 name—If you define multiple Virtual Agents, each must have a unique name.

 domain—Assigns the Virtual Agent to an Introscope domain.

If no domain is defined (as domain="") in the agent-cluster definition, the
Virtual Agent will default to the SuperDomain.

If you define multiple Virtual Agents, you define an <agent-cluster> element for
each. The <agent-cluster> element requires two child elements:

 <agent-specifier>—Contains a regular expression that specifies the agents in
the Virtual Agent, using the standard fully qualified agent name:

<host> | <process> | <agentName>

 <metric-specifier>—Contains a prefix that specifies the metrics to collect
from the agents in the Virtual Agent, in terms of resource type, or subsets of
the instances of a resource type. The recommended prefixes are:

 CPU

 JMX

 WebSpherePMI

 Frontends

» Note While the above are the recommended prefixes, any resource can be
used as a metric specifier.

122  Using Virtual Agents to Aggregate Metrics

CA Wily Introscope Java Agent

The <agent-cluster> element can contain multiple <metric-specifier> stanzas.
Note that a higher volume of matching metrics imposes high overhead on the
Enterprise Manager, and can ultimately have an effect on Enterprise Manager
capacity.

» Note Regular expressions and wildcard metric specifiers such as ".*" and
"(.*)" are allowed, but should be used with caution. Use of wildcards can
result in a high volume of metrics and a performance impact.

A sample agentclusters.xml is available in your <Introscope_Home>/config
directory.

Configuring Java Agent Failover  123

CHAPTER 9

Configuring Java Agent Failover

This chapter has information about agent failover.

Understanding agent failover 124

Defining backup Enterprise Managers 124

Defining failover connection order 125

Configuring failback to primary Enterprise Manager 126

Configuring domain/user information 126

124  Configuring Java Agent Failover

CA Wily Introscope Java Agent

Understanding agent failover
An agent that cannot connect to its Enterprise Manager, or loses connection with
it, can failover to an alternative Enterprise Manager. To enable failover, you
specify a list of alternative Enterprise Managers in the IntroscopeAgent.profile
file.

When an agent configured for failover cannot connect to its default Enterprise
Manager, it tries to connect to the next Enterprise Manager on the list of failover
hosts. If the agent does not connect with a failover host, it cycles through the
Enterprise Managers on the list until it succeeds in connecting. If the agent goes
through the list without connecting to an Enterprise Manager, it waits 10 seconds
before cycling through the list again.

In a basic Introscope configuration, you define the host and port settings for one
Enterprise Manager. To enable agent failover, you define connection properties
for backup Enterprise Managers, and a list that specifies the failover order.

Defining backup Enterprise Managers
To enable agent failover, you must define a list of backup Enterprise Managers,
creating an alternate communication channel for each as described in Configuring
connection to the Enterprise Manager on page 36.

To define backup Enterprise Managers:

1 Open the IntroscopeAgent.profile file, located in the <Agent_Home>\wily
directory.

2 Locate the Enterprise Manager Locations and Names section of the profile.

3 Add Enterprise Managers and their connection information to this section. The
following example contains the primary Enterprise Manager connection
information, as well as two backup Enterprise Managers.

» Note Be sure to assign each additional Enterprise Manager communication
channel a unique name—do not use the name DEFAULT or the name of
an existing channel when creating a new one.

This is the primary Enterprise Manager connection information:

introscope.agent.enterprisemanager.transport.tcp.host.DEFAULT=enterprise
introscope.agent.enterprisemanager.transport.tcp.port.DEFAULT=5001
introscope.agent.enterprisemanager.transport.tcp.socketfactory.DEFAULT=com

.wily.isengard.postofficehub.link.net.DefaultSocketFactory

This the first backup Enterprise Manager:

introscope.agent.enterprisemanager.transport.tcp.host.BackupEM1=voyager
introscope.agent.enterprisemanager.transport.tcp.port.BackupEM1=5002

Defining failover connection order  125

Java Agent Guide

introscope.agent.enterprisemanager.transport.tcp.socketfactory.BackupEM1=
com.wily.isengard.postofficehub.link.net.DefaultSocketFactory

This is the second backup Enterprise Manager:

introscope.agent.enterprisemanager.transport.tcp.host.BackupEM2=space9
introscope.agent.enterprisemanager.transport.tcp.port.BackupEM2=5003
introscope.agent.enterprisemanager.transport.tcp.socketfactory.BackupEM2=

com.wily.isengard.postofficehub.link.net.DefaultSocketFactory

4 Save the IntroscopeAgent.profile.

Defining failover connection order
After specifying the connection properties for your backup Enterprise Managers,
define the order in which the agents will attempt to connect to the backup
Enterprise Manager.

To specify the connection order:

1 In the IntroscopeAgent.profile file, locate the
introscope.agent.enterprisemanager.connectionorder property.

2 List the Enterprise Manager communication channels—for the agent’s primary
Enterprise Manager as well as the backups. Put the primary Enterprise Manager
first in the list. For the Enterprise Manager communication channels specified
Defining backup Enterprise Managers on page 124, the connection order could be
specified like this:

introscope.agent.enterprisemanager.connectionorder=DEFAULT,BackupEM1,Backu
pEM2

3 Save the IntroscopeAgent.profile.

126  Configuring Java Agent Failover

CA Wily Introscope Java Agent

Configuring failback to primary Enterprise Manager
In the default agent failover scenario, if the agent loses connection to its primary
Enterprise Manager, it tries to connect to the next Enterprise Manager defined in
the agent profile. You can also configure the agent to periodically try to reconnect
to the primary Enterprise Manager.

To configure attempts to reconnect to the primary Enterprise Manager:

1 In the IntroscopeAgent.profile, locate the Enterprise Manager Failback Retry
Interval section.

2 Uncomment this property:

introscope.agent.enterprisemanager.failbackRetryIntervalInSeconds

and set the interval in which the agent will attempt to reconnect to its primary
Enterprise Manager. The default interval is 120 seconds.

3 Save the IntroscopeAgent.profile.

4 Restart the application.

» Note You must restart the managed application before changes to this
property take effect.

Configuring domain/user information
To use agent failover and also have users, domains, and authentication settings
defined, you must ensure that this information is in sync across the specified
failover Enterprise Managers. For more information on domain and user
permissions, see the CA Wily Introscope Configuration and Administration Guide.

Tailoring and Extending Data Collection  127

SECTION III

Tailoring and Extending Data Collection

The chapters in this section have information about tailoring and extending Java
Agent data collection.

 Configuring Access to Application Server Data on page 129

 Configuring Boundary Blame on page 133

 Configuring Transaction Trace Options on page 141

 Configuring the Introscope SQL Agent on page 147

 Enabling JMX Reporting on page 163

 Configuring Platform Monitoring on page 171

 Configuring WebSphere PMI on page 177

 Enabling WebLogic Diagnostic Framework on page 181

128  Tailoring and Extending Data Collection

CA Wily Introscope Java Agent

Configuring Access to Application Server Data  129

CHAPTER 10

Configuring Access to Application Server
Data

This chapter has information about configuring an agent to obtain management
information from a WebLogic Server or WebSphere application server.

Application server management data 130

Configuring startup class for WebLogic 8.1 or 9.0. 130

Configuring a custom service in WebSphere 5.0, 6.0, or 6.1 131

130  Configuring Access to Application Server Data

CA Wily Introscope Java Agent

Application server management data
In WebLogic Server and WebSphere environments, the Java Agent can obtain and
report management information from the application server, above and beyond
the metrics resulting from instrumenting your applications. For example, you can
configure an agent to:

 report JMX metrics from the application server

 report WebLogic Diagnostic Framework (WLDF) data from WebLogic 9.0

 report Performance Monitoring Infrastructure (PMI) from WebSphere

 obtain its name from the application server

The Application Overview in the Workstation (available in Introscope v7.0 and
later) uses JMX and PMI metrics, if available, in application health heuristics.
Enabling the Java Agent to access application server management information is
not required, but it enhances the visibility provided by the Application Overview.

To enable the Java Agent to obtain and use data from the application server you
configure an Introscope startup class or service in the application server, and
target it at application server instances, or to an application server cluster.

Configuring startup class for WebLogic 8.1 or 9.0
This section describes how to create a startup class in WebLogic 8.1 or 9.0. For
information about creating a startup class in other versions of WebLogic Server,
or for more information about WebLogic Server, consult your WebLogic Server
documentation.

To configure a startup class for WebLogic 8.1 or 9.0:

1 Open the WebLogic Administrative Console.

2 In the left pane, expand the Deployments folder.

3 Click the Startup & Shutdown folder.

The Startup and Shutdown page opens.

4 Click Configure a New Startup Class.

The Configuration tab is shown.

5 In the Name field, enter:

Introscope Startup Class

6 In the ClassName field, enter:

com.wily.introscope.api.weblogic.IntroscopeStartupClass

7 Click Create.

The Target and Deploy tab appears.

Configuring a custom service in WebSphere 5.0, 6.0, or 6.1  131

Java Agent Guide

8 Check the box(es) for the server(s) you’d like to make this startup class available
to.

9 Click Apply. Select the “run before deploying apps” option.

10 Add the location of the WebAppSupport.jar to the application startup classpath.

11 Restart the application server.

Configuring a custom service in WebSphere 5.0, 6.0,
or 6.1

This section describes how to create a custom service in WebSphere 5.0. To
create a custom service in previous versions, or for more information, consult
your WebSphere documentation.

To configure a custom service:

1 Open the WebSphere Administrative Console.

2 Select the server you'd like to configure, then:

 For WebSphere 6.1, navigate to Server Infrastructure > Administration >
Custom Services.

 For WebSphere 6.0, click Administration, then Custom Services.

 For WebSphere 5.0, click Custom Services.

3 Click New to add a new Custom Service, then:

 For WebSphere 6.0, check the box for Enable service at server startup

 For WebSphere 5.0, check the Startup check box.

4 In the Classname field, enter:

com.wily.introscope.api.websphere.IntroscopeCustomService

5 In the Display Name field, enter:

Introscope Custom Service

6 In the Classpath field, enter:

<WebSphere_Home>/wily/WebAppSupport.jar

7 Click OK.

8 Restart the application server.

132  Configuring Access to Application Server Data

CA Wily Introscope Java Agent

Configuring Boundary Blame  133

CHAPTER 11

Configuring Boundary Blame

This chapter describes default Java Agent blame reporting behaviors, and related
configuration options.

Understanding Boundary Blame 134

Using Blame tracers 140

Disabling Boundary Blame 140

134  Configuring Boundary Blame

CA Wily Introscope Java Agent

Understanding Boundary Blame
Introscope’s Blame Technology works in a managed Java Application to enable
you to view metrics at the front and backends of your application. This capability,
referred to as boundary blame, allows users to triage problems in the application
front or backends.

Introscope uses the SQL statement in the SQL Agent monitoring functionality to
automatically detect backends. If the SQL Agent is unavailable, Introscope
automatically detects socket calls as backends, because backends such as client/
server databases, JMS servers, and LDAP servers are accessed through a socket.
If you have Oracle backends and do not use the Introscope SQL Agent, see
Boundary Blame and Oracle backends on page 95.

For information about how boundary blame is presented in the Introscope
Investigator, see the Introscope Workstation User Guide.

Using URL groups

You can use URL Groups to monitor browser response time for sets of requests
whose path prefix begins with a string you define. The path prefix is the portion
of the URL that follows the hostname. For example, in this URL:

http://burger1.com/testWar/burgerServlet?ViewItem&category=
11776&item=5550662630&rd=1

the path prefix is:

/testWar

You can define a URL group for any useful category of requests that can be
derived from a URL’s path prefix. For example, depending on the form of your
application URLs, you could define URL groups for each customer your application
supports, for each major application, or for sub-applications. This enables you to
monitor performance in the context of committed service levels, or for mission-
critical portions of your application.

The following example is an excerpt from a Java Agent profile, showing how URL
Groups are defined:

Example URL group property definitions
introscope.agent.urlgroup.keys=alpha,beta,gamma
introscope.agent.urlgroup.group.alpha.pathprefix=/testWar
introscope.agent.urlgroup.group.alpha.format=foo {host} bar {protocol} baz

{port} quux {query_param:foo} red {path_substring:2:5} yellow
{path_delimited:/:0:1} green {path_delimited:/:1:4} blue
{path_substring:0:0}

introscope.agent.urlgroup.group.beta.pathprefix=/nofilterWar

Understanding Boundary Blame  135

Java Agent Guide

introscope.agent.urlgroup.group.beta.format=nofilter foo {host} bar
{protocol} baz {port} quux {query_param:foo} red {path_substring:2:5}
yellow {path_delimited:/:0:1} green {path_delimited:/:1:4} blue
{path_substring:0:0}

introscope.agent.urlgroup.group.gamma.pathprefix=/examplesWebApp
introscope.agent.urlgroup.group.gamma.format=Examples Web App

Configuring URL groups

This section provides information about the properties that configure URL Groups.

Defining keys for URL groups

The property introscope.agent.urlgroup.keys defines a list of the IDs, or keys,
of all of your URL Groups. The key for a URL Group is referenced in other property
definitions that declare an attribute of the URL group. The following example
defines the keys for three URL Groups:

introscope.agent.urlgroup.keys=alpha,beta,gamma

If you define URL Groups so some URLs fall into multiple groups, the order in
which you list the keys for the URL Groups in the property is important. The URL
Group with the narrower membership should precede the URL Group with broader
membership. For example, if the IP Group with key alpha has the path prefix
/examplesWebApp and the URL Group with key delta has the path prefix
/examplesWebApp/cleverones, delta should precede alpha in the keys parameter

Defining membership of each URL group

The property introscope.agent.urlgroup.group.groupKey.pathprefix
specifies a pattern against which the path prefix of a URL is matched, defining
which requests fall within the URL Group.

Example 1

This property definition assigns all requests in which the path portion of the URL
starts with /testWar to the URL Group whose key is alpha:

introscope.agent.urlgroup.group.alpha.pathprefix=/testWar

Requests that match the specified pathprefix include:

http://burger1.com/testWar/burgerServlet?ViewItem&category=
11776&item=5550662630&rd=1

http://burger1.com/testWar/burgerServlet?Command=Order&item=5550662630

136  Configuring Boundary Blame

CA Wily Introscope Java Agent

Example 2

A company that provides call center services could monitor response time for
functional areas by setting up a URL Group for each application function. If
customers access services with this URL:

http://genesystems/us/application_function/

where application_function corresponds to applications such as

OrderEntry, AcctService, and Support, the pathprefix property for each URL

group would specify the appropriate application_function.

» Note You can use the asterisk symbol (*) as a wildcard in pathprefix
properties.

Define name for a URL group

The property introscope.agent.urlgroup.group.groupKey.format determines
the names under which response time metrics for a URL group whose key is
groupKey appear in the Introscope Workstation.

Typically, the format property is used to assign a text string as the name for a
URL. The following example causes metrics for the URL Group with key alpha to
appear in the Workstation under the name Alpha Group:

introscope.agent.urlgroup.group.alpha.format=Alpha Group

Advanced naming techniques for URL groups (optional)

You can derive a URL Group name from request elements such as the server port,
the protocol, or from a substring of the request URL. This is useful if your
application modules are easily differentiated by inspecting the request. This
section describes advanced forms of the format property.

Using host as URL group name

To organize metrics for a URL group under names that reflect the hostname of
the HTTP server associated with requests, define the format parameter like this:

introscope.agent.urlgroup.group.alpha.format={host}

When format={host}, statistics for these requests would appear under the metric
names us.mybank.com and uk.mybank.com respectively:

https://us.mybank.com/mifi/loanApp......

https://uk.mybank.com/mifi/loanApp.....

Understanding Boundary Blame  137

Java Agent Guide

Using protocol as URL group name

To organize statistics for a URL group under names that reflect the protocol
associated with requests, define the format parameter like this:

introscope.agent.urlgroup.group.alpha.format={protocol}

When format={protocol} statistics are grouped in Investigator under metric
names that correspond to the protocol portion of request URLs. For example,
statistics for these requests would appear under the metric name https:

https://us.mybank.com/cgi-bin/mifi/scripts......

https://uk.mybank.com/cgi-bin/mifi/scripts......

Using port as URL group name

To organize statistics for a URL group under names that reflect the port
associated with requests, define the format parameter like this:

introscope.agent.urlgroup.group.alpha.format={port}

When format={port}, statistics are grouped under names that correspond to the
port portion of request URLs. For example, statistics for these requests would
appear under the name 9001.

https://us.mybank.com:9001/cgi-bin/mifi/scripts......

https://uk.mybank.com:9001/cgi-bin/mifi/scripts......

Using parameter as URL group name

To organize statistics for a URL group in Investigator under metric names that
reflect the value of a parameter associated with requests, define the format
parameter like this:

introscope.agent.urlgroup.group.alpha.format={query_param:param}

When format={query_param:param} statistics are grouped in Investigator under

metric names that correspond to value of the parameter specified. Requests
without parameters are listed under <empty>. For example, given this
parameter definition:

introscope.agent.urlgroup.group.alpha.format=
{query_param:category}

Statistics for these requests would appear under the metric name “734”

http://ubuy.com/ws/shoppingServlet?ViewItem&category=734
&item=3772&tc=photo

http://ubuy.com/ws/shoppingServlet?ViewItem&category=734
&item=8574&tc=photo

138  Configuring Boundary Blame

CA Wily Introscope Java Agent

Using a substring of the request path as URL group name

To organize statistics for a URL group under names that reflect a substring of the
path portion of request URLs, define the format parameter like this:

introscope.agent.urlgroup.group.alpha.format=
{path_substring:m:n}

where m is the index of the first character, and n is one greater than the index of

the last character. String selection operates like the
java.lang.String.substring() method. For example, given this setting:

introscope.agent.urlgroup.group.alpha.format=
{path_substring:0:3}

Statistics for this request would appear under the metric node “/ht”

http://research.com/htmldocu/WebL-12.html

Using delimited portion of the request path as URL group name

To organize statistics for a URL group under names that reflect a character-
delimited portion request URL path, define the format parameter like this:

introscope.agent.urlgroup.group.alpha.format=
{path_delimited:delim_char:m:n}

where delim_char is the character that delimits the segments in the path, m is the
index of the first segment to select, and n is one greater than the index of the
last segment to select. For example, given this setting:

introscope.agent.urlgroup.group.alpha.format=

{path_delimited:/:2:4}

statistics for the requests of this form:

http://www.buyitall.com/userid,sessionid/pageid

would appear under the metric name /pageid

Note that:

 a delimiter character counts as a segment

 the segment count starts at 0

This table shows the segments as delimited by the slash character:

You can specify multiple delimiters as necessary. For example, given this setting:

Segment Index 0 1 2 3

Segment String / userid,sessionid / pageid

Understanding Boundary Blame  139

Java Agent Guide

introscope.agent.urlgroup.group.alpha.format=

{path_delimited:/,:3:4}

statistics for requests of the form shown above would appear under the metric

name sessionid.

This table shows the segments as delimited by the slash and the comma
character:

Using multiple naming methods for URL groups

You can combine multiple naming methods in a single format string, as shown
below:

introscope.agent.urlgroup.group.alpha.format=red {host} orange {protocol}
yellow {port} green {query_param:foo} blue {path_substring:2:5} indigo
{path_delimited:/:0:1} violet {path_delimited:/:1:4} ultraviolet
{path_substring:0:0} friend computer

Running the URLGrouper

URLGrouper is a command-line utility that analyzes a web server log file in
Common format, and produces BRTA property settings for a set of URL Groups.
Using URLGrouper gives you a starting point for defining your own URL Groups.

» Note You can use the URLGRouper utility to analyze your Web server log file.
URLGrouper outputs a set of property settings for potential URL Groups,
based on the contents of the Web server log file. The asterisk symbol (*)
can be used with URLGrouper as a wildcard.

To run URLGrouper:

1 Open a command shell.

2 Enter this command

java -jar urlgrouper.jar logfile

where logfile is the full path to your web server log file.

3 Property definitions for a set of URL Groups are output to STDOUT.

4 To configure the proposed URL Groups, copy the property statements produced
by URL Grouper into the IntroscopeAgent.profile.

Segment Index 0 1 2 3 4 5

Segment String / userid , sessionid / pageid

140  Configuring Boundary Blame

CA Wily Introscope Java Agent

Using Blame tracers
You can use tracers to explicitly mark the frontends and backends in your
application. For more information, see Using Blame Tracers to mark blame points
on page 94.

Disabling Boundary Blame
By default, Boundary Blame is enabled. To disable boundary blame in favor of the
component-level blame implemented in Introscope versions earlier than 7.0, use
the introscope.agent.blame.type property described on page 198.

Configuring Transaction Trace Options  141

CHAPTER 12

Configuring Transaction Trace Options

This chapter has information about default Transaction Tracing behaviors and
related configuration options.

