
CA Spectrum:
Working with REST API’s

30th August 2016

2 © 2016 CA. ALL RIGHTS RESERVED.

2

Agenda

1. What is a REST Webservice?

2. Spectrum functions through Restful Web
Services.

3. Spectrum Web services Architecture.

4. Working with Spectrum Web Services API.

5. Q&A

REST WebServices

4 © 2016 CA. ALL RIGHTS RESERVED.

REST WebServices

 Representational State Transfer (REST)

 The REST architecture is a lightweight HTTP/HTTPS -based
approach for SOAPless Web Services.

 Supported Operations: POST (create), GET (read), PUT
(update), DELETE, HEAD, OPTIONS, and TRACE.

 RESTful architecture and applications are stateless, which
means that no client context information is stored between
requests. Each request contains all the information necessary
to service the request.

CA Spectrum WebServices

6 © 2016 CA. ALL RIGHTS RESERVED.

Spectrum supports RESTful Web Services

 The CA Spectrum Web Services API supports the REST
architecture.

 Using the CA Spectrum Web Services API, CA Spectrum data
can be accessed directly from a browser or integrated into
your own application.

7 © 2016 CA. ALL RIGHTS RESERVED.

Spectrum Functions using Restful

 By using the CA Spectrum Web Services API, you can take
advantage of functionality provided by the OneClick server,
such as:
– Access devices, models, relationships, attributes, actions and alarms.

– Manage devices, ports, containers, services, and links.

– Read, update, and clear alarms.

– Manage subscriptions and notifications.

– Create Device models and Global Collections etc..

CA Spectrum WebServices
Architecture

9 © 2016 CA. ALL RIGHTS RESERVED.

Spectrum Web services Architecture

Working with Spectrum
WebServices API

11 © 2016 CA. ALL RIGHTS RESERVED.

Supported REST Functions

Spectrum Web Services supports only these 4 REST operations:

 POST (Create)

 GET (Read)

 PUT (Update)

 DELETE (Delete)

Note: The HEAD, OPTIONS, and TRACE functions are not
supported in the CA Spectrum Web Services API.

12 © 2016 CA. ALL RIGHTS RESERVED.

Working with Spectrum Web Services API

 Request Syntax:

http://<hostname><:portnumber>/spectrum/restful/<request>

Here <request> is spectrum’s Restful resource

For e.g., a <request> can be devices, alarms, landscapes, model
etc.

13 © 2016 CA. ALL RIGHTS RESERVED.

Use Case - DEMO

 MODEL LIFECYCLE
– Create a Model

– Retrieve the created Model

– Retrieve an attribute of the created Model.

– Read the alarms on the Model.

– Subscribe for Alarms on the Model.

– Delete the Model.

14 © 2016 CA. ALL RIGHTS RESERVED.

Create Model using POST Operation

 Syntax To create a new Model:

http://<hostname><:portnumber>/spectrum/restful/model[?lan
dscapeid=<landscape_handle>] [&commstring=<comm_str>]
[&ipaddress=<ip_address>][&parentmh=<model_handle>]

 Creates a new device model and returns model_handle.

15 © 2016 CA. ALL RIGHTS RESERVED.

Read Model using GET Operation

 Use model as Resource.

To retrieve attributes from the specified model.

http://<hostname><:portnumber>/spectrum/restful/model/<mo
del_handle>[?attr=<attr_ID>]

16 © 2016 CA. ALL RIGHTS RESERVED.

Devices using GET Operation

 Use devices as Resource

To retrieve all device model handles:

http://<hostname><:portnumber>/spectrum/restful/devices

Result: Returns model-handles of all available devices.

 To get specific device attributes:

http://<hostname><:portnumber>/spectrum/restful/devices[?att
r=<attr_ID>][&landscape=<landscape_handle>][&throttlesize=<n
um>]

17 © 2016 CA. ALL RIGHTS RESERVED.

Alarms using GET operation

Use alarms as Resource

 To retrieve all the alarms from SS:

http://<hostname><:portnumber>/spectrum/restful/alarms

Result: Returns Alarm-Id’s of all the alarms.

 Retrieve specific alarms:

http://<hostname><:portnumber>/spectrum/restful/alarms[?att
r=<attr_ID>][&landscape=<landscape_handle>][&throttlesize=<n
um>]

18 © 2016 CA. ALL RIGHTS RESERVED.

Alarms using DELETE operation

To Delete an Alarm:

http://<hostname><:portnumber>/spectrum/restful/alarms/<ala
rm_id>

The alarm represented by the alarm_id will be deleted.

19 © 2016 CA. ALL RIGHTS RESERVED.

Model using DELETE Operation

To Delete an existing model:

http://<hostname><:portnumber>/spectrum/restful/model/<mo
del_handle>

20 © 2016 CA. ALL RIGHTS RESERVED.

SUBSCRIPTION

Use the Subscription resource to create or retrieve subscriptions.
A subscription is a request to be notified of activity on any of the
following:

 Models/attributes. Registers watches on specified models and
related attribute changes.

 Alarms/attributes. Registers watches for alarm
creation/clearing and attribute changes.

Base URL :

http://<hostname><:portnumber>/spectrum/restful/subscription

21 © 2016 CA. ALL RIGHTS RESERVED.

Types of Subscription: PULL & PUSH

 Subscriptions are pull or push. A pull subscription requires
that the client poll the subscription ID every time to retrieve
notification if any, whereas a push subscription requires that
the client provide a URL to which notifications can be POSTed.

 Notifications contain change information in XML or JSON
format.

 Currently subscriptions will be pushed to Tomcat logs and it
only supports XML format.

Demo:

SUBSCRIPTION – NOTIFICATION

Questions?