Controlling automatic Transaction Tracing behavior 142

Configuring cross-process Transaction Tracing 143

Extending transaction trace data collection. 144

Disabling the capture of stalls as Events 146

142  Configuring Transaction Trace Options

CA Wily Introscope Java Agent

Controlling automatic Transaction Tracing behavior
Automatic Transaction Tracing enables historical analysis of potentially
problematic transaction types without explicitly running Transaction Traces.
Introscope offers two types of automatic Transaction Tracing:

 Transaction Trace sampling that is enabled by default, based on your URL
groupings

 Configurable automatic trace sampling that gathers trace information
regardless of URL groupings

Transaction Trace component clamp

Introscope now sets a clamp (set by default to 5,000 components) to limit the
size of traces. When this limit is reached, warnings appear in the log, and the
trace stops.

This allows you to clamp an infinitely expanding transaction—for example when
a servlet executes hundreds of object interactions and backend SQL calls.
Without the clamp, Transaction Tracer views this as one transaction, continuing
infinitely. Without a clamp in place, the JVM runs out of memory before the trace
can be completed.

The new property for clamping infinitely expanding transactions is in the
IntroscopeAgent.profile file:

 introscope.agent.transactiontrace.componentCountClamp=5000

For traces producing clamped components—those exceeding the CountClamp—
traces are marked with an asterisk and have a tool tip assiociated with them,
providing more information about the clamped metrics. For more information
about viewing these traces, see the Introscope Workstation User Guide.

» WARNING If the Transaction Trace component clamp size is increased, the
memory required for Transaction Traces may increase. Therefore,
the maximum heap size for the JVM may need to be adjusted
accordingly, or else the managed application may run out of
memory. See the Introscope Configuration and Administration
Guide for more information.

Transaction trace sampling

Transaction trace sampling is enabled by default. As appropriate you can disable
this behavior. For more information on Transaction Trace properties, see
Transaction tracing on page 214.

When you configure automatic trace sampling, you specify the number of
transactions to trace, during a time interval you specify.

Configuring cross-process Transaction Tracing  143

Java Agent Guide

» Note These properties are located, by default, in the Enterprise Manager
properties file. Before changing the defaults for the
sampling.perinterval and sampling.interval properties, consider the
potential for increased load in the Enterprise Manager with higher
sampling rates. The Enterprise Manager will push this configuration to all
agents connected to the Enterprise Manager. Configuring these
properties in the agent will overwrite the configuration set by the
Enterprise Manager for an individual agent.

To configure automatic trace sampling, modify these properties:

 introscope.agent.transactiontracer.sampling.enabled

Set to false to disable Transaction Trace sampling. The default value is true.

 introscope.agent.transactiontracer.sampling.perinterval.count

Specifies the number of transactions to trace, during the interval you specify.
The default number of transactions is 1.

 introscope.agent.transactiontracer.sampling.interval.seconds

Specifies the length of time to trace the number of transactions you specify.
The default interval is every 2 minutes.

Configuring cross-process Transaction Tracing
Transaction Tracer can trace transactions that cross JVM boundaries on WebLogic
Server 8 or later, or WebSphere 6.0—if the environment is comprised of
compatible versions of the same vendor’s application server.

Cross-process transaction tracing is supported for synchronous transactions, for
instance, servlets to EJBs.

Enabling cross-process tracing in WebSphere
1 Configure web application support. Follow the instructions in Configuring a

custom service in WebSphere 5.0, 6.0, or 6.1 on page 131.

2 Turn on the work area service.

From the administration page, servers->application servers, click on server1,
click on Business Process Services, click on Work Area Service, check the “Enable
service at server startup” box.

3 Set introscope.agent.websphere.crossjvm=true in the agent profile.

Enabling cross-process tracing in WebLogic Server
1 Configure web application support. Follow the instructions in Configuring startup

class for WebLogic 8.1 or 9.0 on page 130.

144  Configuring Transaction Trace Options

CA Wily Introscope Java Agent

2 Add “-Dweblogic.TracingEnabled=true” to the java command line for starting
WebLogic Server.

3 Set introscope.agent.weblogic.crossjvm=true in the agent profile.

Extending transaction trace data collection
The Java Agent collects basic Transaction Trace data such as Domain/Host/
Process/Agent, timestamp, duration, URL, and so forth, by default.

You can configure the Introscope Transaction Tracer to obtain additional
information, including User ID data for Servlet and JSP invocations, and other
transaction trace data such as HTTP request headers, request parameters, and
session attributes. To capture this information, you must define the criteria in the
IntroscopeAgent.profile.

About User ID data

To configure the Java Agent to identify User IDs for Servlet and JSP invocations,
you must first obtain information on how your managed application specifies user
IDs. The Application Architect who developed the managed application can
probably provide this information.

Introscope Transaction Tracer can identify User IDs from managed applications
that store User IDs in one of these ways:

 HttpServletRequest.getRemoteUser()

 HttpServletRequest.getHeader (String key)

 HttpSession.getValue (String key), where returned object is either a String
representing the UserID, or an Object whose toString() returns to the UserID

If your managed application stores User IDs using one of these methods, see
Configuring Agent to collect additional transaction trace data on page 145, to
configure Java Agent settings to collect User ID data.

About servlet request data

Using Introscope, you can collect transaction trace data that matches user-
configurable parameters. For example, you can specify the Introscope Agent to
collect transaction trace data for transactions that contain the User-Agent HTTP
request header.

Introscope can record this servlet request information:

 request headers

 request parameters

 session attributes

Extending transaction trace data collection  145

Java Agent Guide

To record this servlet request information for your managed application, see
Configuring Agent to collect additional transaction trace data on page 145 to
configure Java Agent settings to collect this data.

Configuring Agent to collect additional transaction trace data

You can configure the Java Agent to collect additional transaction trace data such
as User ID, HTTP request headers, HTTP request parameters, or HTTP session
attributes.

To configure the Java Agent to collect additional transaction trace data:

1 Open the agent profile, IntroscopeAgent.profile.

2 Locate the Transaction Tracer properties under the Transaction Tracer
Configuration heading.

Collecting user id data

To configure the Java Agent to identify User IDs

 Configure the properties that correspond to the method your managed
application uses to store User IDs.

» Note Ensure that only one set of properties are not commented, or the wrong
properties might be used.

 For HttpServletRequest.getRemoteUser(), uncomment the property:

introscope.agent.transactiontracer.userid.method=HttpServletRequest.get
RemoteUser

 For HttpServletRequest.getHeader (String key), uncomment the following pair
of properties, and define a key string for the second property:

introscope.agent.transactiontracer.userid.method=HttpServletRequest.ge
tHeader

introscope.agent.transactiontracer.userid.key=<application defined key
string>

 For HttpSession.getValue (String key), uncomment the following pair of
properties, and define a key string for the second property:

introscope.agent.transactiontracer.userid.method=HttpServletRequest.ge
tValue

introscope.agent.transactiontracer.userid.key=<application defined key
string>

146  Configuring Transaction Trace Options

CA Wily Introscope Java Agent

Collecting servlet request data

To record servlet request information such as HTTP request headers and
parameters:

1 To specify the HTTP request headers for which to collect transaction trace data,
uncomment this property, and specify the HTTP request header(s) to track, in a
comma-separated list:

#introscope.agent.transactiontracer.parameter.httprequest.headers=User-
Agent

2 To specify the HTTP request parameters for which to collect transaction trace
data, uncomment this property and specify the HTTP request parameter(s) to
track, in a comma-separated list:

#introscope.agent.transactiontracer.parameter.httprequest.parameters=pa
rameter1,parameter2

3 To specify the HTTP session attributes for which to trace data, uncomment this
property and specify the HTTP session attribute(s) to track, in a comma-
separated list, for example:

#introscope.agent.transactiontracer.parameter.httpsession.attributes=ca
rtID,deptID

4 Restart the managed application.

Disabling the capture of stalls as Events
By default, Introscope captures transaction stalls as events in the Transaction
Event database, and generates stall metrics from the detected events. Stall
metrics are generated for the first and last method in the transaction. Users can
view stall Events and associated metrics in the Workstation’s Historical Event
Viewer.

» Note Generated stall metrics are always available, but stall events are only
visible if Introscope Error Detector is installed. Stalls are stored as
ordinary errors, and will be visible in the Errors TypeView, or in the
historical query viewer by querying for “type:errorsnapshot“.

You can disable the capture of stalls as events, change the stall threshold, or
change the frequency with which the agent checks for stalls using these
properties:

 introscope.agent.stalls.enable controls whether the Java Agent checks for
stalls and creates events for detected stalls.

 introscope.agent.stalls.thresholdseconds specifies the minimum threshold
response time at which time a transaction is considered stalled.

 introscope.agent.stalls.resolutionseconds specifies the frequency that the
agent checks for stalls.

Configuring the Introscope SQL Agent  147

CHAPTER 13

Configuring the Introscope SQL Agent

This chapter has instructions for configuring Introscope SQL Agent.

The SQL Agent overview 148

The SQL Agent files 149

Supported JDBC drivers and datasources 149

Configure the SQL Agent for WebSphere or WebLogic 150

SQL statement normalization 152

Turning off statement metrics 160

Turning off Blame metrics 160

SQL metrics. 161

148  Configuring the Introscope SQL Agent

CA Wily Introscope Java Agent

The SQL Agent overview
The Introscope SQL Agent reports detailed database performance data to the
Enterprise Manager. The SQL Agent provides visibility into the performance of
individual SQL statements in your application by tracking the interaction between
your managed application and your database.

In the same way that the Java Agent monitors Java applications, the SQL Agent
monitors SQL statements. The SQL Agent is non-intrusive, monitoring the
application or database with very low overhead.

To provide meaningful performance measurements down to the individual SQL
statement level, the SQL Agent summarizes performance data by stripping out
transaction-specific data and converting the original SQL statements into
Introscope-specific normalized statements. Since normalized statements do not
include sensitive information, such as credit card numbers, this process also
protects the security of your data.

For example, the SQL Agent converts this SQL query:

SELECT * FROM BOOKS WHERE AUTHOR = 'Atwood'

to this normalized statement:

SELECT * FROM BOOKS WHERE AUTHOR = ?

Similarly, SQL Agent converts this SQL update statement:

INSERT INTO BOOKS (AUTHOR, TITLE) VALUES ('Atwood', 'The Robber Bride')

to this normalized statement:

INSERT INTO BOOKS (AUTHOR, TITLE) VALUES (?, ?)

» Note Only text within quotation marks ('xyz') is normalized.

Metrics for normalized statements are aggregated and can be viewed in the JDBC
node of the Workstation Investigator.

The SQL Agent files  149

Java Agent Guide

The SQL Agent files
When you install an Introscope agent, the agent installer automatically installs
the SQL Agent. The following files are installed:

 wily/ext/SQLAgent.jar

 wily/sqlagent.pbd

» Note By default, agent extensions like the SQLAgent.jar file are installed in
the wily/ext directory. You can change the location of the agent
extension directory with the introscope.agent.extensions.directory
property in the agent profile. If you change the location of the /ext
directory, be sure to move the contents of the /ext directory as well.

Supported JDBC drivers and datasources
The SQL Agent supports the following JDBC drivers and JDBC DataSources.
Configuration instructions have been simplified to apply to both a JDBC driver and
a JDBC datasource.

Supported JDBC
drivers

The SQL Agent supports the following JDBC drivers:

 Oracle—classes111.zip, classes12.zip,
classes111_g.zip, classes12_g.zip

 DB2—db2java.zip

 Sybase—jconn2.jar

 WebLogic jDriver for Oracle—jDriver 6.1

The SQL Agent fully supports the JDBC 1.0 and 2.0
specifications, including support for all JDBC driver types,
I through IV.

Supported JDBC
datasources for
WebSphere

In db2java.zip:

 COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

 COM.ibm.db2.jdbc.DB2XADataSource

In classes12.zip and classes12_g.zip:

 oracle.jdbc.pool.OracleConnectionPoolDataSource

 oracle.jdbc.xa.client.OracleXADataSource

Supported JDBC
datasources for
WebLogic

In classes12.zip:

 oracle.jdbc.xa.client.OracleXADataSource

150  Configuring the Introscope SQL Agent

CA Wily Introscope Java Agent

Configure the SQL Agent for WebSphere or WebLogic
This section describes how to configure the SQL Agent to function with
WebSphere or WebLogic, using either a JDBC Driver or a JDBC DataSource.

The SQL Agent supports:

 WebSphere Application Server (WAS) 4.0 and higher

 WebLogic Server 6.1 and higher

If other applications use a JDBC DataSource or driver that has been
instrumented, you need to add the Agent.jar file to the classpaths for those
applications. Once this is done, the applications may show up as “Unknown
Processes” in the Workstation. This will not affect the functionality or
performance of your application and can be ignored.

WebSphere Application Server (WAS) configuration

There are two steps to configuring the SQL Agent for WebSphere Application
Server:

Step 1 Configure the JDBC DataSource or driver in WebSphere. See Configure the JDBC
DataSource or Driver in WebSphere on page 151.

Step 2 Instrument the JDBC DataSource or Driver. See Instrument the JDBC DataSource
or Driver on page 151.

» Important If you used Application Server AutoProbe or Manual ProbeBuilder
to instrument your application, you must complete the
configuration procedures. If you used JVM AutoProbe, no further
configuration is required.

WebLogic Server configuration

To configure the SQL Agent for WebLogic Server, you must intrstrument the JDBC
DataSource or driver. For more information, see Instrument the JDBC
DataSource or Driver on page 151.

» Important If you used Application Server AutoProbe or Manual ProbeBuilder
to instrument your application, you must complete the
configuration procedures. If you used JVM AutoProbe, no further
configuration is required.

Configure the SQL Agent for WebSphere or WebLogic  151

Java Agent Guide

Configure the JDBC DataSource or Driver in WebSphere

In your WebSphere environment, configure your JDBC DataSource or driver to
work with SQL Agent and WebSphere. For more information, refer to your
WebSphere documentation.

Instrument the JDBC DataSource or Driver

The following instructions assume:

 Introscope and ProbeBuilder are installed in your environment.

 you have write permission in the directory that contains the driver file.

 you are able to use the ProbeBuilder Wizard application either on Windows or
via X-windows on UNIX. For instructions on command-line use of ProbeBuilder,
see the Using the command-line ProbeBuilder on page 229.

To instrument a JDBC DataSource or Driver:

1 Shut down WebSphere or WebLogic.

2 Copy the sqlagent.pbd file (the default location is <Introscope_Home>/wily) to
the <Introscope_Home>\config\custompbd directory.

3 Locate the file in WebSphere or WebLogic containing the Java classes that
implement your JDBC DataSource or driver.

4 Run the ProbeBuilder Wizard, located in the <Introscope_Home> directory:

 Introscope ProbeBuilder Wizard.exe on Windows

 IntroscopeProbeBuilderWizard on UNIX

5 At the Welcome screen, click Next.

6 On the Select Original Java Bytecode screen, select the file containing the JDBC
DataSource to instrument. For example, if using a file containing an Oracle JDBC
DataSource, the name of the file would be classes12.zip.

» Note Before instrumenting any file, save a backup copy in another location.

7 On the Destination Location screen, click Next to name the resulting
instrumented file. For example, if using the file containing an Oracle JDBC
DataSource, the name of the resulting file would be classes12.isc.zip. Accept
the default save location for the resulting file.

8 On the System Directives screen, select the SYSTEM directives for either
WebSphere or WebLogic, depending on which system you are configuring. Click
Next.

9 On the Custom Directives screen, select the sqlagent.pbd along with any other
custom PBDs used in your deployment.

152  Configuring the Introscope SQL Agent

CA Wily Introscope Java Agent

10 Click Add Probes. This creates a copy of the file containing the JDBC
DataSource, instrumenting the JDBC DataSource in the copy. The new copy will
be located in the same directory as the original.

11 On the Finished screen, click Exit.

In your JDBC driver directory you should find the file containing the instrumented
JDBC DataSource or driver. To use this file to see the JDBC metrics in Introscope
do one of the following:

 Set the original file aside and rename the instrumented one, as in the following
example:

c:\> rename classes12.zip classes12.orig.zip
c:\> rename classes12.isc.zip classes12.zip

» Note If the file to be renamed is in use, do not attempt to rename it until you
first shut down any application or database that is actively using the file
containing the JDBC DataSource.

 Change your application server’s CLASSPATH setting to point to the new
instrumented file.

» Note If other applications use this same JDBC DataSource or driver file, you
will need to put the Agent.jar (located in <WebSphere_Home>\wily or
<WebLogic_Home>/wily) in the classpath for those applications.
Otherwise, applications that reference the JDBC DataSource will fail at
runtime.

12 Restart your administration or application server.

SQL statement normalization
Some applications may generate an extremely large number of unique SQL
statements. If technologies like EJB 3.0 are in use, the likelihood of long unique
SQL statements increases. Long SQL statements can contribute to a metric
explosion in the agent, leading to poor performance as well as other system
problems.

How poorly written SQL statements create metric explosions

If your SQL Agent is showing a large and increasing number of unique SQL
metrics even though your application uses a small set of SQL statements, the
problem could be in how the SQL statement was written.

In general, the number of SQL Agent metrics should approximate the number of
unique SQL statements. A common reason this becomes a problem is because of
how comments are used in SQL statements. For example, in this statement,

"/* John Doe, user ID=?, txn=? */ select * from table..."

SQL statement normalization  153

Java Agent Guide

the SQL Agent creates the following metric:

"/* John Doe, user ID=?, txn=? */ select * from table..."

Note that the comment is part of the metric name. While the comment is useful
for the database administrator to see who is executing what query, the SQL Agent
does not parse the comment in the SQL statement. Therefore, for each unique
user ID, the SQL Agent creates a unique metric, potentially causing a metric
explosion. The database that executes the SQL statements does not see these
metrics as unique because it ignores the comments.

This problem can be avoided is by putting the SQL comment in single quotes, as
shown:

"/*' John Doe, user ID=?, txn=? '*/ select * from table..."

The SQL Agent then creates the following metric where the comment no longer
causes a unique metric name:

"/* ? */ select * from table..."

Example 1

When looking at this path under an agent node in the Investigator
Backends|{backendName}|SQL|{sqlType}|sql you notice that temporary tables
are being accessed like this:

SELECT * FROM TMP_123981398210381920912 WHERE ROW_ID = ?

All the additional digits on the TMP_ table name are unique and steadily growing
causing a metric explosion.

Example 2

You have been alerted to a potential metric explosion and your investigation
brings you to a review of this SQL statement:

#1 INSERT INTO COMMENTS (COMMENT_ID, CARD_ID, CMMT_TYPE_ID,
CMMT_STATUS_ID,CMMT_CATEGORY_ID, LOCATION_ID, CMMT_LIST_ID,
COMMENTS_DSC, USER_ID,LAST_UPDATE_TS) VALUES (?, ?, ?, ?, ?, ?, ?, "CHANGE
CITY FROM CARROLTON,TO CAROLTON, _ ", ?, CURRENT)

In studying the code, you notice that "CHANGE CITY FROM CARROLTON, TOCAROLTON,
_ " recurs as a dizzying array of cities.

Example 3

You have been alerted to a potential metric explosion and your investigation
brings you to a review of this SQL statement:

154  Configuring the Introscope SQL Agent

CA Wily Introscope Java Agent

CHANGE COUNTRY FROM US TO CA _ CHANGE EMAIL ADDRESS FROM TO BRIGGIN @ COM _ "

In studying the code, you notice CHANGE COUNTRY results in an endless list of
countries. In addition, the placement of the quotes for countries results in
people's e-mail addresses getting inserted into SQL statements. Here’s the
source of metric explosion as well as other negative consequences.

SQL statement normalization options

To address long SQL statements, the SQL Agent includes the following
normalizers for use:

 Default SQL statement normalizer, below

 Custom SQL statement normalizer on page 154

 Regular expression SQL statement normalizer on page 156

 Command-line SQL statement normalizer on page 160

Default SQL statement normalizer

The standard SQL statement normalizer is on by default in the SQL Agent. It
normalizes text within single quotation marks ('xyz'). For example, the SQL Agent
converts this SQL query:

SELECT * FROM BOOKS WHERE AUTHOR = 'Atwood'

to this normalized statement:

SELECT * FROM BOOKS WHERE AUTHOR = ?

Metrics for normalized statements are aggregated and can be viewed in the
Workstation Investigator.

Custom SQL statement normalizer

The SQL Agent allows users to add extensions for performing custom
normalization. To do so, you create a DLL file containing a normalization scheme
that is implemented by the SQL Agent.

To apply a SQL statement normalizer extension:

1 Create an extension DLL file.

» Note The entry point class for the SQL normalizer extension file has to
implement com.wily.introscope.agent.trace.ISqlNormalizer interface.

SQL statement normalization  155

Java Agent Guide

Making a DLL extension file involves creating a manifest file that contains specific
keys for the SQL normalizer extension, which are detailed in step 2 below.
However, for your extension to work, other general keys are required. These keys
are the type you would use to construct any extension file. The extension file you
create relates to database SQL statement text normalization, for example metrics
under the Backends|{backendName}|SQL|{sqlType}|{actualSQLStatement} node.
The {actualSQLStatement} is normalized by the SQL normalizer.

2 Place the following keys in the manifest of the created extension:

 com-wily-Extension-Plugins-List:testNormalizer1

» Note The value of this key can be anything. In this instance, testNormalizer1
is used as an example. Whatever you specify as the value of this key,
use it in the following keys as well.

 com-wily-Extension-Plugin-testNormalizer1-Type: sqlnormalizer

 com-wily-Extension-Plugin-testNormalizer1-Version: 1

 com-wily-Extension-Plugin-testNormalizer1-Name: normalizer1

Should contain the unique name of your normalizer, for example normalizer1.

 com-wily-Extension-Plugin-testNormalizer1-Entry-Point-Class:
<Thefully-qualified classname of your implementation of
ISQLNormalizer>

3 Place the extension file you created in the <Agent_Home>/wily/ext directory.

4 In the IntroscopeAgent.profile, locate and set the following property:

introscope.agent.sqlagent.normalizer.extension

Set the property to the com-wily-Extension-Plugin-{plugin}-Name from your
created extension’s manifest file. The value of this property is case-insensitive.
For example:

introscope.agent.sqlagent.normalizer.extension=normalizer1

» Important This is a hot property. Changes to the extension name will result
in re-registration of the extension.

5 In the IntroscopeAgent.profile, you can optionally add the following property
to set the error throttle count:

introscope.agent.sqlagent.normalizer.extension.errorCount

For more information about errors and exceptions, see Exceptions, below.

» Note If the errors thrown by the custom normalizer extension exceeds the
error throttle count, the extension is disabled.

6 Save the IntroscopeAgent.profile.

7 Restart your application.

156  Configuring the Introscope SQL Agent

CA Wily Introscope Java Agent

Exceptions

If the extension you created throws an exception for one query, the default SQL
statement normalizer uses the default normalization scheme for that query.
When this happens, an ERROR message is logged, saying an exception was
thrown by the extension, and a DEBUG message is logged with stack trace
information. However, after five such exceptions are thrown, the default SQL
statement normalizer disables the your created extension and stops attempting
to use the created extension for future queries until the normalizer is changed.

Null or empty strings

If the extension you created returns a null string or empty string for a query, the
StatementNormalizer uses the default normalization scheme for that query and
logs an INFO message saying the extension returned a null value. However, after
five such null or empty strings have been returned, the StatementNormalizer
stops logging messages, but will attempt to continue to use the extension.

Regular expression SQL statement normalizer

The SQL Agent ships with an extension that normalizes SQL statements based on
configurable regular expressions (regex). This file,
wily.RegexSqlNormalizer.ext.dll, is located in the <Agent_Home>/wily/ext
directory. The normalizer extension uses Systems.Test.RegularExpressions
namespace classes.

For examples on how to use the regular expression SQL statement normalizer,
see Regular expression SQL statement normalizer examples on page 158.

To apply the regular expressions extension:

1 Open the IntroscopeAgent.profile.

2 Locate and set the following properties:

 introscope.agent.sqlagent.normalizer.extension=RegexSqlNormalizer

Specifies the name of the SQL normalizer extension that will be used to
override the preconfigured normalization scheme. When enabling the regular
expressions extension, set this property to RegexSqlNormalizer.

 introscope.agent.sqlagent.normalizer.regex.keys=key1

This property specifies the regex group keys, which are evaluated in the order
they are listed. This property is required to enable the regular expressions
extension. There is no default value.

 introscope.agent.sqlagent.normalizer.regex.key1.pattern=A

SQL statement normalization  157

Java Agent Guide

This property specifies the regex pattern that is used to match against the SQL
statements. All valid regular expressions allowed by the
System.Test.RegularExpressions namespace classes can be used here. This
property is required to enable the regular expressions extension. There is no
default value.

 introscope.agent.sqlagent.normalizer.regex.key1.replaceFormat=B

This property specifies the replacement string format. All valid regex allowed
by the System.Test.RegularExpressions namespace classes can be used here.
This property is required to enable the regular expressions extension. There is
no default value.

 introscope.agent.sqlagent.normalizer.regex.matchFallThrough=false

If this property is set to true, SQL strings are evaluated against all the regex
key groups. The implementation is chained. Hence, if the SQL strings match
multiple key groups, the normalized SQL output from group1 is fed as input to
group2, and so on.

If the property is set to false, as soon as a key group matches the SQL string,
the normalized SQL output from that group is returned. The MatchFallThrough
property does not enable or disable the extension.

For example, if you had a SQL string like: Select * from A where B, you would
set the following properties:

introscope.agent.sqlagent.normalizer.regex.keys=key1,key2
introscope.agent.sqlagent.normalizer.regex.key1.pattern=A
introscope.agent.sqlagent.normalizer.regex.key1.replaceFormat=X
introscope.agent.sqlagent.normalizer.regex.key2.pattern=B
introscope.agent.sqlagent.normalizer.regex.key2.replaceFormat=Y

If introscope.agent.sqlagent.normalizer.regex.matchFallThrough=false,
then the SQL is normalized against key1 regex. Output from that regex will be
Select * from X where B. This SQL will be returned.

If introscope.agent.sqlagent.normalizer.regex.matchFallThrough=true,
then the SQL is normalized against key1 regex first. The output from that
regex is Select * from X where B. This output is then fed to key2 regex. The
output from key2 regex is Select * from X where Y. This will be the SQL
returned.

» Note This property is not required to enable the regular expressions
extension.

 introscope.agent.sqlagent.normalizer.regex.key1.caseSensitive=false

This property specifies whether the pattern match is case sensitive. The default
value is false. This property is not required to enable the regular expressions
extension.

 introscope.agent.sqlagent.normalizer.regex.key1.replaceAll=false

158  Configuring the Introscope SQL Agent

CA Wily Introscope Java Agent

If this property is set to false, it will replace the first occurrence of the
matching pattern in the SQL with the replacement string. If this property is set
to true, it will replace all occurrences of the matching pattern in the SQL with
the replacement string.

For example, if you have a SQL statement like Select * from A where A like Z,
you would set the properties as follows:

introscope.agent.sqlagent.normalizer.regex.key1.pattern=A
introscope.agent.sqlagent.normalizer.regex.key1.replaceFormat=X

If introscope.agent.sqlagent.normalizer.regex.key1.replaceAll=false, it
will result in a normalized SQL statement: Select * from X where A like Z.

If introscope.agent.sqlagent.normalizer.regex.key1.replaceAll=true, it
will result in a normalized SQL statement: Select * from X where X like Z.

The default value is false. This property is not required to enable the regular
expressions extension.

» Note If none of the regular expression patterns match the input SQL, the
RegexNormalizer will return a null string. The statement normalizer will
then use the default normalization scheme.

3 Save the IntroscopeAgent.profile.

» Important All properties listed above are hot, meaning changes to these
properties take effect once you have saved the
IntroscopeAgent.profile. Changes to these properties do not
require IIS restart.

Regular expression SQL statement normalizer examples

The three examples below can help you understand how to implement the regular
expression SQL statement normalizer.

Example 1

Here is a SQL query before regular expression SQL statement normalization:

INSERT INTO COMMENTS (COMMENT_ID, CARD_ID, CMMT_TYPE_ID,CMMT_STATUS_ID,
CMMT_CATEGORY_ID, LOCATION_ID, CMMT_LIST_ID,COMMENTS_DSC, USER_ID,
LAST_UPDATE_TS) VALUES(?, ?, ?, ?, ?, ?,?, ‘’CHANGE CITY FROM CARROLTON,
TO CAROLTON, _ ", ?, CURRENT)

Here is the desired normalized SQL statement:

INSERT INTO COMMENTS (COMMENT_ID, ...) VALUES (?, ?, ?, ?, ?, ?,?, CHANGE
CITY FROM ()

Here is the configuration needed to the IntroscopeAgent.profile file to result in
the normalized SQL statement shown above:

SQL statement normalization  159

Java Agent Guide

introscope.agent.sqlagent.normalizer.extension=RegexSqlNormalizer
introscope.agent.sqlagent.normalizer.regex.matchFallThrough=true
introscope.agent.sqlagent.normalizer.regex.keys=key1,key2
introscope.agent.sqlagent.normalizer.regex.key1.pattern=(INSERT INTO
COMMENTS \\(COMMENT_ID,)(.*)(VALUES.*)''(CHANGE CITY FROM \\().*(\\))
introscope.agent.sqlagent.normalizer.regex.key1.replaceAll=false
introscope.agent.sqlagent.normalizer.regex.key1.replaceFormat=$1 ...)

$3$4 $5
introscope.agent.sqlagent.normalizer.regex.key1.caseSensitive=false
introscope.agent.sqlagent.normalizer.regex.key2.pattern='[a-zA-Z1-9]+'
introscope.agent.sqlagent.normalizer.regex.key2.replaceAll=true
introscope.agent.sqlagent.normalizer.regex.key2.replaceFormat=?
introscope.agent.sqlagent.normalizer.regex.key2.caseSensitive=false

Example 2

Here is a SQL query before regular expression SQL statement normalization:

SELECT * FROM TMP_123981398210381920912 WHERE ROW_ID =

Here is the desired normalized SQL statement:

SELECT * FROM TMP_ WHERE ROW_ID =

Here is the configuration needed to the IntroscopeAgent.profile file to resultin
the normalized SQL statement shown above:

introscope.agent.sqlagent.normalizer.extension=RegexSqlNormalizer
introscope.agent.sqlagent.normalizer.regex.matchFallThrough=true
introscope.agent.sqlagent.normalizer.regex.keys=key1
introscope.agent.sqlagent.normalizer.regex.key1.pattern=(TMP_)[1-9]*
introscope.agent.sqlagent.normalizer.regex.key1.replaceAll=false
introscope.agent.sqlagent.normalizer.regex.key1.replaceFormat=$1
introscope.agent.sqlagent.normalizer.regex.key1.caseSensitive=false

Example 3

If you want to normalize a SQL statement like: Select ResID1, CustID1
where ResID1=.. OR ResID2=.. n times OR CustID1=.. OR n times, you could
set the properties like this:

introscope.agent.sqlagent.normalizer.regex.matchFallThrough=true
introscope.agent.sqlagent.normalizer.regex.keys=default,def
introscope.agent.sqlagent.normalizer.regex.default.pattern=(ResID)[1-9]
introscope.agent.sqlagent.normalizer.regex.default.replaceAll=true
introscope.agent.sqlagent.normalizer.regex.default.replaceFormat=$1
introscope.agent.sqlagent.normalizer.regex.default.caseSensitive=true
introscope.agent.sqlagent.normalizer.regex.def.pattern=(CustID)[1-9]
introscope.agent.sqlagent.normalizer.regex.def.replaceAll=true
introscope.agent.sqlagent.normalizer.regex.def.replaceFormat=$1
introscope.agent.sqlagent.normalizer.regex.def.caseSensitive=true

160  Configuring the Introscope SQL Agent

CA Wily Introscope Java Agent

Command-line SQL statement normalizer

If the regular expression SQL normalizer is not in use, and you have SQL
statements that enclose values in the where clause with double quotes (" "), use
the following command-line command to normalize your SQL statements:

-DSQLAgentNormalizeDoubleQuoteString=true

» Important You can use the regular expressions SQL normalizer instead of
this command to normalize SQL statements in double quotes. See
Regular expression SQL statement normalizer on page 156 for
more information.

Turning off statement metrics
Some applications may generate an extremely large number of unique SQL
statements, causing a metric explosion in the SQL Agent. You can turn off SQL
statement metrics in the SQL Agent.

» Note You will not lose backend or top-level JDBC metrics if you turn off
statement metrics.

To turn off statement metrics:

1 Open the sqlagent.pbd file.

2 Remove {sql} from the trace directives you wish to turn off.

3 Save the sqlagent.pbd file.

Turning off Blame metrics
In a standard deployment of the SQL Agent, Blame metric data is collected by
default. However, to reduce data overhead and reduce the number of metrics
generated, you can turn Blame metric data off for the SQL Agent.

Note: If Blame metric generation is turned off, the SQL Agent data will not
appear in Transaction Tracer viewer.

To turn off Blame metric data generation:

1 Open the IntroscopeAgent.profile.

2 Locate the property, introscope.agent.sqlagent.useblame.

3 Change the value to false:

introscope.agent.sqlagent.useblame=false

4 Save your changes to the IntroscopeAgent.profile.

5 Restart the managed application.

SQL metrics  161

Java Agent Guide

SQL metrics
The SQL Agent metrics appear under the Backends node in the Introscope
Workstation Investigator. SQL statement metrics can be found under the
Backends|<backendName>|SQL node.

» Note Average Response Time (ms) will only display queries that return a data
reader, i.e. queries executed via the ExecuteReader() method. This
metric represents the average time spent in the data reader’s Close()
method.

Metric types specific to SQL data include:

 Connection Count—The number of live connection objects in memory.

A connection is opened when a driver’s connect() method is invoked, and
closed when the connection invocation is closed via the close() method. The
SQL Agent maintains weak references to Connections in a Set. When the
Connection objects are garbage collected, the counts reflect the changes.

 Average Result Processing Time (ms)—The average processing time of a
query.

This metric represents the average time spent processing a ResultSet from the
end of the executeQuery() call to the invocation of the ResultSet's close()
method.

» Note Instrumented XADataSources may not report commit or rollback
metrics. Other instrumented DataSources may not report commit or
rollback metrics unless those metrics contain data.

162  Configuring the Introscope SQL Agent

CA Wily Introscope Java Agent

Enabling JMX Reporting  163

CHAPTER 14

Enabling JMX Reporting

This chapter contains information about enabling the Java Agent to report JMX
data.

Introscope Java Agent JMX support 164

Default JMX metric conversion process 164

Using primary key conversion to streamline JMX metrics 165

Managing metric volume with JMX filters 166

Configuring JMX reporting 167

Enabling JSR-77 data for WAS 6.x 169

164  Enabling JMX Reporting

CA Wily Introscope Java Agent

Introscope Java Agent JMX support
Introscope can collect management data that application servers or Java
applications expose as JMX-compliant MBeans, and present the JMX data in the
Investigator metric tree.

Introscope supports any MBean built to the Sun JMX specification. For more
information on the Sun JMX specification, see http://java.sun.com/products/
JavaManagement/.

Introscope converts the JMX data to Introscope metric format and displays it in
the Investigator under the following Resource:

<Domain>|<Host>|<Process>|<Agent>|JMX|

Introscope support for WebLogic 9.0 JMX metrics

WebLogic versions prior to WebLogic 9.0 provided only a single MBeanServer as
a source of JMX metrics. WebLogic 9.0 provides three:

 RuntimeServiceMBean: per-server runtime metrics, including active effective
configuration

 DomainRuntimeServiceMBean: domain-wide runtime metrics

 EditServiceMBean: allows user to edit persistent configuration

Introscope polls only the RuntimeServiceMBean, because it is the only one that
supports local access (an efficiency issue), and because it contains most of the
data expected to be relevant.

Default JMX metric conversion process
This section describes the process Introscope uses, by default, to convert JMX
Metrics for display in the Investigator. This method is used to convert an MBean
if:

 You use WebLogic 9.0, or

 You have not configured valid primary keys, as described in Using primary key
conversion to streamline JMX metrics on page 165.

» Note If you specify primary keys that no MBeans match, Introscope will use
the default conversion method.

In the default conversion method, Introscope displays both the name and the
value of the attribute, and lists the pairs alphabetically in the metric tree.

Domain>|<Host>|<Process>|<Agent>|JMX|<domain name>|
<key1>=<value1>|<key2>=<value2>:<metric>

Using primary key conversion to streamline JMX metrics  165

Java Agent Guide

For example, given an WebLogic MBean with these characteristics:

If no primary keys are specified in introscope.agent.jmx.name.primarykeys, the
MBean attributes in the table above would be converted to the following
Introscope metric:

<Domain>|<Host>|<Process>|<Agent>|JMX|Weblogic|category=server|type=jdb
c:connections

Note that the key/value pairs are displayed alphabetically in the Introscope
metric.

Using primary key conversion to streamline JMX
metrics

You can optionally configure the order in which metrics appear under the JMX
node by defining, in the agent profile, a Primary Key—those parts of an MBean’s
ObjectName that uniquely identify it.

If you do not configure primary key conversion, Introscope converts the JMX data
as described in Default JMX metric conversion process on page 164. With the
default conversion, metrics are listed alphabetically under the JMX node in
Investigator.

This method of converting JMX data to Introscope metrics results in streamlined
metric names, and allows you to control order of key/value pair information in
the generated metrics.

The behavior is configured in the introscope.agent.jmx.name.primarykeys
property in the agent profile. Values in the primarykeys property should specify
the parts of an MBeans JMX ObjectName that uniquely identify an MBean. For
example, a WebLogic MBean’s ObjectName contains a Type key that specifies the
kind of MBean, and a Name key that specifies the name of the resource the MBean
represents. The key/value pairs in an ObjectName can vary for different types of
MBeans.

Introscope converts and presents the MBeans identified by value of the
introscope.agent.jmx.name.primarykeys property according to these rules:

 Only the key value information is displayed, not the key name.

 Values are ordered in the sequence defined in the primarykeys property.

 Values are case-sensitive.

Domain name Key/Value Pairs Metric Names

WebLogic category=server, type=jdbc connections

166  Enabling JMX Reporting

CA Wily Introscope Java Agent

For example, given a WebLogic MBean with these characteristics:

If you configure:

introscope.agent.jmx.name.primarykeys=type,category

the connections attribute appears in the Investigator tree in this structure:

<IntroscopeDomain>|<Host>|<Process>|<Agent>|JMX|Weblogic|jdbc|server:co
nnections

» Note WebLogic 9.0 does not have universally available primary keys, so for
WebLogic 9.0 Introscope uses the key/value pair metric naming
convention found in the Default Conversion Method described in Default
JMX metric conversion process on page 164. As a result, the JMX Metric
tree for WebLogic 9.0 will have a different structure than the metric tree
for other WebLogic versions.

Managing metric volume with JMX filters
Defining JMX filters determines what JMX MBean information will be collected and
displayed in Introscope. If no filters are set, all JMX MBean information will be
reported by the agent to the Enterprise Manager, increasing system overhead.

Filters are set in the introscope.agent.jmx.name.filter property in the agent
profile, IntroscopeAgent.profile. Filters are keywords, entered as comma-
separated strings in the property. Introscope 6.1 and higher supports filter
strings that contain the asterisk (*) and question mark (?) wildcard characters.

Introscope matches the filter strings to JMX-generated Introscope metrics. If it
finds a match, the metrics that match are reported to Introscope.

To limit the volume of metrics returned, define filter strings as narrowly as
possible. For instance, if you define a filter string that matches an MBean
attribute that exists on multiple MBeans, metrics from each of those MBeans will
be reported. If you are only interested in an attribute on selected MBeans, you
can qualify the attribute name with the MBean name in your filter string.

For example, assume you wish to capture the MessagesCurrentCount attribute
value for the JMSDestinationRuntime MBean.

If the fully qualified metric name for MessagesCurrentCount is:

Domain name MBean ObjectName Key/
Value Pairs

Metric Names

WebLogic category=server, type=jdbc connections

Configuring JMX reporting  167

Java Agent Guide

SuperDomain|host-name|Process|Agent-name|JMX|comp-1|
JMSDestinationRuntime|comp-2:MessagesCurrentCount

define introscope.agent.jmx.name.filter in the IntroscopeAgent.profile as:

JMX|comp-1|JMSDestinationRuntime|comp-2:MessagesCurrentCount

JMX filters for WebLogic

In the IntroscopeAgent.profile file for WebLogic, the following keywords are
already defined:

 ActiveConnectionsCurrentCount

 WaitingForConnectionCurrentCount

 PendingRequestCurrentCount

 ExecuteThreadCurrentIdleCount

 OpenSessionsCurrentCount

Configuring JMX reporting
How you configure Introscope to support JMX depends upon the application
server you use. This section describes how to configure Introscope to collect and
present JMX data from WebLogic Server and WebSphere 5.0.

To configure JMX reporting, you must complete the following steps in this
order:

1 Enable JMX support in the agent profile.

2 Define primary keys for JMX data conversion.

3 Define JMX filters.

4 Configure startup class or service.

5 Add permissions to Java 2 security policy (WebSphere 5.0.x).

These are the steps:

To Do this

Enable JMX
support in the
agent profile

1 Shut down the managed application if it is running.
2 For WebSphere agents only, in IntroscopeAgent.profile set
introscope.agent.jmx.enable to true. (The default value is
false in the WebSphere agent profile.)

168  Enabling JMX Reporting

CA Wily Introscope Java Agent

Define primary
keys for JMX
data
conversion

1 In IntroscopeAgent.profile, configure primary keys.
 For WebLogic 9.0, comment out:

introscope.agent.jmx.name.primarykeys
 For other WebLogic versions, uncomment:

introscope.agent.jmx.name.primarykeys
 For WebSphere 6.0, uncomment:

introscope.agent.jmx.name.primarykeys=J2EEServer,
Application,

j2eeType,JDBCProvider,name,mbeanIdentifier
2 If you modify the value of the property, values must be case-

sensitive, and multiple keys must be separated by commas.
3 Continue to the next step, Define JMX filters, in the next cell of this

table.

Define JMX
filters

1 In IntroscopeAgent.profile, make sure the
introscope.agent.jmx.name.filter property is uncommented.

2 Enter desired strings, separated by commas, in the property.
In order for Introscope to properly match filtered strings, the
strings must be spelled exactly and case sensitive

3 Save changes.
4 Restart the managed application.

Configure
startup class
or service

To enable JMX data, you must configure an Introscope startup class
in WebLogic Server, or a custom service in WebSphere. For
instructions, see Configuring startup class for WebLogic 8.1 or 9.0
on page 130.

Add
permissions to
Java 2 security
policy
(WebSphere
5.0.x)

If you use WebSphere 5.0.x, add these lines to the <WebSphere
home>/properties/server.policy file:

// permissions for Introscope JMX support
grant codeBase "file:${was.install.root}/-" {
permission com.tivoli.jmx.MBeanServerPermission "*";
permission com.tivoli.jmx.MBeanPermission "*";
permission com.tivoli.jmx.AllMBeanPermission "*";
};

To Do this

Enabling JSR-77 data for WAS 6.x  169

Java Agent Guide

Enabling JSR-77 data for WAS 6.x
This section provides instructions for configuring Introscope to collect, retain, and
report metrics for JSR-77 JMX MBean objects under WebSphere 6.0 and later.

JSR-77, the J2EE Management Specification, abstracts the manageable parts of
the J2EE architecture and defines an interface for accessing management
information.

JSR-77 support requires a JVM version 1.4 or later. If the JVM is 1.4, the
application server must also support JSR-77.

» Related Knowledge Base article(s):For more information about viewing JMX metrics on
WAS 6.1, please see the Knowledge Base article Viewing JMX Metrics on WAS 6.1. This article
has been updated with Introscope 8.0 specific information.

To enable JSR-77 support:

1 Shut down the managed application if it is running.

2 Configure a WebSphere Custom Service, as described in Configuring a custom
service in WebSphere 5.0, 6.0, or 6.1 on page 131.

3 In the IntroscopeAgent.profile, verify that:

introscope.agent.jmx.enable=true

4 In the IntroscopeAgent.profile, enable JSR-77 by setting:

introscope.agent.jmx.name.jsr77.disable=false

5 Configure the primary keys method of metric conversion by uncommenting this
property in the IntroscopeAgent.profile:

introscope.agent.jmx.name.primaryKeys=J2EEServer,Application,

j2eeType,JDBCProvider,name,mbeanIdentifier

» Note Only the IntroscopeAgent.profile provided with Introscope for
WebSphere contains this property definition.

For more information see Using primary key conversion to streamline JMX metrics
on page 165.

6 To specify the JSR-77 Metrics to report, uncomment and set this property to
identify desired metrics:

introscope.agent.jmx.name.filter

Although filtering is not required, it is highly recommended. For more information
see Managing metric volume with JMX filters on page 166.

7 To specify specific Mbean attributes to exclude in JSR-77 metrics, uncomment
this property, and update as desired to exclude additional attributes:

introscope.agent.jmx.ignore.attributes=server

https://support.wilytech.com/cgi-bin/wilytech.cfg/php/enduser/std_adp.php?p_faqid=1230

170  Enabling JMX Reporting

CA Wily Introscope Java Agent

Configuring Platform Monitoring  171

CHAPTER 15

Configuring Platform Monitoring

This chapter has instructions for configuring Introscope Platform Monitors.

Understanding platform monitors 172

Enabling platform monitors on Windows Server 2003 172

Enabling platform monitors on AIX 172

Disabling platform monitors 173

Troubleshooting platform monitoring 174

172  Configuring Platform Monitoring

CA Wily Introscope Java Agent

Understanding platform monitors
Platform monitors enable the Java Agent to report system metrics, including CPU
statistics, to the Enterprise Manager. Platform monitors are included with the
Introscope Agent installers.

Platform monitors on all operating systems except Windows Server 2003 and AIX
are automatically enabled upon Java Agent installation. Windows Server 2003
and AIX platform monitors require a minimal configuration to work.

Introscope can monitor these operating systems:

 Solaris

 Windows Server 2003

 Windows 2000 Professional/Server/Advanced Server/Datacenter Server

 Windows XP Professional

 AIX 4 or 5

 RedHat Enterprise Linux 3.0 or 4.0

The platform metrics generated are:

 ProcessID

 Processor Count - the number of CPUs

 Utilization % (process) - for the Java Agent process, the percentage of total
capacity of all processors this process is using. Regardless of how many
processors there are, this metric generates only one number.

 Utilization % (aggregate) - for this processor, its total utilization (as a
percentage) by all processes in the system. Each processor is shown as a
Resource in the Investigator tree.

Enabling platform monitors on Windows Server
2003

To run platform monitors on Windows Server 2003, you must have admin
privileges.

Enabling platform monitors on AIX
To enable platform monitors on AIX:

1 After Java Agent installation, make sure these files are installed in the wily/ext
directory:

 introscopeAIX4Stats.jar

Disabling platform monitors  173

Java Agent Guide

 libIntroscopeAIX4Stats.so

 introscopeAIX5Stats.jar

 libIntroscopeAIX5Stats.so

2 Install the Perfstat Library.

 AIX 5: Install the patch/fix APAR IY30022 from IBM at:

 http://www.ibm.com/support/docview.wss?uid=isg1IY30022

 AIX 4.3.3 and higher: A Perfstat Library has been created to work with AIX
4.3.3. Install the following packages from ftp://ftp.software.ibm.com/aix/
fixes/v4/os:

 bos.perf.libperfstat

 bos.perf.perfstat

 AIX 4: Bring your system up to 4.3.3 and then install the above packages.

» Note Restart your machine to ensure the patches have taken effect.

Disabling platform monitors
To disable platform monitors on any platform, move the .jar file from the /wily/
ext directory to another directory.

This table shows the location of platform monitor files installed with a Java Agent
installer.

For this platform The platform monitor files are located in

Solaris  wily/ext/introscopeSolarisAmd32Stats.jar
 wily/ext/introscopeSolarisAmd64Stats.jar
 wily/ext/introscopeSolarisSparc32Stats.jar
 wily/ext/introscopeSolarisSparc64Stats.jar

 wily/ext/libIntroscopeSolarisAmd32Stats.so
 wily/ext/libIntroscopeSolarisAmd64Stats.so
 wily/ext/libIntroscopeSolarisSparc32Stats.so
 wily/ext/libIntroscopeSolarisSparc64Stats.so

Windows

Server 2003

all Windows 2000 platforms

XP Professional

 wily\ext\introscopeWindowsStats.jar
 wily\ext\introscopeWindowsStats.dll

http://www.ibm.com/support/docview.wss?uid=isg1IY30022
ftp://ftp.software.ibm.com/aix/fixes/v4/os
ftp://ftp.software.ibm.com/aix/fixes/v4/os

174  Configuring Platform Monitoring

CA Wily Introscope Java Agent

Troubleshooting platform monitoring
In most cases, the platform monitor successfully detects the operating system
and runs if the operating system is supported. In rare cases where this does not
occur, you can explicitly specify your operating system in the Java Agent profile
to ensure that the platform monitor runs.

To specify your operating system in the IntroscopeAgent.profile:

1 Open IntroscopeAgent.profile.

2 Under the Platform Monitor Configuration heading, locate the
introscope.agent.platform.monitor.system property and enter the value for
your operating system. Acceptable values are:

 SolarisAmd32

 SolarisAmd64

 SolarisSparc32

 SolarisSparc64

 HP-UXItanium

 HP-UXParisc32

 AIX5PSeries32

 AIX53PSeries64

 AIX52PSeries64

For example: introscope.agent.platform.monitor.system=SolarisAmd32

3 Restart the managed application.

On Windows platforms, the Java Agent logfile will sometimes contain an error
similar to the following:

11/28/06 08:29:55 AM PST [ERROR] [IntroscopeAgent] An error occurred polling
for platform data

AIX  wily/ext/introscopeAIX5PSeries32Stats.jar
 wily/ext/introscopeAIX52PSeries64Stats.jar
 wily/ext/introscopeAIX53PSeries64Stats.jar

 wily/ext/libIntroscopeAIX5PSeries32Stats.so
 wily/ext/libIntroscopeAIX52PSeries64Stats.so
 wily/ext/libIntroscopeAIX53PSeries64Stats.so

RedHat Enterprise Linux  wily/ext/introscopeRedHatStats.jar
 wily/ext/libIntroscopeRedHatStats.so

For this platform The platform monitor files are located in

Troubleshooting platform monitoring  175

Java Agent Guide

If the error is infrequent, it is likely caused by a transient error originating from
Windows itself, and is harmless. On platforms other than Windows, or in the case
that the error happens all the time, this error indicates something more serious
and should be reported to CA support for Introscope.

176  Configuring Platform Monitoring

CA Wily Introscope Java Agent

Configuring WebSphere PMI  177

CHAPTER 16

Configuring WebSphere PMI

This chapter has instructions for configuring the Introscope Agent to report
WebSphere PMI metrics.

Java Agent support for WebSphere PMI 178

Enabling PMI in WebSphere 178

Configuring PMI in Introscope 179

Viewing WebSphere Agent PMI data 179

178  Configuring WebSphere PMI

CA Wily Introscope Java Agent

Java Agent support for WebSphere PMI
Introscope can provide WebSphere performance data by extracting WebSphere
Performance Monitoring Infrastructure (PMI) metrics via the PMI interface
provided with WebSphere 5.1 and higher.

You must first enable PMI data collection in WebSphere before the data will be
available to Introscope. In WebSphere, all performance monitor settings are off
by default.

These PMI metrics can then be displayed as Introscope metrics. Users can filter
which metric categories to bring into Introscope, depending on their needs.

To enable PMI reporting:

 enable PMI in WebSphere

 enable PMI in the Introscope Agent profile

 configure an Introscope Custom Service in WebSphere

Enabling PMI in WebSphere
This section describes how to turn on WebSphere Performance Monitor Settings.

To enable PMI in WebSphere 6.0/5.0.x:

1 See your WebSphere 6.0/5.0.x documentation for instructions on enabling
Performance Monitoring Settings, and enabling Performance Monitoring for each
desired metric category.

2 If you are running WebSphere 5.0.x and 6.0, you must modify the Java 2 Security

Policy for PMI. Edit the file, <WebSphere home>/properties/server.policy to

include the lines:

// permissions for Introscope PMI support
grant codeBase "file: <Introscope_Home directory>/-" {
permission java.security.AllPermission;
};

Using PMI with Introscope on z/OS

There are several ways to obtain additional WebSphere-specific performance
metrics on z/OS. One solution is to use Wily’s PowerPack for z/OS WebSphere
product, which provides WebSphere-specific PBDs and metrics. This product uses
Wily tracer technology and is a low overhead method of obtaining WebSphere-
specific metrics, and does not require you to enable PMI in WebSphere for z/OS.

In addition, Introscope supports PMI on WebSphere z/OS, but this approach
consumes more system resources.

Configuring PMI in Introscope  179

Java Agent Guide

Configuring PMI in Introscope
After you turn on Performance Monitoring Settings in WebSphere, you must
enable PMI data collection in Introscope, and enable the metric categories you’d
like to see reported.

To configure PMI collection, use the following steps:

1 Shut down your managed application.

2 Open the IntroscopeAgent.profile.

3 Locate the property, introscope.agent.pmi.enable, under the WebSphere PMI
Configurations heading, and verify it is set to true.

4 Introscope can report data from the following high-level PMI metric categories.
These categories are represented by commented-out properties under the
WebSphere PMI Configuration heading. Four categories—threadPool,
servletSessions, connectionPool, and j2c—are set to true by default.

 WebSphere 5.0.x PMI Categories:

introscope.agent.pmi.enable.threadPool=true
introscope.agent.pmi.enable.servletSessions=true
introscope.agent.pmi.enable.connectionPool=true
introscope.agent.pmi.enable.j2c=true
introscope.agent.pmi.enable.bean=false
introscope.agent.pmi.enable.transaction=false
introscope.agent.pmi.enable.webApp=false
introscope.agent.pmi.enable.jvmRuntime=false
introscope.agent.pmi.enable.jvmpi=false
introscope.agent.pmi.enable.system=false
introscope.agent.pmi.enable.cache=false
introscope.agent.pmi.enable.orbPerf=false
introscope.agent.pmi.enable.j2c=false
introscope.agent.pmi.enable.webServices=false
introscope.agent.pmi.enable.wlm=false

5 For each high level metric category you want to report, enter a value of true.

6 Save the changes.

7 Restart the managed application.

Viewing WebSphere Agent PMI data
After you’ve enabled PMI collections in Introscope, available PMI metrics will be
displayed in the following location in the Investigator tree:

<Domain>|<Host>|<Process>|<Agent>|WebSpherePMI

180  Configuring WebSphere PMI

CA Wily Introscope Java Agent

Enabling WebLogic Diagnostic Framework  181

CHAPTER 17

Enabling WebLogic Diagnostic Framework

This chapter has instructions for configuring the Introscope Agent to report
WebLogic Diagnostic Framework (WLDF) metrics.

Java Agent support for WebLogic Diagnostic Framework (WLDF) 182

Understanding WLDF Metric conversion 182

Enabling WLDF reporting 183

182  Enabling WebLogic Diagnostic Framework

CA Wily Introscope Java Agent

Java Agent support for WebLogic Diagnostic
Framework (WLDF)

The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic
framework that defines and implements a set of services that run within the
WebLogic Server® process and participate in the standard server life cycle. Using
WLDF, you can create, collect, analyze, archive and access diagnostic data
generated by a running server and the applications deployed within its
containers. This data provides insight into the run-time performance of servers
and applications and enables you to isolate and diagnose faults when they occur.

WLDF is a new feature in WebLogic 9.0. In previous releases of WebLogic Server,
access to diagnostic data by monitoring agents—which were developed by
customers or third-party tools vendors—was limited to JMX attributes, and
changes to monitoring agents required server shutdown and restart. However,
WLDF enables dynamic access to server data through standard interfaces, and
the volume of data accessed at any given time can be modified without shutting
down and restarting the server.

For more information on WLDF, see http://e-docs.bea.com/wls/docs90/
wldf_configuring/index.html.

Understanding WLDF Metric conversion
Introscope WLDF Metric conversion is similar to that in JMX metric conversion.
Where JMX MBeans have multiple Attributes (metrics), WLDF has a set of Data
Accessors, each with multiple Columns (metrics). Introscope converts WLDF
Columns to Introscope metrics.

Information in Data Accessors is defined by a domain name and one or more key/
value pairs. Introscope converts this WLDF information into Introscope-specific
metric format and displays it in the Investigator under the following Resource:

<Domain>|<Host>|<Process>|<Agent>|WLDF|

Introscope converts Data Accessor Columns using the following method:

 key and value information is displayed

 key/value pairs are placed in alphabetical order in the Introscope-generated
metrics.

The following example shows the syntax used:

<Domain>|<Host>|<Process>|<Agent>|WLDF|<domain
name>|<key1>=<value1>|<key2>=<value2>:<metric>

http://e-docs.bea.com/wls/docs90/wldf_configuring/index.html
http://e-docs.bea.com/wls/docs90/wldf_configuring/index.html

Enabling WLDF reporting  183

Java Agent Guide

For example, this table shows the information for the BYTECOUNT Column from
the HTTPAccessLog Data Accessor:

The Data Accessor information in the table above would be converted to the
following Introscope metric:

<Domain>|<Host>|<Process>|<Agent>|WLDF|Weblogic|Name=HTTPAccessLog
|Type=WLDFDataAccessRuntime=Accessor|WLDFRuntime=WLDFRuntime:BYTECOUNT

Note that the key/value pairs are displayed alphabetically in the Introscope
metric.

Enabling WLDF reporting
By default, WLDF reporting is not enabled in Introscope.

To obtain WLDF data:

1 Shut down the managed application if it is running.

2 Configure a WebLogic Startup Class, as described in Application server
management data on page 130.

3 In the IntroscopeAgent.profile:

introscope.agent.wldf.enable=true

Domain name Key/Value pairs Metric names

WebLogic Name=HTTPAccessLog,
Type=WLDFDataAccessRuntime=Accessor,

WLDFRuntime=WLDFRuntime

BYTECOUNT

184  Enabling WebLogic Diagnostic Framework

CA Wily Introscope Java Agent

Java Agent Properties  185

APPENDIX A

Java Agent Properties

This appendix describes procedures and properties associated with the Java
Agent. The procedures and properties are:

Configuring IntroscopeAgent.profile location 186

Command-line property overrides 187

Agent failover 188

Agent HTTP tunneling 188

Agent HTTP tunneling—proxy server 189

Agent metric aging 190

Agent metric clamp 193

Agent naming 194

Agent thread priority 196

Agent to Enterprise Manager connection 196

AutoProbe 197

Blame 198

Cross-process tracing in WebLogic Server 199

Dynamic instrumentation 199

ErrorDetector 200

Extensions 201

Logging 206

Metric count 208

Platform monitoring 208

Socket metrics. 208

SQL Agent 209

Stall metrics 213

Transaction tracing 214

URL grouping 216

WebSphere PMI 217

WLDF metrics 220

186  Java Agent Properties

CA Wily Introscope Java Agent

Configuring IntroscopeAgent.profile location
The agent refers to properties in the IntroscopeAgent.profile for its basic
connection and naming properties. When you install an agent, the agent profile
is installed in the <AppServerHome>/wily directory.

Introscope looks for the agent profile in these locations, in this sequence:

 location defined in the system property com.wily.introscope.agentProfile

 location defined in com.wily.introscope.agentResource

 <working directory>/wily directory

» Note When adding a path on a Windows machine, you must escape a
backslash (\) with another backslash (each one doubled), such as
C:\\Introscope\\lib\\Agent.jar.

To change the location of the IntroscopeAgent.profile:

1 Define the new location using one of these methods:

 define a system property on the Java command line with the -D option to
specify the full path to the location of the IntroscopeAgent.profile file:
com.wily.introscope.agentProfile

 Make the IntroscopeAgent.profile available in a resource on the classpath.
Set com.wily.introscope.agentResource to specify the path to the resource
containing the agent profile.

» Note If you change the location of the IntroscopeAgent.profile, the
AutoProbe log location will also have to be changed. For more
infomation, see Managing ProbeBuilder Logs on page 117.

2 Move your ProbeBuilder directives (PBD and PBL files) to the same location as the
agent profile—they are referenced relative to the profile location.

If you use Sun ONE, you must add the new location of the agent profile to the
Sun ONE server.xml file

To change the location of the IntroscopeAgent.profile for Sun ONE:

1 To add Introscope information to startup scripts for Sun ONE 7.0, log in as
Administrator or Root.

2 Open the server.xml file, in <SunOne_Home>/domains/domain1/server1/config/

3 Add a line to the jvm-options stanza in server.xml:

<jvm-options>
-Dcom.wily.introscope.agentProfile=SunOneHome/wily/

IntroscopeAgent.profile
</jvm-options>

Command-line property overrides  187

Java Agent Guide

Command-line property overrides
In Introscope 8.0, you can override specific properties of the Enterprise Manager,
agents, Workstation, and WebView using the command line. With regard to the
Java Agent, this is useful when you have a clustered environment with multiply
copies of an agent being shared and you want to tailor some of the agent settings
for each application being monitored.

These steps assume you have installed and configured an agent on the
application server to be monitored, and that the agent successfully connects to
the Enterprise Manager.

To override agent properties using the command line:

1 Open the file where you modified the Java command to start the agent.

The location of this file varies depending on the application server you use in your
environment. For more information, see Configuring Access to Application Server
Data on page 129.

2 Add a -D command to override a property. For example, you can add the following
command to make the agent also use the weblogic-full.pbl file:

-Dintroscope.autoprobe.directivesFile=weblogic-full.pbl

Place this command next to other -D commands in the open file.

» Note When you use this command to override hot deployable properties, the
property is no longer hot deployable. Also, if you modify the property at
a later time in the configuration file, you will receive a warning message
in the Workstation stating you modified an overridden property and your
change will have no effect. To avoid this, remove the override command
before modifying the property in a configuration file.

3 Save the file.

4 Restart the agent.

In the example used above, you would now see the additional WebLogic metrics
in the agent node in the Workstation.

» Important System properties become part of the property space of
Introscope properties, allowing things like java.io.tmpdir to be
visible to anything using IndexedProperties.

188  Java Agent Properties

CA Wily Introscope Java Agent

Agent failover
If the Java Agent loses connection with its primary Enterprise Manager, these
properties specify which Enterprise Manager the agent will failover to, and how
often it will try to reconnect to its primary Enterprise Manager.

Agent HTTP tunneling
You can configure agents to send information using tunneling technology,
enabling agents to connect to an Enterprise Manager remotely. To do this, the
agent must be configured to connect to the Enterprise Manager’s embedded Web
server, where the HTTP tunneling Web service is hosted.

To configure HTTP tunneled communication in IntroscopeAgent.profile as a new
agent connection, specify:

 The host name of machine running the Enterprise Manager—see
introscope.agent.enterprisemanager.transport.tcp.host.DEFAULT on
page 196.

 The connection port to the Enterprise Manager Web server. This is the value
for the introscope.enterprisemanager.webserver.port property specified in
the IntroscopeEnterpriseManager.properties for the Enterprise Manager to
which the agent will connect. See the Introscope Properties Files section of the
Introscope Configuration and Administration Guide for information about
introscope.enterprisemanager.webserver.port.

 The HTTP tunneling socket factory. Specify this client socket factory:

com.wily.isengard.postofficehub.link.net.HttpTunnelingSocketFactory

introscope.agent.enterprisemanager.connectionorder

Usage The connection order of backup Enterprise Managers the agent uses
if it is disconnected from its default Enterprise Manager.

Options Names of other Enterprise Managers the agent can connect to.

Default default

Example introscope.agent.enterprisemanager.connectionorder=DEFAULT

Notes Use a comma separated list.

introscope.agent.enterprisemanager.failbackRetryIntervalInSeconds

Usage Number of seconds between attempts by the agent to reconnect to
its primary Enterprise Manager.

Options

Default Commented out; 120

Example #introscope.agent.enterprisemanager.failbackRetryIntervalI
nSeconds=120

Notes

Agent HTTP tunneling—proxy server  189

Java Agent Guide

Agent HTTP tunneling—proxy server
These properties only apply to agents configured to tunnel over HTTP and must
connect to an Enterprise Manager using a proxy server. For more information, see
Configuring a proxy server for HTTP tunneling on page 38.

introscope.agent.enterprisemanager.transport.http.proxy.host

Usage Specify the proxy server host name.

Options

Default Commented out; not specified.

Example

Notes You must restart the managed application before changes to this
property take effect.

introscope.agent.enterprisemanager.transport.http.proxy.port

Usage Specify the proxy server port.

Options

Default Commented out; not specified.

Example

Notes You must restart the managed application before changes to this
property take effect.

introscope.agent.enterprisemanager.transport.http.proxy.username

Usage If the proxy server requires the agent to authenticate it, specify the
username for authentication.

Options

Default Commented out; not specified.

Example

Notes You must restart the managed application before changes to this
property take effect.

introscope.agent.enterprisemanager.transport.http.proxy.password

Usage If the proxy server requires the agent to authenticate it, specify the
password for authentication.

Options

Default Commented out; not specified.

Example

Notes You must restart the managed application before changes to this
property take effect.

190  Java Agent Properties

CA Wily Introscope Java Agent

Agent HTTPS tunneling
You can configure agents to send information using HTTPS, enabling agents to
connect to an Enterprise Manager remotely.

Agent metric aging
Agent metric aging periodically removes dead metrics from the agent memory
cache. A dead metric is a metric that has no new data reported in a given amount
of time. This helps the agent improve performance and avoid potential metric
explosions.

» Note A metric explosion happens when an agent is inadvertently set up to
report more metrics than the system can handle. In this case, Introscope
is bombarded with such a large number of metrics that performance gets
very slow or the system cannot function at all.

introscope.agent.enterprisemanager.transport.tcp.host.DEFAULT

Usage

Options

Default localhost

Example introscope.agent.enterprisemanager.transport.tcp.host.DEFA
ULT=localhost

Notes

introscope.agent.enterprisemanager.transport.tcp.port.DEFAULT

Usage

Options

Default 8444

Example introscope.agent.enterprisemanager.transport.tcp.port.
DEFAULT=8444

Notes

introscope.agent.enterprisemanager.transport.tcp.socketfactory.
DEFAULT

Usage

Options

Default com.wily.isengard.postofficehub.link.net.HttpsTunnelingSoc
ketFactory

Example introscope.agent.enterprisemanager.transport.tcp.socketfac
tory.DEFAULT=com.wily.isengard.postofficehub.link.net.Ht
tpsTunnelingSocketFactory

Notes

Agent metric aging  191

Java Agent Guide

Metrics that are in a group are removed only if all metrics in the group are
considered candidates for removal. Currently, only BlamePointTracer group and
MetricRecordingAdministrator metrics are removed as a unit; other metrics are
removed individually.

The MetricRecordingAdministrator metric has APIs that can create a metric
group. These APIs are:

 getAgent().IAgent_getMetricRecordingAdministrator.addMetricGroup

String component, collection metrics. The component name is the metric
resource name of the metric group. The metrics must be under the same
metric node in order to qualify as a group. The metrics are a collection of
com.wily.introscope.spec.metric.AgentMetric data structures. You can only
add AgentMetric data structures to this Collection.

 getAgent().IAgent_getMetricRecordingAdministrator.getMetricGroup

String component. Based on the component name which is the metric resource
name, you can get the Collection of metrics.

 getAgent().IAgent_getMetricRecordingAdministrator.removeMetricGroup

String component. The metric group is removed based on the component
which is the metric resource name.

 getAgent().IAgent_getDataAccumulatorFactory.isRemoved

Checks if the metric is removed. You use this API if you keep an instance of an
accumulator in your extension. If the accumulator is removed because of
metric aging then you will be holding onto a dead reference.

» Important » Important If you create an extension that uses a
MetricRecordingAdministrator API (for example, for use with CA
Wily product), be sure to delete your own instance of an
accumulator. When a metric ages out because it has not been
invoked, and then after a time data does become available for
that metric, if you are using an old accumulator instance, the
accumulator will not create new metric data points for that metric.
To avoid this situation, do not delete your own instance of an
accumulator and use instead the getDataAccumulatorFactory
API.

Configuring agent metric aging

Agent metric aging is on by default. You can choose to turn off this capability
using the property introscope.agent.metricAging.turnOn on page 192. If you
remove this property from the IntroscopeAgent.profile, agent metric aging is
turned off by default.

192  Java Agent Properties

CA Wily Introscope Java Agent

Agent metric aging runs on a heartbeat in the agent. The heartbeat is configured
using the property introscope.agent.metricAging.heartbeatInterval on page 192.
Be sure to keep the frequency of the heartbeat low. A higher heartbeat will impact
the performance of the agent and Introscope.

During each heartbeat, a certain set of metrics are checked. This is configurable
using the property introscope.agent.metricAging.dataChunk on page 193. It is
also important to keep this value low, as a higher value will impact performance.
The default value is 500 metrics to be checked per heartbeat. Each of the 500
metrics is checked to see if it is a candidate for removal. For example, if you set
this property to check chunks of 500 metrics per heartbeat, and you have a total
of 10,000 metrics in the agent memory, then it will take longer with lower impact
on performance to check all 10,000 metrics. However, if you set this property to
a higher number, you would check all 10,000 metrics faster, but with possibly
high overhead.

A metric is a candidate for removal if the metric has not received new data after
certain period of time. You can configure this period of time using the property
introscope.agent.metricAging.numberTimeslices on page 193. This property is
set to 3000 by default. If a metric meets the condition for removal, then a check
is performed to see if all the metrics in its group are candidates for metric
removal. If this requirement has also been met then the metric is removed.

» Note For metrics that do not have a metric group then the rule does not apply.

Based on the rules outlined above, it may take a significant amount of time for
metrics to be removed.

Use the following properties to configure agent metric aging. In all of the
properties, if any unrecognised values are used, the default value will be used
instead.

introscope.agent.metricAging.turnOn

Usage Turns on or off agent metric aging.

Options True or False

Default True

Example introscope.agent.metricAging.turnOn=true

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.metricAging.heartbeatInterval

Usage The time interval when metrics are checked for removal, in seconds.

Options

Default 1800

Agent metric clamp  193

Java Agent Guide

Agent metric clamp
This property allows you to configure the Java Agent to approximately clamp the
number of metrics sent to the Enterprise Manager. If the number of metrics pass
this metric clamp value then no new metrics will be created.

Example introscope.agent.metricAging.heartbeatInterval=1800

Notes You must restart the managed application before changes to this
property take effect.

introscope.agent.metricAging.dataChunk

Usage During each interval, the number of metrics that are checked.

Options

Default 500

Example introscope.agent.metricAging.dataChunk=500

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.metricAging.numberTimeslices

Usage The number of intervals to check without any new data before
making it a candidate for removal.

Options

Default 3000

Example introscope.agent.metricAging.numberTimeslices=3000

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.metricAging.metricExclude.ignore.0

Usage To exclude metrics from being removed. Add the metric name or
metric filter to the list.

Options comma seperated list; use the * wildcard

Default

Example introscope.agent.metricAging.metricExclude.ignore.0=Thread
s*

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.metricAging.heartbeatInterval

introscope.agent.metricClamp

Usage Configures the agent to approximately clamp the number of metrics
sent to the Enterprise Manager.

Options

Default 5000

194  Java Agent Properties

CA Wily Introscope Java Agent

Agent naming
The following are Java Agent naming properties. For more information on Java
Agent naming, see Java Agent Naming on page 99.

Example introscope.agent.metricClamp=5000

Notes  If the property is not set then no metric clamping will occur. Old
metrics will still report values.

 Changes to this property take effect immediately and do not
require the managed application to be restarted.

introscope.agent.metricClamp

introscope.agent.agentAutoNamingEnabled

Usage Specifies whether agent autonaming will be used to obtain the Java
Agent name for supported application servers.

Options True or False

Default False

Example #introscope.agent.agentAutoNamingEnabled=false

Notes  You must restart the managed application before changes to this
property take effect.

 Requires the Startup Class to be specified for WebLogic; requires
Custom Service to be specified for WebSphere.

 Set to true, and not commented out in agent profiles shipped with
supported application servers

introscope.agent.agentAutoNamingMaximumConnectionDelayIn
Seconds

Usage Specifies the amount of time in seconds the agent waits for naming
information before connecting to the Enterprise Manager.

Options

Default 120

Example introscope.agent.agentAutoNamingMaximumConnectionDelayIn
Seconds=120

Notes

introscope.agent.agentAutoRenamingIntervalInMinutes

Usage Specifies the time interval in minutes during which the agent will
check to see if it has been renamed.

Options

Default 10

Example introscope.agent.agentAutoRenamingIntervalInMinutes=10

Notes

Agent naming  195

Java Agent Guide

introscope.agent.disableLogFileAutoNaming

Usage Disables automatic naming of an agent’s log files—the default
behavior when an agent is configured for autonaming.

Options

Default

Example introscope.agent.disableLogFileAutoNaming=

Notes

introscope.agent.agentName

Usage Name of Agent.

Options For any installation, if the value of this property is invalid or if this
property is deleted from the profile, the agent name will be Unknown
Agent.

Default

Example #introscope.agent.agentName=AgentName

Notes  In the agent profile provided with application server-specific agent
installers, the default reflects the application server, for instance
WebLogic Agent.

 In the agent profile provided with the default agent installer, the
property value is AgentName, and the line is commented out.

introscope.agent.agentNameSystemPropertyKey

Usage Specifies which Java system property will contain agent name.

Options

Default Not specified.

Example introscope.agent.agentNameSystemPropertyKey

Notes You must restart the managed application before changes to this
property take effect.

introscope.agent.clonedAgent

Usage

Options

Default false

Example introscope.agent.clonedAgent=false

Notes Set to true when running identical copies of an Application on the
same machine.

introscope.agent.customProcessName

Usage Specify the process name as it should appear in the Introscope
Enterprise Manager and Workstation.

Options

Default

196  Java Agent Properties

CA Wily Introscope Java Agent

Agent thread priority
The following property controls the priority of agent threads

Agent to Enterprise Manager connection
The following properties controls the agent connection to the Enterprise Manager.

Example introscope.agent.customProcessName=CustomProcessName

Notes  You must restart the managed application before changes to this
property take effect.

 In the agent profile provided with application server-specific agent
installers, the default reflects the application server, for instance
“WebLogic.”

 In the agent profile provided with default agent installer, the
property is commented out.

introscope.agent.disableLogFileAutoNaming

Usage Specifies whether to disable automatic naming of agent log files
when using AutoNaming options.

Options

Default false

Example introscope.agent.disableLogFileAutoNaming=false

Notes

introscope.agent.customProcessName

introscope.agent.thread.all.priority

Usage Controls the priority of agent threads.

Options You can set this from 1 (low) to 10 (high).

Default Commented out;5.

Example #introscope.agent.thread.all.priority=5

Notes

introscope.agent.enterprisemanager.transport.tcp.host.DEFAULT

Usage The host name of machine running the Enterprise Manager.

Options

Default localhost

Example

Notes

introscope.agent.enterprisemanager.transport.tcp.port.DEFAULT

Usage The port on the Enterprise Manager machine that listens for the
agent.

Options

AutoProbe  197

Java Agent Guide

AutoProbe
The following properties configure AutoProbe.

Default 5001

Example

Notes

introscope.agent.enterprisemanager.transport.tcp.socketfactory.
DEFAULT

Usage Change this property to use a different client socket factory.

Options

Default com.wily.isengard.postofficehub.link.net.DefaultSocketFa
ctory

Example

Notes

introscope.agent.enterprisemanager.transport.tcp.port.DEFAULT

introscope.autoprobe.directivesFile

Usage Specifies Directives files for AutoProbe. For more information, see
ProbeBuilder Directives on page 73.

Options

Default Varies by installer.

Example

Notes

introscope.autoprobe.enable

Usage

Options True or False

Default true

Example introscope.autoprobe.enable=true

Notes When this property is set to false, it turns off the automatic insertion
of Probes into an application’s bytecode. It does not turn off the
agent or agent reporting.

introscope.autoprobe.logfile

Usage Name and location of AutoProbe log file.

Options

Default AutoProbe.log

Example introscope.autoprobe.logfile=AutoProbe.log

Notes

198  Java Agent Properties

CA Wily Introscope Java Agent

Blame
The following property configures Boundary Blame.

introscope.autoprobe.hierarchysupport.enabled

Usage For agents that run under JDK 1.5 using AutoProbe and dynamic
instrumentation, you can use this property to enable
instrumentation of classes that extend a supertype or interface.

Options True or False

Default False

Example introscope.autoprobe.hierarchysupport.enabled=false

Notes

introscope.autoprobe.hierarchysupport.runOnceOnly

Usage If you have enabled instrumentation of classes that extend a
supertype or interface, you can use this property to control whether
the utility that enables the feature runs only once, or at a specified
interval.

Options True or False

Default True

Example introscope.autoprobe.hierarchysupport.enabled=false

Notes Logging properties related to dynamic instrumentation are defined
in Logging on page 206.

introscope.agent.blame.type

Usage Add this property with a value of standard to turn off boundary
blame. For information about boundary blame, see the Introscope
Workstation User Guide.

Options

Default

Example

Notes

CPU utilization  199

Java Agent Guide

CPU utilization
The following property configures CPU utilization.

Cross-process tracing in WebLogic Server
The following property configures cross-process tracing in WebLogic Server.

Dynamic instrumentation
These properties enable changes to PBDs to take effect without restarting the
application server or the agent process. This is a very CPU intensive operation,
and it is highly recommended to use configuration to minimize the classes that
are being redefined. PBD editing is all that is required to trigger this process.

introscope.agent.disableAggregateCPUUtilization

Usage When multiple Java Agents are deployed on a single machine and
CPU overhead is high, this property can be set to true to reduce
overall CPU overhead on the machine.

Options True or False

Default Uncommented; True

Example introscope.agent.disableAggregateCPUUtilization=true

Notes

introscope.agent.weblogic.crossjvm

Usage

Options True or False

Default Commented out; True

Example #introscope.agent.weblogic.crossjvm=true

Notes

introscope.autoprobe.dynamicinstrument.enabled

Usage Enables dynamic ProbeBuilding for agents that run under JDK 1.5,
and use AutoProbe.

Options True or False

Default False

Example introscope.autoprobe.dynamicinstrument.enabled=false

Notes For more information about dynamic instrumentation, see Dynamic
ProbeBuilding on page 56.

autoprobe.dynamicinstrument.pollIntervalMinutes

Usage For agents that run under JDK 1.5 using AutoProbe and dynamic
instrumentation, this property determines the frequency with which
the agent polls for new and changed PBDs.

Options

200  Java Agent Properties

CA Wily Introscope Java Agent

ErrorDetector
The following properties configure interaction with ErrorDetector.

Default 1

Example autoprobe.dynamicinstrument.pollIntervalMinutes=1

Notes

introscope.autoprobe.dynamicinstrument.classFileSizeLimitInMegs

Usage Some classloader implementations have been observed to return
huge class files.This is to prevent memory errors.

Options

Default 1

Example introscope.autoprobe.dynamicinstrument.classFileSizeLimitI
nMegs=1

Notes You must restart the managed application before changes to this
property take effect.

introscope.autoprobe.dynamic.limitRedefinedClassesPerBatchTo

Usage Re-defining too many classes at a time might be very CPU intensive.
In cases where the changes in PBDs trigger a re-definition of a large
number of classes, this batches the process at a comfortable rate.

Options

Default 10

Example introscope.autoprobe.dynamic.limitRedefinedClassesPerBatch
To=10

Notes

autoprobe.dynamicinstrument.pollIntervalMinutes

introscope.agent.errorsnapshots.enable

Usage Enable the agent to captures transaction details about serious
errors.

Options True or False

Default True

Example

Notes  This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

 Requires Introscope Error Detector.

introscope.agent.errorsnapshots.throttle

Usage The maximum number of error snapshots that the agent can send in
a 15-second period.

Options

Default 10

Extensions  201

Java Agent Guide

Extensions
The following property configures agent extensions.

Example introscope.agent.errorsnapshots.throttle=10

Notes  This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

 Requires Introscope Error Detector.

introscope.agent.errorsnapshots.ignore.<index>

Usage This indexed property allows you to specify error messages to
ignore. Error snapshots will not be generated or sent for errors with
messages matching these filters. You may specify as many as you
like (using .0, .1, .2 ...). You may use wildcards (*).

Options

Default Example definitions are provided, and commented out, as shown
below. The following are examples only.

Example #introscope.agent.errorsnapshots.ignore.0=*com.company.Har
mlessException*

#introscope.agent.errorsnapshots.ignore.1=*HTTP Error Code:
404*

Notes  This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

 Requires Introscope Error Detector.

introscope.agent.errorsnapshots.throttle

introscope.agent.extensions.directory

Usage Specifies the location of all extensions to be loaded by the agent.

Options

Default ext

Example introscope.agent.extensions.directory=ext

Notes Non-absolute names are resolved relative to the location of the
IntroscopeAgent.properties file.

202  Java Agent Properties

CA Wily Introscope Java Agent

JMX
The following properties configure JMX metrics.

introscope.agent.jmx.enable

Usage Enables collection of JMX Metrics.

Options True or False.

Default Varies by agent version.

Example

Notes

introscope.agent.jmx.ignore.attributes

Usage Controls which (if any) JMX MBean attributes are to be ignored.
Create a comma-separated list of desired keywords.

Options

Default Commented out; server.

Example #introscope.agent.jmx.ignore.attributes=server

Notes If an MBean attribute name matches one on the list, the attribute
will be ignored. Leave the list empty to include all MBean attributes.

introscope.agent.jmx.name.filter

Usage This property uses a comma-separated list of filter strings to
determine what JMX data Introscope collects and displays.

Introscope reports JMX-generated metrics that match a filter string.
Filter strings can contain the asterisk (*) and question mark (?)
wildcard characters:
 * matches zero or more characters
 ? matches a single character.

To match a literal * or ?, escape the character with \\.

Examples:
 ab*c matches a metric name that contains ab*c
 ab*c matches a metric name that contains abc, abxc, abxxc etc.
 ab?c matches a metric name that contains abxc
 ab\\?c matches a metric names that contains ab?c

where x is any character.

Options

Default Commented out.

For WebLogic:
ActiveConnectionsCurrentCount,WaitingForConnectionCurrentC

ount,PendingRequestCurrentCount,ExecuteThreadCurrentIdle
Count,OpenSessionsCurrentCount,j2eeType

JMX  203

Java Agent Guide

Example #introscope.agent.jmx.name.filter=ActiveConnectionsCurrent
Count,WaitingForConnectionCurrentCount,PendingRequestCur
rentCount,ExecuteThreadCurrentIdleCount,OpenSessionsCurr
entCount,j2eeType

Notes

introscope.agent.jmx.name.jsr77.disable

Usage This property controls whether or not Introscope collects and
reports full JSR77 data, including complex JMX data.

Options True or False

Default True

Example

Notes To enable JSR 77 reporting, set this property to false.

The property introscope.agent.jmx.name.jsr77.enable was
removed in Introscope 6.1.

introscope.agent.jmx.name.primarykeys

Usage User-defined order of MBean information, and simplifies name
conversion.

Options

Default Commented out in default IntroscopeAgent.profile file.

Example #introscope.agent.jmx.name.primarykeys=J2EEServer

Notes Options for WebLogic:
 Type
 Name

Comment out this property if using WebLogic Server 9.0.

Options for WebSphere:
 J2EEServer
 Application
 j2eeType
 JDBCProvider
 name
 mbeanIdentifier

introscope.agent.jmx.name.filter

204  Java Agent Properties

CA Wily Introscope Java Agent

LeakHunter
The following properties configure agent interaction with LeakHunter.

introscope.agent.leakhunter.collectAllocationStackTraces

Usage Specifies whether to collect allocation stack trace information.

Options True or False

Default False

Example

Notes  Turning on this option has the potential to create higher system
overhead, in CPU usage and memory.

 This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

introscope.agent.leakhunter.enable

Usage Enables LeakHunter functionality.

Options True or False

Default True

Example

Notes Turning on this option has the potential to create higher system
overhead, in CPU usage and memory.

introscope.agent.leakhunter.leakSensitivity

Usage Controls the sensitivity of LeakHunter.

Options Must be integer value from 1-10.

Default 5

Example introscope.agent.leakhunter.leakSensitivity=5

Notes Higher sensitivity will report more collections as potential leaks.

introscope.agent.leakhunter.leakSensitivity

Usage Controls the sensitivity of LeakHunter.

Options Must be integer value from 1-10.

Default 5

Example introscope.agent.leakhunter.leakSensitivity=5

Notes Higher sensitivity will report more collections as potential leaks.

introscope.agent.leakhunter.logfile.append

Usage Specifies whether to replace the log file or add information to an
existing log file on application restart.

Options True or False

Default False

LeakHunter  205

Java Agent Guide

Example introscope.agent.leakhunter.logfile.append=false

Notes  False replaces the log file.
 True adds information to an existing log file.

introscope.agent.leakhunter.logfile.location

Usage Location of the LeakHunter.log file. The filename is relative to the
directory that contains the agent profile.

Options

Default LeakHunter.log (This locates the log file in the same directory as the
agent profile.)

Example introscope.agent.leakhunter.logfile.location=
LeakHunter.log

Notes If this property is commented out or left blank, no log file will be
written.

introscope.agent.leakhunter.timeoutInMinutes

Usage Period (in minutes) during which Introscope LeakHunter looks for
new potential leaks.

Options Must be a positive integer (no negative numbers).

Default 120

Example introscope.agent.leakhunter.timeoutInMinutes=120

Notes A value of zero means no timeout.

introscope.agent.leakhunter.ignore

Usage Use this to ignore any class matching any supplied patterns.

Options A comma-separated list of class matching patterns.

Default none

Example introscope.agent.leakhunter.ignore=

Notes  Some collections cannot be used with LeakHunter. In order for a
collection to be LeakHunter-safe, it must be safe to call size() at
any time, from any thread.

 This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

 You can used the "*" wildcard.

introscope.agent.leakhunter.logfile.append

206  Java Agent Properties

CA Wily Introscope Java Agent

Logging
The following properties configure agent logging options.

log4j.appender.logfile.File

Usage Specifies the name and location of IntroscopeAgent.log file. The
filename is relative to the directory that contains the agent profile.

Options

Default IntroscopeAgent.log

Example log4j.appender.logfile.File=IntroscopeAgent.log

Notes

log4j.logger.IntroscopeAgent

Usage Amount of logging detail for the IntroscopeAgent.log.

Options Level of detail value can be:
 INFO

or
 VERBOSE#com.wily.util.feedback.Log4JSeverityLevel

Destination value can be:
 console
 logfile
 both console and logfile

Default INFO, console, logfile

Example log4j.logger.IntroscopeAgent=INFO,console,logfile

Notes

log4j.logger.IntroscopeAgent.inheritance

Usage Controls log level and destination for log messages about classes
that require instrumentation.

Options To configure logging of classes that have not been instrumented
because they extend a supertype or interface, set this property to:
INFO, pbdlog

For information about inheritance class logging see Controlling
directive logging on page 60.

Default None

Example log4j.logger.IntroscopeAgent.inheritance=INFO,pbdlog

Notes

log4j.appender.pbdlog.File

Usage Identifies a log file for messages about classes that require
instrumentation.

Options To configure logging of classes that have not been instrumented
because they extend a supertype or interface set to: pbdupdate.log

Default None

Logging  207

Java Agent Guide

Example log4j.appender.pbdlog.File=pbdupdate.log

Notes

log4j.appender.pbdlog

Usage Specifies a package for logging messages about classes that require
instrumentation.

Options To configure logging of classes that have not been instrumented
because they extend a supertype or interface, set this property to:
com.wily.introscope.agent.AutoNamingRollingFileAppender

Default None

Example log4j.appender.pbdlog=com.wily.introscope.agent.AutoNamin
gRollingFileAppender

Notes

log4j.appender.pbdlog.layout

Usage Specifies rules for logging messages about classes that require
instrumentation.

Options To configure logging of classes that have not been instrumented
because they extend a supertype or interface, set this property to:
com.wily.org.apache.log4j.PatternLayout

Default None

Example log4j.appender.pbdlog.layout=com.wily.org.apache.log4j.Pat
ternLayout

Notes

log4j.appender.pbdlog.layout.ConversionPattern

Usage Specifies rules for logging messages about classes that require
instrumentation.

Options To configure logging of classes that have not been instrumented
because they extend a supertype or interface, set this property to:
%d{M/dd/yy hh:mm:ss a z} [%-3p] [%c] %m%n

Default None

Example log4j.appender.pbdlog.layout.ConversionPattern=%d{M/dd/yy
hh:mm:ss a z} [%-3p] [%c] %m%n

Notes

log4j.additivity.IntroscopeAgent.inheritance

Usage Causes the directives for multiple level inheritance to be logged only
in the pbdupdate.log file.

Options True or False

Default True

log4j.appender.pbdlog.File

208  Java Agent Properties

CA Wily Introscope Java Agent

Metric count
The following property affects where you will see the Metric Count metric in the
Investigator. By default, this metric is no longer displayed under the Agent Stats
node in the Investigator; it is now displayed as Metric Count under the Custom
Metric Agent node.

If you want to see the Metric Count metric under the Agent Stats node, add this
property to the IntroscopeAgent.profile.

Platform monitoring
The following property configures platform monitoring metrics.

Socket metrics
The following property configures socket metrics.

Example log4j.additivity.IntroscopeAgent.inheritance=true

Notes To configure the logging of multiple level inheritance directives in
the pbdupdate.log only, add this property to the agent profile and
set to false.

log4j.additivity.IntroscopeAgent.inheritance

introscope.ext.agent.metric.count

Usage

Options True or False

Default Not present in the IntroscopeAgent.profile; False

Example introscope.ext.agent.metric.count=true

Notes Add this property to the IntroscopeAgent.profile and set it to
true to see the ‘Metric Count’ metric under the ‘Agent Stats’ node.

introscope.agent.platform.monitor.system

Usage Name of operating system to load a platform monitor for.

Options Solaris, RedHat2.1, RedHat3.0, Windows, AIX, Linux

Default Commented out; Solaris

Example #introscope.agent.platform.monitor.system=Solaris

Notes

introscope.agent.sockets.reportRateMetrics

Usage Enables reporting of individual Socket's Input/Output Bandwidth
rate metrics.

Options True or False

Default True

SQL Agent  209

Java Agent Guide

SQL Agent
The following properties configure aspects of the SQL Agent. For more
information, see Configuring the Introscope SQL Agent on page 147.

The following property is used to set the custom SQL Agent normalizer extension:

Example introscope.agent.sockets.reportRateMetrics=true

Notes

introscope.agent.sockets.reportRateMetrics

introscope.agent.sqlagent.sql.useblame

Usage The following setting configures SQL Agent to optionally participate
in the Introscope blame stack, thus creating blame metrics.

Options True or False

Default True

Example #introscope.agent.sqlagent.sql.useblame=true

Notes You must restart the managed application before changes to this
property take effect.

introscope.agent.sqlagent.sql.maxlength

Usage Limits how much of a SQL statement appears in the Investigator
tree for SQL Agent metrics, in bytes.

Options

Default 990

Example introscope.agent.sqlagent.sql.maxlength=990

Notes Does not appear in IntroscopeAgent.profile. To change the
value, add the property to the agent profile.

introscope.agent.sqlagent.normalizer.extension

Usage Limits how much of a SQL statement appears in the Investigator
tree for SQL Agent metrics, in bytes.

Options the name of the sql normalizer extension that will be used to
override the preconfigured normalization scheme.

Default RegexSqlNormalizer

Example introscope.agent.sqlagent.normalizer.extension=RegexSqlNor
malizer

Notes If you use the default setting, you also must configure the regular
expressions SQL statement normalizer properties below.

210  Java Agent Properties

CA Wily Introscope Java Agent

The following properties are used to set the regular expressions SQL statement
normalizer:

introscope.agent.sqlagent.normalizer.regex.matchFallThrough

Usage This property if set to true will make sql strings to be evaluated
against all the regex key groups.

Options True or False

Default false

Example introscope.agent.sqlagent.normalizer.regex.matchFallThroug
h=false

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.sqlagent.normalizer.regex.keys

Usage This property specifies the regex group keys.

Options

Default key1

Example introscope.agent.sqlagent.normalizer.regex.keys=key1

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.sqlagent.normalizer.regex.key1.pattern

Usage This property specifies the regex pattern that will be used to match
against the SQL.

Options All valid regex allowed by java.util.Regex package can be used
here.

Default .*call(.*\)\.FOO(.*\)

Example introscope.agent.sqlagent.normalizer.regex.key1.pattern=.*
call(.*\)\.FOO(.*\)

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.sqlagent.normalizer.regex.key1.replaceAll

Usage This property if set to 'false' will replace the first occurrence of the
matching pattern in the sql with the replacement string. If set to
'true' it will replace all occurrences of the matching pattern in the sql
with replacement string.

Options True or False

Default false

Example introscope.agent.sqlagent.normalizer.regex.key1.replaceAll
=false

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

SSL communication  211

Java Agent Guide

SSL communication
The agent can connect to the Enterprise Manager over SSL. Use the following
properties to configure that communication.

introscope.agent.sqlagent.normalizer.regex.key1.replaceFormat

Usage This property specifies the replacement string format.

Options All valid regex allowed by java.util.Regex package
java.util.regex.Matcher class can be used here.

Default $1

Example introscope.agent.sqlagent.normalizer.regex.key1.replaceFor
mat=$1

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.sqlagent.normalizer.regex.key1.caseSensitive

Usage This property specifies whether the pattern match is sensitive to
case.

Options true or false

Default false

Example introscope.agent.sqlagent.normalizer.regex.key1.caseSensit
ive=false

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.enterprisemanager.transport.tcp.host.DEFAULT

Usage

Options

Default localhost

Example introscope.agent.enterprisemanager.transport.tcp.host.DEFA
ULT=localhost

Notes

introscope.agent.enterprisemanager.transport.tcp.port.DEFAULT

Usage

Options

Default 5443

Example introscope.agent.enterprisemanager.transport.tcp.port.DEFA
ULT=5443

Notes

212  Java Agent Properties

CA Wily Introscope Java Agent

ntroscope.agent.enterprisemanager.transport.tcp.socketfactory.
DEFAULT

Usage

Options

Default com.wily.isengard.postofficehub.link.net.SSLSocketFactory

Example ntroscope.agent.enterprisemanager.transport.tcp.socketfact
ory.DEFAULT=com.wily.isengard.postofficehub.link.net.SSL
SocketFactory

Notes

introscope.agent.enterprisemanager.transport.tcp.truststore.DEFAULT

Usage Location of a truststore containing trusted Enterprise Manager
certificates. If no truststore is specified, the agent trusts all
certificates.

Options Either an absolute path or a path relative to the agent's working
directory.

Default

Example introscope.agent.enterprisemanager.transport.tcp.truststor
e.DEFAULT=

Notes On Windows, backslashes must be escaped. For example:
C:\\keystore

introscope.agent.enterprisemanager.transport.tcp.trustpassword.
DEFAULT

Usage The password for the truststore

Options

Default

Example introscope.agent.enterprisemanager.transport.tcp.trustpass
word.DEFAULT=

Notes

introscope.agent.enterprisemanager.transport.tcp.keystore.DEFAULT

Usage Location of a keystore containing the agent's certificate. A keystore
is needed if the Enterprise Manager requires client authentication.

Options Either an absolute path or a path relative to the agent's working
directory.

Default

Example introscope.agent.enterprisemanager.transport.tcp.keystore.
DEFAULT=c:\\keystore

Notes On Windows, backslashes must be escaped. For example:
C:\\keystore

Stall metrics  213

Java Agent Guide

Stall metrics
For more information on stall metric properties, see Disabling the capture of stalls
as Events on page 146.

introscope.agent.enterprisemanager.transport.tcp.keypassword.
DEFAULT

Usage The password for the keystore

Options

Default

Example introscope.agent.enterprisemanager.transport.tcp.keypasswo
rd.DEFAULT=MyPassword768

Notes

introscope.agent.enterprisemanager.transport.tcp.ciphersuites.
DEFAULT

Usage Set the enabled cipher suites.

Options A comma-separated list of cipher suites.

Default

Example introscope.agent.enterprisemanager.transport.tcp.
ciphersuites.DEFAULT=SSL_DH_anon_WITH_RC4_128_MD5

Notes If not specified, use the default enabled cipher suites.

introscope.agent.stalls.thresholdseconds

Usage Specifies the minimum threshold response time at which time a
transaction is considered stalled

Options

Default 30

Example introscope.agent.stalls.thresholdseconds=30

Notes This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

introscope.agent.stalls.resolutionseconds

Usage Specifies the frequency that the agent checks for stalls.

Options

Default 10

Example introscope.agent.stalls.resolutionseconds=10

Notes This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

214  Java Agent Properties

CA Wily Introscope Java Agent

Transaction tracing
The following properties are for Transaction Tracing. For more information on
Transaction Tracing, see Configuring Transaction Trace Options on page 141.

introscope.agent.stalls.enable

Usage Controls whether the agent checks for stalls and creates events for
detected stalls.

Options True or False

Default True

Example introscope.agent.stalls.enable=true

Notes

introscope.agent.transactiontracer.parameter.httprequest.headers

Usage Specifies (in comma-separated list) HTTP request header data to
capture. Use a comma separated list.

Options

Default Commented out; User-Agent

Example #introscope.agent.transactiontracer.parameter.httprequest.
headers=User-Agent

Notes The IntroscopeAgent.profile contains a commented out
statement that sets the value of this property to a null value. The
user may optionally uncomment the statement and supply the
desired header names.

introscope.agent.transactiontracer.parameter.httprequest.parameters

Usage Specifies (in comma-separated list) HTTP request parameter data to
capture.

Options

Default Commented out; generic parameters.

Example #introscope.agent.transactiontracer.parameter.httprequest.
parameters=parameter1,parameter2

Notes The IntroscopeAgent.profile contains a commented out
statement that sets the value of this property to a null value. The
user may optionally uncomment the statement and supply the
desired parameter names.

introscope.agent.transactiontracer.parameter.httpsession.attributes

Usage Specifies (in comma-separated list) HTTP session attribute data to
capture.

Options

Default Commented out; generic parameters.

Transaction tracing  215

Java Agent Guide

Example #introscope.agent.transactiontracer.parameter.httpsession.
attributes=attribute1,attribute2

Notes The IntroscopeAgent.profile contains a commented out
statement that sets the value of this property to a null value. The
user may optionally uncomment the statement and supply the
desired parameter names.

introscope.agent.transactiontracer.userid.key

Usage User-defined key string.

Options

Default Commented out; generic parameters.

Example #introscope.agent.transactiontracer.parameter.httpsession.
attributes=attribute1,attribute2

Notes The IntroscopeAgent.profile contains a commented out
statement that sets the value of this property to a null value. The
user may optionally uncomment the statement and supply the
correct value if, in your environment, user IDs are accessed using
HttpServletRequest.getHeader or
HttpServletRequest.getValue.

For more information, see
introscope.agent.transactiontracer.userid.method, below.

introscope.agent.transactiontracer.userid.method

Usage Specifies the method that returns User IDs. The Agent profile
includes a commented out property definition for each of the three
allowable values.

Uncomment the appropriate statement, based on whether user ID is
accessed by getRemoteUser, getHeader, or getValue.

Options Allowable values are:
 HttpServletRequest.getRemoteUser
 HttpServletRequest.getHeader
 HttpServletRequest.getValue

Default Commented out; see options above.

Example The IntroscopeAgent.profile includes a commented out property
definition for each of the three allowable values.

Notes

introscope.agent.transactiontrace.componentCountClamp

Usage Limiting the number of traces.

Options

Default 5000

introscope.agent.transactiontracer.parameter.httpsession.attributes

216  Java Agent Properties

CA Wily Introscope Java Agent

URL grouping
These properties are for configuring URL Groups for frontend metrics. For more
information, see Using URL groups on page 134.

Example introscope.agent.transactiontrace.componentCountClamp=5000

Notes  This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

 When the set limit is reached, warnings appear in the log, and the
trace stops.

introscope.agent.transactiontrace.componentCountClamp

introscope.agent.urlgroup.keys

Usage Configuration settings for Frontend naming.

Options

Default Default

Example introscope.agent.urlgroup.keys=default

Notes If a URL address belongs to two URL Groups, the order in which you
list the keys for the URL Groups in this property is important. The
URL Group defined by the narrower pattern should precede the URL
Group specified by the broader pattern.

For example, if the URL Group with key alpha contains a single
address, and the URL Group with key beta includes all addresses on
the network segment that contains the address in the first URL
Group, alpha should precede beta in the keys parameter.

introscope.agent.urlgroup.group.default.pathprefix

Usage Configuration settings for frontend naming.

Options

Default *

Example introscope.agent.urlgroup.group.default.pathprefix=*

Notes

introscope.agent.urlgroup.group.default.format

Usage Configuration settings for Frontend naming.

Options

Default Default

Example introscope.agent.urlgroup.group.default.format=default

Notes

WebSphere PMI  217

Java Agent Guide

WebSphere PMI
The following properties configure WebSphere PMI metrics.

introscope.agent.pmi.enable

Usage Enables collection of data from WebSphere PMI.

Options True or False

Default True

Example introscope.agent.pmi.enable=true

Notes

introscope.agent.pmi.enable.bean

Usage Enables collection of PMI bean data.

Options True or False

Default False

Example introscope.agent.pmi.enable.bean=false

Notes

introscope.agent.pmi.enable.cache

Usage Enables collection of data about the effectiveness of WebSphere
caching layers.

Options True or False

Default False

Example introscope.agent.pmi.enable.cache=false

Notes For WebSphere 5.0.x only.

introscope.agent.pmi.enable.connectionPool

Usage Enables collection of PMI connectionPool data.

Options True or False

Default True

Example introscope.agent.pmi.enable.connectionPool=true

Notes

introscope.agent.pmi.enable.j2c

Usage Enables collection of J2EE connector data.

Options True or False

Default False

Example introscope.agent.pmi.enable.j2c=false

Notes For WebSphere 5.0.x only.

218  Java Agent Properties

CA Wily Introscope Java Agent

introscope.agent.pmi.enable.jvmpi

Usage Enables collection of PMI jvmpi data.

Options True or False

Default False

Example introscope.agent.pmi.enable.jvmpi=false

Notes For data to be provided to this module, JVMPI must be turned on in
WebSphere.

introscope.agent.pmi.enable.jvmRuntime

Usage Enables collection of PMI JVM runtime data.

Options True or False

Default False

Example introscope.agent.pmi.enable.jvmRuntime=false

Notes For data to be provided to this module, JVMPI must be turned on in
WebSphere.

introscope.agent.pmi.enable.orbPerf

Usage Enables collection of performance statistics about the embedded
Object Request Broker (ORB).

Options True or False

Default False

Example introscope.agent.pmi.enable.orbPerf=false

Notes For WebSphere 5.0.x only.

introscope.agent.pmi.enable.servletSessions

Usage Enables collection of PMI servletSessions data.

Options True or False

Default True

Example introscope.agent.pmi.enable.servletSessions=true

Notes

introscope.agent.pmi.enable.system

Usage Enables collection of operating system-level data.

Options True or False

Default False

Example introscope.agent.pmi.enable.system=false

Notes For WebSphere 5.0.x only.

introscope.agent.pmi.enable.threadPool

Usage Enables collection of PMI threadPool data.

Options True or False

Default True

WebSphere PMI  219

Java Agent Guide

Example introscope.agent.pmi.enable.threadPool=true

Notes

introscope.agent.pmi.enable.transaction

Usage Enables collection of PMI transaction data.

Options True or False

Default False

Example introscope.agent.pmi.enable.transaction=false

Notes

introscope.agent.pmi.enable.webApp

Usage Enables collection of PMI webApp data.

Options True or False

Default False

Example introscope.agent.pmi.enable.webApp=false

Notes

introscope.agent.pmi.enable.webServices

Usage Enables collection of SOAP and web services data.

Options True or False

Default False

Example introscope.agent.pmi.enable.webServices=false

Notes For WebSphere 5.0.x only.

introscope.agent.pmi.enable.wlm

Usage Enables collection of Workload Management (WLM) data on load
balancing and failover of WebSphere applications.

Options True or False

Default False

Example introscope.agent.pmi.enable.wlm=false

Notes For WebSphere 5.0.x only.

introscope.agent.pmi.enable.threadPool

220  Java Agent Properties

CA Wily Introscope Java Agent

Wily CEM integration
For information on configuring Java Agents for Wily CEM Integration, see the
CA Wily CEM Integration Guide.

WLDF metrics
The following properties configure WLDF metrics.

introscope.agent.wldf.enable

Usage Enables collection of WLDF metrics.

Options True or False

Default False

Example introscope.agent.wldf.enable=false

Notes For WebSphere 5.0.x only.

Using the Introscope PBD Generator  221

APPENDIX B

Using the Introscope PBD Generator

You can use the Wily PBD Generator tool to instrument custom Java class files for
use by Java Agents.

This section includes these topics:

About the Wily PBD Generator 222

Configuring the PBD Generator 222

Using the PBD Generator 223

222  Using the Introscope PBD Generator

CA Wily Introscope Java Agent

About the Wily PBD Generator
The Wily PBD Generator utility can create a PBD file from Javadoc tags with which
you have annotated your Java code, to facilitate the instrumentation of custom
Java class files for use by the Java Agent.

The PBD Generator examines a set of Java source files, and instruments the
methods in the classes that contain the Javadoc tag @instrument.

Using the PBD Generator tool, you can:

 automate building of PBD files, to eliminate potential for errors that might be
introduced by creating PBD files manually.

 integrate PBD generation into your build systems to create and update PBD
files automatically and incorporate any changes to the Java source.

You configure the PBD Generator by integrating it into an Apache Ant target using
the WilyPBDGenerator.jar file, then running it as an Ant Javadoc task.

Configuring the PBD Generator
This tool is intended to be incorporated into Ant-based build systems, as a
Javadoc task in an Ant target.

This sample Javadoc task illustrates the use of this tool in Ant:

<javadoc sourcepath="/src/engineering/products/introscope/source"
destdir="/src/engineering/products/introscope/source/generatedpbd"
maxmemory="512m"
packagenames="com.wily.introscope.console.thornhill.ui.util"
verbose="false"
private="true">

<doclet name="com.wily.util.build.javadoc.PBDInstrumentDoclet"
path="/Wily/tools/WilyPBDGenerator.jar">

<param name="-d" value="/src/engineering/products/introscope/source/
generatedpbd"/>

</doclet>
</javadoc>

Required PBD Generator parameters

These key PBD Generator parameters are required:

This parameter Determines

sourcepath the root directory of the Java source tree

destdir the directory path of the PBD file that will be output from
the tool

Using the PBD Generator  223

Java Agent Guide

Using the PBD Generator
Before you can use the PBD Generator, you insert special Javadoc tags into the
Java source files to be instrumented.

The syntax for the JavaDoc tag is:

@instrument <valid metric prefix> <optional tracer name>

where:

<valid metric prefix> is any valid Introscope metric prefix—a string without a
colon character (:). Pipe characters (|) are acceptable.

<optional tracer name> can be BlamePointTracer, FrontendMarker or
BackendMarker. The default is BlamePointTracer if the tracer name is missing.

packagenames a comma-separated list of the Java packages to be
examined for instrumentation

doclet path the path to find the PBD Generator jar file, which
contains this tool

param name="-d" this must contain the same value as destdir

This parameter Determines

224  Using the Introscope PBD Generator

CA Wily Introscope Java Agent

Manual ProbeBuilding  225

APPENDIX C

Manual ProbeBuilding

This appendix provides instructions for manually instrumenting your applications.
Manual ProbeBuilding is a non-dynamic method of instrumenting your
applications.

Before you begin 226

Using the ProbeBuilder wizard 227

Using the command-line ProbeBuilder 229

Running instrumented code 231

Switching back to non-instrumented code 231

The ProbeBuilder Wizard.lax file 232

226  Manual ProbeBuilding

CA Wily Introscope Java Agent

Before you begin
When you run ProbeBuilder manually, it instruments classes on disk before the
application server is run. You use manual ProbeBuilding when your environment
does not support AutoProbe, or you prefer not to use AutoProbe.

The instructions in this appendix assume you have performed these installation
and configuration tasks:

 Installed the Java Agent. See Installing the Java Agent on page 22 for more
information.

 Configured Java Agent connection properties. See Configuring connection to
the Enterprise Manager on page 36 for more information.

 Configured the Java Agent name. See Configuring the Java Agent name on
page 40 for more information.

 Configured options for ProbeBuilder. See Configuring ProbeBuilder options on
page 41 for more information.

Manual ProbeBuilding options

There are two ways to instrument your bytecode manually:

 The ProbeBuilder Wizard—a GUI dialog for running ProbeBuilder. Follow the
instructions in Using the ProbeBuilder wizard on page 227.

 The Command-line ProbeBuilder—A command-line interface for
environments without a windowing system. Follow the instructions in Using the
command-line ProbeBuilder on page 229.

» WARNING Introscope supports two other methods of instrumenting
applications. CA Wily recommends you use these other methods
before using manual ProbeBuilding. These methods are:

 Using JVM AutoProbe. See Configuring ProbeBuilder options on
page 41 for more information..

 Using AutoProbe for application servers. See AutoProbe for
Application Servers on page 63 for more information..

Manual ProbeBuilding should not be used with other methods of
instrumentation, and should be used as a last resort.

Contact Wily Technical Support at 1-888-GET-WILY ext. 1 or
support@wilytech.com if you are not sure you should use manual
ProbeBuilding.

mailto:support@wilytech.com

Using the ProbeBuilder wizard  227

Java Agent Guide

Using the ProbeBuilder wizard
If your machine has a windowing environment, use the instructions in this section
to add probes to your bytecode. These instructions assume that you have:

 Installed the Java Agent. See Installing the Java Agent on page 22 for more
information.

 Selected the ProbeBuilder Wizard option from the Enterprise Manager
installation process. See the CA Wily Introscope Configuration and
Administration Guide for information on how to install the Enterprise Manager.

 Configured basic agent settings as described in Installing and Configuring the
Java Agent on page 19.

To use the ProbeBuilder Wizard:

1 If you have custom PBDs, add them to the <Introscope_Home>/config/custompbd
directory of the Enterprise Manager.

» Important This directory is not the same as the <Agent_Home>/wily/
hotdeploy directory used by the Java Agent to deploy custom
PBDs. If you have custom PBDs in the hotdeploy directory and are
now using the ProbeBuilder Wizard, you must copy the PBDs you
want to use from the hotdeploy directory to the Enterprise
Manager config/custompbd directory.

2 Launch the ProbeBuilder Wizard from your <Introscope_Home> directory. On the
Welcome screen, click Next.

3 Enter or browse to your bytecode directory and click Next.

» Note You can also select .jar files or individual .class files.

4 Click Select Java Bytecode to enter your desired directory and click Next.

5 Enter the name and location for the new directory to contain the instrumented
code, or click Browse to select a location. The default name is the original
directory with the suffix “isc.”

» Note If you select a directory that already exists, ProbeBuilder Wizard will
display a dialog asking if you want to overwrite the directory. Click
Overwrite to overwrite the existing files as necessary, or click Cancel
to go back to the previous dialog to select another location.

6 Click Next if you did not overwrite an existing directory.

7 In the System Directives window, locate the set of system directives which
correspond to your environment (if your application server isn’t listed, use the
Default Java selection) and click Next.

228  Manual ProbeBuilding

CA Wily Introscope Java Agent

» Note You have a choice of either using system directives files in which most
tracer groups are turned on (FULL) or only a subset of tracer groups are
turned on (TYPICAL). For more information on full and typical system
directives files and the what kind of information they provide, see Default
tracer groups and toggles files on page 76.

8 If you installed custom directives files in your config/hotdeploy directory, they
appear in the Custom Directives window. Check the box next to any custom
directives you want to use with this bytecode, then click Add Probes.

» Note For information on creating custom directives, see ProbeBuilder
Directives on page 73.

Introscope adds Probes to the specified bytecode. This operation may take
several minutes.

9 When the Finished window opens, click Exit or Add Additional Probes to add
Probes to another directory.

Update application startup script

After adding probes to the bytecode, update the application startup script to
specify the location of the instrumented code and the Java Agent.

To specify the location of the instrumented code:

1 Edit the classpath of the application startup script to include locations of the
directories containing the instrumented code created with the ProbeBuilder. Make
sure this reference precedes the reference to the original code in the classpath.

2 Edit the classpath in the application startup script to include the path to the
<Introscope_Home>/lib/Agent.jar.

For example, edit an existing classpath:

<your_application_path>/classes:/<your_application_path>/lib/app.jar
MainClass

to look like this:

<your-applicationpath>.isc/classes:/<your-applicationpath>.isc/lib/
app.jar:/Introscope_Home/lib/Agent.jar MainClass

3 Save the changes.

4 Start your application with the new startup script.

Using the command-line ProbeBuilder  229

Java Agent Guide

Using the command-line ProbeBuilder
If your machine does not have a windowing environment, use the instructions in
this section to add probes to your bytecode.

In Introscope 8.0, the command-line ProbeBuilder has been migrated to Java
Development Kit (JDK) 1.4.2. This affects users who:

 have a managed application running under JDK 1.3.

 cannot run their applications with AutoProbe.

 have never instrumented their applications before OR need to upgrade the
Java Agent to 8.0.

 cannot install JDK 1.4 on their servers.

If one or more of the above conditions apply to your environment, use a version
of ProbeBuilder from Introscope 7.1 or earlier.

Adding Probes to bytecode

The command-line ProbeBuilder is activated by the following Java command. This
example uses the /wily directory, so paths are relative to the that directory. The
syntax for the Java command depends on your Java version and other settings in
your environment.

Note: If you are processing a very large .jar file, you may need to increase the
memory in your JVM memory settings. Consult your JVM documentation for
instructions.

The ProbeBuilder classpath varies, depending on whether you installed it using
an agent installer or the full Introscope installer.

This is an example of invoking ProbeBuilder from the agent directory:

java -cp ext/ProbeBuilder.jar
com.wily.introscope.api.IntroscopeProbeBuilder
-directives default.pbl,stream.pbd
-origdir /usr/myApp/classes
-destdir /usr/myApp/classes.isc –verbose

This is an example of invoking ProbeBuilder from the Enterprise Manager
directory:

java -cp lib/ProbeBuilder.jar
com.wily.introscope.api.IntroscopeProbeBuilder
-directives default.pbl,stream.pbd
-origdir /usr/myApp/classes
-destdir /usr/myApp/classes.isc –verbose

230  Manual ProbeBuilding

CA Wily Introscope Java Agent

These are the command line ProbeBuilder commands

Editing the classpath

After adding probes to the bytecode, update the classpath of the application
startup script to reflect the locations of the instrumented code and the Java
Agent.

To update the classpath:

1 Edit the classpath of the application startup script to include locations of the
directories containing the instrumented code created with the ProbeBuilder. Make
sure this reference precedes the reference to the original code in the classpath.

2 Edit the classpath in the application startup script to include the path to the
Agent.jar file.

For example, you might edit a classpath that looks like this:

Option Result

-help -h -? Displays a help screen

-directives (or -pbd)
comma-separated-file-
list

REQUIRED: a comma-separated list of ProbeBuilder
Directives files (.pbd), ProbeBuilder list files (.pbl), or
directories to scan.

Select either a full or typical .pbl file, depending on how
much information you want gathered (see Full or typical
tracing options on page 56).

If you used the default Java Agent installer, you will see all
possible default PBD and PBL files in the \wily directory.
However, if you used an application-server specific Java
Agent installer, you will only see PBD and PBL files specific
to that application server.

Select one set of the next three pairs to specify your original code location and your
instrumented code destination, using either directories, jar files, or classes.

-origdir directory

-destdir directory

Specifies the original directory (including subdirectories)

Specifies the destination directory

-origjar file

-destjar file

Specifies the original archive, including .jar, .zip,
.war, .rar and .ear archives

Specifies the destination archive

-origclass file

-destclass file

Specifies the original class

Specifies the destination class

-skipitems Skips any files that are not Java bytecode files or archive
files (.jar and .zip files). If -skipitems is not set, the
non-Java bytecode files are copied to the destination,
unchanged.

-prompt Turns on an interactive text UI when problems arise.

Running instrumented code  231

Java Agent Guide

<your_application_path>/lib/app.jar MainClass

to look like this:

<your-applicationpath>.isc/lib/app.jar:/<ApplicationServer_Home>/wily/
Agent.jar MainClass

3 Save the changes.

4 Start your application with the new startup script.

Running instrumented code
There are three ways to point to instrumented code instead of your original code:

 In classpaths, replace original class paths with instrumented code paths.

The instructions in this chapter directed you to perform this process when you
instrumented your application for the first time.

 Prepend paths to classpaths.

If only part of the application’s code was instrumented, you could place the
instrumented code paths before the original-code paths (prepend) in the
classpath.

If you do this, instrumented code loads and reports performance data. Non-
instrumented code still loads and works normally, but does not report
performance data.

 Place instrumented code in original classpath.

Use this method when classpaths are set in many places, or to conduct an
evaluation. Be careful using this method in a production environment, when
with this method it is easy to forget whether you are using the original or the
instrumented code.

 Move the original code to a new location. Leave the classpaths unchanged.
Then move the instrumented code to the original location.

 On a UNIX machine, you could also create a symbolic link from the current
location of the instrumented code to the original location.

Switching back to non-instrumented code
If you want to switch back to using non-instrumented code, undo the steps of
modifying classpaths to run instrumented code, as described below:

 If you put the paths to your instrumented code into the Java classpaths, then
replace paths to the instrumented code in Java classpaths with original paths.

 If you added paths to the instrumented code in front of the paths to the original
code, remove prepended paths to classpaths

232  Manual ProbeBuilding

CA Wily Introscope Java Agent

Remove the prepended portion of the classpath so that only the original
classpath remains.

 If you put instrumented code in the original classpath, then remove the
Instrumented code from the original path and place the original code in the
original classpath.

If you used symbolic links on a UNIX system, point the symbolic link to the
original directory or remove the link and move the code into the original
classpath.

The ProbeBuilder Wizard.lax file
The ProbeBuilder Wizard.lax file is located here:

<Introscope home>/Introscope ProbeBuilder Wizard.lax

lax.nl.current.vm

VM to use the next time the ProbeBuilder is started. Can be set to any installed
JDK or Default: JRE version 1.3.

Varies by operating system

lax.stderr.redirect

Standard Error Output. Leave blank for no output, console to send to a console
window, or any path to a file to save to the file.

Default: blank

lax.stdin.redirect

Standard Input. Leave blank for no input, console to read from the console
window, or any path to a file to read from that file.

Default: blank

lax.stdout.redirect

Standard Output. Leave blank for no output, console to send to a console
window, or any path to a file to save to the file.

Default: blank

Index  233

INDEX

Index

Symbols
/config 121
<agent-specifier> 121
<metric-specifier> 121
@instrument 222

A
Actions 101
Agent

Basic Implementation 15
cloned Agent naming 109
configuration 13

verbose mode 113
visibility vs. overhead 14

configuring Agent name 40
Custom Process name 40
data collection options 17

JMX and JSR-77 18
Platform Monitoring 18
PMI 18
Socket Metrics 17
SQL Agent 18
Stall Event Reporting 17
Transaction Tracing Behavior 18
URL Groups for Blame Reporting 17

installation packages for application servers
30

installer 29
installer archive 29
logging options 16
name 40
naming options

automatic
automatically from application server

104
using Java system property 104

using system property key 104
redirecting output to a file 114
resolving Agent naming conflicts 102
Unistall 42
verbose mode 113
virtual 16

agent failover
domain/user configuration 126
Enterprise Manager connection order 125
reconnect to primary Enterprise Manager

126
agent installer 149
agent logging

change the location and name of a logfile
115

verbose mode 114
agent name 101

advanced agent naming 107
application server

instance name 104
automatic

using Java system property 104
using system property key 104

automatic naming 105
automatically from the Application Server

102
cloned agents 109
clustered applications 103
conflicts 102
enable automatic agent naming 107
enable cloned agent naming 109
fully-qualified 102
how the agent determines its name 101
Java system property 101
log files 115
multiple agents 102

234  Index

CA Wily Introscope Java Agent

renamed agents 106
resolving identical agent names 103
supported application servers 105
System Property Key 102
WebLogic rules 105
WebSphere rules 105

agent packages 41
Agent Stats 208
Agent.jar 31, 230
agentclusters.xml 121
AIX

platform monitors 172
Alerts 101
annotation 81

class-level 81
directive 81
method-level 81

Ant Javadoc task 222
Apache Ant 222
Apache Tomcat 52

application server installation archive 30
API 105
Application Overview 130
application server

installation packages 30
management information 130
Oracle 10g 20
SAP NetWeaver 20
Sun ONE 20
support 20
WebLogic 20
WebSphere 20
WebSphere on z/OS 20

application server agent profile 41
application server cluster 130
application server management information

130
application startup script 228
ASCII 116
ASCII ISO8859-1 116
automatic agent naming 105, 106
autonaming 40
AutoProbe 21, 32, 41, 56, 66, 116, 117, 226,

229
Application Server AutoProbe

with Oracle 10g 70
with Sun ONE 68

configuring for Sun, IBM, or HP JVM 46

configuring JRockit JVM 51
configuring JVM 46
configuring JVM 5.0 for 51
Create Connector 46
log file 117

location 117
name 117

run Connector 47
AutoProbe Connector

NetWeaver 04 49
Oracle 10g 50
Other 50
SAP J2EE 6.20 49
SAP J2EE 6.40 49
Sun ONE 50
WebLogic 47
WebSphere 5.0, 5.1, or 6.0 48

Average tracer example 88

B
backend 94

default 95
backend SQL calls 142
BackendMarker 94, 223
blame reporting behaviors 133
blame stack 95
Blame Technology 94, 134
blame tracers 95
BlamePointTracer 191, 223

group metrics 191
boundary blame 94, 95, 134, 140

disable 140
BRTA 95
BRTA property settings 139
bytecode 60, 226, 227, 228, 229, 230

C
CA Wily Introscope Configuration and Adminis-

tration Guide 227
CEM 18

Integration 18
CEMTracer.jar 33
clamp 142
class hierarchy 59
Classes

subclasses 59
multiple levels probed 59

uninstrumented subclasses 59, 60

Index  235

Java Agent Guide

classes111.zip 149
classes111_g.zip 149
classes12.zip 149
classes12_g.zip 149
class-level annotation 81
classpath

editing 230
client/server databases 134
Cloned agent naming 109
clustering 120
Collector Enterprise Manager 120
Combined Counter Tracer 89
Combined counter tracers example 89
combining custom tracers 89
Command-Line ProbeBuilder 117

configuring
other Java applications 229

command-line ProbeBuilder 226, 229
commands 230

command-line utility 139
Common format 139
Common Object Request Broker Architecture

74
configuring

agent name 40
JRockit JVM for AutoProbe 51
JVM 5.0 for AutoProbe 51
JVM AutoProbe 46
ProbeBuilder options 41, 56
Sun, IBM, or HP JVM for AutoProbe 46

CORBA 74
Counter Tracer 89
Counter tracer example 89
CreateAutoProbeConnector.jar 32
Custom Method Tracers 92
custom metric host 112
custom PBDs 32
Custom Process name 40
custom Tracers. See ProbeBuilder Directives
Customer Experience Manager. See CEM.

D
Dashboards 101
DB2 149
db2java.zip 149
dead metric 190
-destclass file 230
-destdir directory 230

-destjar file 230
Directive & Tracer Type Definitions 96
directive updates

disable 60
-directives 230
DomainRuntimeServiceMBean 164
Domains 17
dynamic instrumentation 56, 59

arrays not supported 57
classes 57
classes not supported 57
interfaces not supported 57
Java 1.5 56
PBDs 57
Skip directives not supported 57
transformations not supported 57

E
EBCDIC 116
EBCDIC CP1047 116
EditServiceMBean 164
EJB 80

subclasses 80
EJB 3.0 81, 152

annotation 81
annotation directive 81
class-level annotation 81
method-level annotation 81
tracing annotations 81

EJBs 74
Enterprise JavaBeans. See EJBs.
Enterprise Manager 16, 21, 36, 102, 103, 105,

106, 107, 109, 112, 120, 122, 148, 166, 195,
227, 229

alternate communication channel 37
clustered 121
clustering 21
connect via HTTP tunneling 37

proxy server 38
connect via HTTPS 39
connect via SSL 39

ErrorDetector 14
event 112
Extensible Markup Language (XML) 74

F
File Systems 74
FrontendMarker 94, 223

236  Index

CA Wily Introscope Java Agent

frontends 94
default 94

Fujitsu Interstage 20, 30
fully-qualified agent name 102

G
groupKey 136

H
historical query interface 112
hotdeploy 82, 83, 84, 227
hotdeploy directory 32

unconfigure 33
HP 42

configuring AutoProbe for 46
uninstall 42

HP Hotspot 1.3 21
HTTP server 136
HTTP tunneling 37

configure 37
configure proxy server 38
HTTP/1.1 37, 38
proxy server 38
proxy server properties 38

HTTPS tunneling 39

I
IBM

configuring
AutoProbe for 46

IBM JVM 21
installation

archive packages 30
disk space requirement 22

Installation Archives
Application Server

Apache Tomcat 30
Fujitsu Interstage 30
JBoss 31
Oracle 10g 30
Other 31
SAP NetWeaver 30
Sun ONE 30
WebLogic 30
WebSphere 30

Installation Directories 31
wily Directory 31
wilynstall directory 34

wily†ocs directory 32
wily…xt directory 33, 34
wilyconnectors Directory 32
wily
otdeploy directory 32

wilyUninstallerData directory 34
instrument bytecode 21

manually 226
instrument custom Java class files 221
Instrumentation

dynamic update of internal directives 59
multi-level subclass 59

polling 59
instrumentation 56, 59

enable multi-level subclass 59
instrumented code 228, 231

switching back to original code 231
InstrumentPoints 92
Interitance.jar 33
Interstage 20, 25, 27

application server installer archive 30
Interval Counter Tracer 88
Introscope

IntroscopeAgent.profile 15, 29, 31
PowerPacks 14

Introscope 7.1 229
Introscope SuperDomain 121
Introscope v7.0 130
introscope.autoprobe.directivesFile 56
IntroscopeAgent.profile 32, 35, 40, 102, 104,

107, 109, 113, 114, 115, 116, 117, 125, 126,
139, 155, 156, 158, 183

application server specific files 41
IntroscopeAgent.profile. See Introscope.
IntroscopeAgentFilesOnly-

NoInstaller8.0.0.0allAppserver.windows.zip
41

IntroscopeEnterpriseManager.properties 112
intrumented code

options 231
Investigator 40, 100, 112, 134, 137, 161, 208

J
J2EE Management Specification 169
j2ee.pbd 95
Java 1.5 33, 93
Java 5 JVM 21
Java Agent 148

Index  237

Java Agent Guide

agent connection time out 112
connection metric values 112
connection metrics 112
log directory 113
monitor health of agent 111
times out 112

Java Agent installer 23
Java classpath 230
Java Database Connectivity. See JDBC.
Java J2EE API 105
Java Message Service 74
Java Naming and Directory Interface 74
Java Server Pages. See JSP.
Java system property 101, 104
Java Transaction API 74
Java Virtual Machine. See JVM.
Java2 Security Policy

on WebSphere 5.0 67, 68, 71
Javadoc 222
JavaDoc tags 223

syntax 223
JavaI5DynamicInstrumentation.jar 33
JBoss 34, 41, 107

application server installer archive 31
configuration 34
configure for Introscope 34, 35
introscope-jboss-service.xml 35
jboss4x.pbd 36
jboss-full.pbl 36
jboss-typical.pbl 36
jsf-toggles-full.pbd 36
jsf-toggles-typical.pbd 36
PBD 36
PBL 36
run.bat file 35
web application support 34, 35
WebAppSupport.jar 35

Jboss 4.0.x 105
Jboss4.2x 105
JDBC 149
JDBC 1.0 149
JDBC 2.0 149
JDBC DataSource 150
JDK 1.3 229
JDK 1.4 229
jDriver 6.1 149
JMS 74
JMS servers 134

JMSDestinationRuntime 166
JMX 18, 167

filters 166
reporting 167

JMX metrics 130
application server 130

JMX support 164–168
configuring 167
enabling 167
JMX filters 166
Metric name conversion

default method 164
primary keys method 165

primary keys 165
primary keys, defining 168

JNDI 74
JRockit 21

configuring JVM for 51
JRockit

uninstall 42
jsf.pbd 36
JSP

DB Tag Libraries 74
IO Tag Libraries 74
Tag Libraries 74

JSR-77 18, 169
JSR-77 JMX MBean 169
JTA 74
JVM 12, 21, 29, 169

1.5.x 42
1.6x 42
uninstall 42

JVM 1.5 46, 59, 64
JVM 5.0 59

configuring for AutoProbe 51
JVM AutoProbe 21, 32

OS/400 21
JVM command line 42
jvm.pbd 75
JVMPI 218

K
Knowledge Base Article 169

L
lax files

Introscope ProbeBuilder Wizard.lax 232
LDAP servers 134

238  Index

CA Wily Introscope Java Agent

LeakHunter 14
log directory 113
log file 59
Log4J 113

Agent settings 113, 114
log4j 114, 115
Logging Options 16

M
Manager of Managers (MOM) 121

Virtual Agent 121
manual installation 29
manual instrumentation 225
MBean 165, 166

ObjectName 165
MBeans 164

JMX ObjectName 165
MessagesCurrentCount 166
MethodCPUTimer 88
method-level annotation 81
methods

method signature 89
metric aging 190
Metric Count 208

displayed under the Agent Stats node 208
displayed under the Custom Metric Agent
node 208

metric explosion 190
metrics 94

and URL groups 136
MOM 121
multiple agents 41

upgrade 41

N
Netweaver 41, 42
Network Sockets 74
non-instrumented code 231
normalized statement 148

O
Object Request Broker (ORB) 218
Oracle 95, 149

databases 95
Oracle 10g 20, 30, 50, 70

10.0.3 70
AutoProbe 70
AutoProbe Connector 50

Oracle JDBC 74
oraclejdbc.pbd 95
-origclass file 230
-origdir directory 230
-origjar file 230
OS/400 21, 23, 24
Overview tab 112

P
path prefix 134
PBD 32, 56, 227

all application server 41
-pbd 230
PBD Generator 221, 222, 223

parameters 222
destdir 222
doclet path 223
packagenames 223
param name="-d" 223
sourcepath 222

PBD Generator, configuring and using 221
PBD. See ProbeBuilder Directives.
PBL 32

all application server 41
full version 56
typical version 56

Per interval counter tracer example 88
Performance Monitoring Infrastructure 130
Performance Monitoring Settings 179
pickup folder 24, 25
platform monitor 172

troubleshooting 174
PMI 130, 178
PMI metrics 130
PMI threadPool data 218
PMI transaction data 219
PMI webApp data 219
pre-production environments 14
Primary Key 165
primarykeys 165
private methods 17
ProbeBuilder 117, 226, 229

Command-line ProbeBuilder 229
customizing Directives 73
dynamic for JVM 1.5 56
log 117
logs 117
options 41, 56

Index  239

Java Agent Guide

ProbeBuilder Directives 31, 41, 56, 73, 74
Agent Initialization 92
applying changes to 83
custom Tracers 85

combining 93
creating 84
examples template 88

exceptions 92
files

custom 228
system 227

modifying
EJB subclass tracing 80
Tracer Groups

adding classes to 79
Tracer groups

turning on or off 79
only defined methods traced 59, 60, 93
Tracer Groups

adding classes to 79
turning on or off 79

Tracer groups
default 77
turning on or off 79

updating probes 82
ProbeBuilder List 56
ProbeBuilder Wizard 117, 226, 227–228
ProbeBuilder wizard 227
ProbeBuilder.jar 33

BasicDirectiveLoader.jar 33
SignedJARDirectiveLoader.jar 33
UnifiedDirectiveLoader.jar 33

ProbeBuilding 29
dynamic ProbeBuilding 58

production environments 14
Program Temporary Fixes 51
-prompt 230
properties

files 185
properties files

Introscope ProbeBuilder Wizard.lax 232
PTFs 51

R
Rate tracer example 88
RedHat

platform monitor 172
redirect output

Agent 114
regular expression 160
Regular expressions 122
re-instrumenting 57
Remote Method Invocation. See RMI.
RuntimeServiceMBean 164

S
SAP 41, 42

NetWeaver 41, 42
SAP J2EE 6.20 49

AutoProbe Connector 49
SAP J2EE 6.40 49

AutoProbe Connector 49
SAP NetWeaver 20, 30, 49
SAP NetWeaver 04 49

AutoProbe Connector 49
SAP NetWeaver 6.40 50, 83
server port 136
ServletHeaderDecorator.jar 33
Servlets 74
single-metric Tracers 89
single-metric tracers 89
Skip directives 57
-skipitems 230
Skips 92, 96
skips 89
Socket Metrics 17
socket metrics 113
SQL Agent 18, 95, 134, 148

Blame metrics 160
JDBC datasources 149
JDBC drivers 149
normalized statement 148
SQL Metrics

Average Query Roundtrip Time (ms) 161
connection count 161

SQLAgent.jar 33
statement metrics 160
supported JDBC Drivers 149
WebSphere 150

SQL normalizer 160
SQL query 148
SQL statement 134, 152
SQL statement normalization 152
SQL statements 148
SQLAgent.jar 33
sqlagent.pbd 95

240  Index

CA Wily Introscope Java Agent

SSL 39
properties 211

Stall Event Reporting 17
startup class 130
STDOUT 139
Struts 74
Sun

configuring AutoProbe for 46
Sun ONE 30, 50, 186

AutoProbe Connector 50
SuperDomain 17
superset agent package 42
superset agent packages 41
Supportability-Agent.jar 33
Sybase 149
System Logs 74
System Property Key 102
system-level data 218

T
Threads 74
Tomcat 52
Tracer Groups 56, 59, 80, 92

adding classes to 79
Tracer groups 76
Tracers

advanced single-metric 89
BackendMarker 94
Blame Technology and 89
ConcurrentInvocationCounter 87
default Tracer Groups 76
example template 88
examples

Average Tracer 88
Combined Counter Tracer 89
Counter Tracer 89
Interval Counter Tracer 88
Rate Tracer 88

FrontendMarker 94
MethodTimer 88
names 87
PerIntervalCounter 88
switching between full and typical 56
toggle files 76

transaction
clamp 142
infinitely expanding 142

Transaction Tracer 142

component clamp 142
cross-process transaction tracing 143
default 142
regardless of URL groupings 142
sampling by URL group 143

U
UDP 74
uninstall 42
uninstaller 42
UNIX 22, 24

do not use unzip 23
extract .tar file 23

Unknown Agent 101
Unknown Processes 150
upgrade

multiple agents 41
URL 134
URL Groups 134, 135, 139

host name 136
parameter name 137
port name 137
protocol name 137

URL groups
advanced naming 136
define name 136
keys 135
membership 135
using the URLGrouper 139

URL Groups for Blame Reporting 17
URLGrouper 139
User Datagram Protocol 74

V
verbose mode 113

agent logging 114
running Agent in 113

Virtual Agent 16, 120
<agent-cluster> 121

<agent-specifier> 121
<metric-specifier> 121
attributes 121
child elements 121
domain 121
name 121

clustered application 120
clustered Enterprise Managers 121
Collector Enterprise Manager 120

Index  241

Java Agent Guide

configuration 121
Manager of Managers (MOM) 121
requirements 120
root element 121
single cluster 120
stand-alone Enterprise Managers 120

W
WAS 42, 66, 150
WAS 5.0 42
WAS 5.1 42
WAS 6.0 42
WAS uninstall 42
web server log file 139
WebAppSupport.jar 31
WebLogic 30, 41, 47, 102, 105, 107, 149, 151,

194
ActiveConnectionsCurrentCount 167
AutoProbe Connector 47
bootstrap classpath 47
ExecuteThreadCurrentIdleCount 167
jDriver for Oracle 149
OpenSessionsCurrentCount 167
PendingRequestCurrentCount 167
WaitingForConnectionCurrentCount 167

WebLogic 10.0 105
WebLogic 6.1 105
WebLogic 7.0 105
WebLogic 8.1 105, 130

startup class 130
WebLogic 9.0 130, 164, 166

JMX metrics 164
startup class 130

WebLogic 9.x 105
WebLogic Administrative Console 130
WebLogic Diagnostic Framework 130
WebLogic MBean 165
WebLogic Server 129, 130
WebLogic Server 6.1 150
WebSphere 30, 41, 66, 102, 105, 107, 109, 130,

131, 149, 150, 151, 194, 218, 219
application failover 219
configure custom service 131
custom service 131
Instrumenting the JDBC DataSource 151
PMI 130

WebSphere 4.0 150
WebSphere 5.0 66, 116, 131, 217, 218, 219,

220
AutoProbe Connector 48

WebSphere 5.0.x distributed 105
WebSphere 5.0.x PMI Categories 179
WebSphere 5.1 66, 178

AutoProbe Connector 48
WebSphere 5.1 distributed 105
WebSphere 5.x 109
WebSphere 6.0 66, 109, 131, 169

AutoProbe Connector 48
WebSphere 6.0.x distributed 105
WebSphere 6.1 131
WebSphere 6.1.x distributed 105
WebSphere Administrative Console 131
WebSphere Application Server 42, 150

configuring custom service for 131
disabling automatic Agent naming for 109
PMI data ??–178

viewing 179
uninstall 42

WebSphere application server 129
WebSphere Performance Monitoring Infrastruc-

ture 178
WebSphere z/OS 116

default encoding 116
EBCDIC logging 116
startup timing window exposures 116

WebSphere z/OS 5.0 116
WebView 100
What’s Interesting event 112
wildcard 166
wildcard metric specifiers 122
Wily Technology Community site 96
wily/ext directory 149
wily/hotdeploy 32
WilyPBDGenerator.jar 222
Windows 22
WLDF 130, 220
WLS 42

uninstall 42
WLS 6.1 42
Workload Management (WLM) 219
Workstation 100, 101, 105, 112, 161, 195

Application Overview 130
Unknown Processes 150

X
XADataSources 161

242  Index

CA Wily Introscope Java Agent

Z
z/OS 23, 24, 43, 116

rm -rf command 43
uninstall 43

	Table of Contents
	Java Agent Installation and ProbeBuilding
	The Java Agent Overview
	The Introscope environment
	Planning a Java Agent implementation
	Discover Introscope functionality
	Determine configuration requirements
	Define Java Agent configuration
	Evaluate Java Agent performance overhead
	Validate and deploy Java Agent configuration

	Implementing the Java Agent
	Basic implementation

	Java Agent Configuration Options
	Wily CEM integration

	Installing and Configuring the Java Agent
	Before you start
	Application server support
	Enterprise Manager connection information
	ProbeBuilding method and options
	Planning the installation, configuration, and evaluation process

	Installing the Java Agent
	The Java Agent installer
	Installing the Java Agent in silent mode
	Manual installation
	Java Agent installation directories and files
	JBoss configuration

	Configuring connection to the Enterprise Manager
	Connecting to the Enterprise Manager with HTTP tunneling
	Configuring a proxy server for HTTP tunneling
	Connecting to the Enterprise Manager with HTTPS tunneling
	Connecting to the Enterprise Manager over SSL

	Configuring the Java Agent name
	Configuring ProbeBuilder options
	Upgrading multiple agent types
	Uninstalling the Java Agent
	Uninstalling the Java Agent from z/OS

	AutoProbe and ProbeBuilding Options
	Configuring JVM AutoProbe
	Sun, IBM, or HP JVM AutoProbe
	JRockit JVM AutoProbe
	JVM 1.5 AutoProbe
	JVM AutoProbe and OS/400
	JVM AutoProbe and Apache Tomcat

	Configuring ProbeBuilder options
	Full or typical tracing options

	Dynamic ProbeBuilding
	ProbeBuilding class hierarchies (JVM 1.5)
	Enable instrumentation of multiple levels of subclasses
	Configure periodic polling for uninstrumented subclasses
	Disable directive updates
	Controlling directive logging

	Removing line numbers in bytecode

	AutoProbe for Application Servers
	Before you start
	Configuring WebLogic Server
	WebLogic Server 6.1
	WebLogic Server 6.1 SP3
	WebLogic Server 7.0
	WebLogic Server 8.1, 9.0, or 9.1

	Configuring WebSphere Application Server (WAS)
	WebSphere 6.0/5.1/5.0
	Java2 Security Policy

	Configuring WebSphere z/OS
	WebSphere 5.x and 6.0 for z/OS
	Java2 Security Policy

	Configuring Sun ONE
	Sun ONE 7.0

	Configuring Oracle 10g
	Oracle 10g 10.0.3

	Configuring HTTP servlet tracing
	Modifying Java2 Security Policy

	ProbeBuilder Directives
	ProbeBuilder Directives overview
	Components traced by default PBDs
	Default ProbeBuilder Directive (PBD) files
	Default ProbeBuilder List (PBL) files
	Default tracer groups and toggles files
	Turning tracer groups on or off
	Adding classes to a tracer group

	Applying ProbeBuilder Directives
	Using AutoProbe
	Using the ProbeBuilder Wizard or command-line ProbeBuilder
	Instrumenting with new and changed PBDs

	Creating custom tracers
	Common custom tracer example
	Tracer syntax
	Custom method tracer examples

	Creating advanced custom tracers
	Advanced single-metric tracers
	Skip directives
	Counting object instances
	Turning on InstrumentPoint directives
	Combining custom tracers
	Instrumenting and inheritance
	Java 1.5 annotations

	Using Blame Tracers to mark blame points
	Blame Tracers
	Blame Tracers in standard PBDs
	Boundary Blame and Oracle backends

	Supplementary directives and tracers information

	Java Agent Operations and Management
	Java Agent Naming
	Understanding the Java Agent name
	Aspects of the Java Agent name
	How the agent determines its name
	How Introscope resolves agent naming conflicts

	Agent naming considerations for clustered applications
	Specifying an agent name using a Java system property
	Specifying an agent name using a system property key
	Obtaining an agent name from the application server
	Application servers that support agent naming
	How automatic agent naming works
	Automatic agent naming and renamed agents

	Enabling automatic agent naming
	Advanced automatic agent naming options
	Disabling agent naming for WebSphere

	Enabling cloned agent naming in clustered environments
	Cloned agent naming scenario
	Enabling cloned agent naming in the agent profile
	Configuring unique names for application instances

	Java Agent Monitoring and Logging
	Configuring connection metrics
	Turning off socket metrics
	Configuring logging options
	Running the agent in verbose mode
	Redirecting agent output to a file
	Changing the name or location of the agent logfile
	Agent log files and automatic agent naming
	Logging considerations for WebSphere z/OS

	Managing ProbeBuilder Logs
	ProbeBuilder log name and location
	AutoProbe log name and location

	Using Virtual Agents to Aggregate Metrics
	Understanding Virtual Agents
	Virtual Agent requirements
	Configuring Virtual Agents

	Configuring Java Agent Failover
	Understanding agent failover
	Defining backup Enterprise Managers
	Defining failover connection order
	Configuring failback to primary Enterprise Manager
	Configuring domain/user information

	Tailoring and Extending Data Collection
	Configuring Access to Application Server Data
	Application server management data
	Configuring startup class for WebLogic 8.1 or 9.0
	Configuring a custom service in WebSphere 5.0, 6.0, or 6.1

	Configuring Boundary Blame
	Understanding Boundary Blame
	Using URL groups
	Configuring URL groups
	Running the URLGrouper

	Using Blame tracers
	Disabling Boundary Blame

	Configuring Transaction Trace Options
	Controlling automatic Transaction Tracing behavior
	Transaction Trace component clamp
	Transaction trace sampling

	Configuring cross-process Transaction Tracing
	Enabling cross-process tracing in WebSphere
	Enabling cross-process tracing in WebLogic Server

	Extending transaction trace data collection
	About User ID data
	About servlet request data
	Configuring Agent to collect additional transaction trace data

	Disabling the capture of stalls as Events

	Configuring the Introscope SQL Agent
	The SQL Agent overview
	The SQL Agent files
	Supported JDBC drivers and datasources
	Configure the SQL Agent for WebSphere or WebLogic
	WebSphere Application Server (WAS) configuration
	WebLogic Server configuration
	Configure the JDBC DataSource or Driver in WebSphere
	Instrument the JDBC DataSource or Driver

	SQL statement normalization
	How poorly written SQL statements create metric explosions
	SQL statement normalization options
	Default SQL statement normalizer
	Custom SQL statement normalizer
	Regular expression SQL statement normalizer
	Command-line SQL statement normalizer

	Turning off statement metrics
	Turning off Blame metrics
	SQL metrics

	Enabling JMX Reporting
	Introscope Java Agent JMX support
	Introscope support for WebLogic 9.0 JMX metrics

	Default JMX metric conversion process
	Using primary key conversion to streamline JMX metrics
	Managing metric volume with JMX filters
	JMX filters for WebLogic

	Configuring JMX reporting
	Enabling JSR-77 data for WAS 6.x

	Configuring Platform Monitoring
	Understanding platform monitors
	Enabling platform monitors on Windows Server 2003
	Enabling platform monitors on AIX
	Disabling platform monitors
	Troubleshooting platform monitoring

	Configuring WebSphere PMI
	Java Agent support for WebSphere PMI
	Enabling PMI in WebSphere
	Using PMI with Introscope on z/OS

	Configuring PMI in Introscope
	Viewing WebSphere Agent PMI data

	Enabling WebLogic Diagnostic Framework
	Java Agent support for WebLogic Diagnostic Framework (WLDF)
	Understanding WLDF Metric conversion
	Enabling WLDF reporting

	Java Agent Properties
	Configuring IntroscopeAgent.profile location
	Command-line property overrides
	Agent failover
	Agent HTTP tunneling
	Agent HTTP tunneling—proxy server
	Agent HTTPS tunneling
	Agent metric aging
	Configuring agent metric aging

	Agent metric clamp
	Agent naming
	Agent thread priority
	Agent to Enterprise Manager connection
	AutoProbe
	Blame
	CPU utilization
	Cross-process tracing in WebLogic Server
	Dynamic instrumentation
	ErrorDetector
	Extensions
	JMX
	LeakHunter
	Logging
	Metric count
	Platform monitoring
	Socket metrics
	SQL Agent
	SSL communication
	Stall metrics
	Transaction tracing
	URL grouping
	WebSphere PMI
	Wily CEM integration
	WLDF metrics

	Using the Introscope PBD Generator
	About the Wily PBD Generator
	Configuring the PBD Generator
	Required PBD Generator parameters

	Using the PBD Generator

	Manual ProbeBuilding
	Before you begin
	Manual ProbeBuilding options

	Using the ProbeBuilder wizard
	Update application startup script

	Using the command-line ProbeBuilder
	Adding Probes to bytecode
	Editing the classpath

	Running instrumented code
	Switching back to non-instrumented code
	The ProbeBuilder Wizard.lax file

	Index

