Agile Requirements Designer Integrations Configuration

These instructions are designed to help with the configuration of the following Integrations

- HP Application Lifecycle Management.
- Microsoft Team Foundation Sever.

- Atlassian Jira.

- CA Agile Central.

Connector
Each Integration within Agile Requirements Designer has its own connector option.
These can be found in the ‘Connectors’ panel within the ‘Toolbox’

By clicking the desired Integration, a panel will appear, giving you access to the Integration’s
features.

Toolbox Dock &

Common Symbols

., Atlassian

Y JIRA Software

Repository Connection
Create Data Builder objects and import subflows from a repository.

Rally
@Y/ Provides import/export functionality with a Rally Server.

" ALM
Provides Integration functionality for ALM.

P ALM (GT HP ALM Service)
Provides impert/export functionality with HP ALM using the GT HP

ALM Service.

3 Ji . . - - .

B .2, e ntegration functionliy forfra URL: https://agiledesigner.atlassian.net
Team Foundation Server i Username: joshua.taylor@ca.com

Provides Integration functionality for Team Foundation Server.

Password: essssssss

_ Javelin
W) Provides import functionality for Javelin flows.

Forget password
TMX

" Critical Lagic TMX Integration
Login

_=| Automation

[Z 2] Allows exporting of scripts from the sum of a path's code snippets.

Y

% Versionne
Provides import/export functionality with a VersionOne Server.

Configured Projects

Agile Requirements Designer is capable of connecting to multiple projects within a single session.
This is done by querying the service for every project the user has access to.

As we know the user may not wish to interact with each project, Agile Requirement Designer only
displays projects which have been configured correctly.

Each project has a list of ‘Entities’, an example would be a test case.
A project is defined as ‘Configured’ if at least one entity is configured correctly.
An entity is defined as configured correctly if

- At least one variable is mapped.
- All ‘Mandatory’ Variables are mapped.

These mappings are the minimum variables that Agile Requirements Designer must handle when
creating these entities, as defined by the server.

Upon first logging into an integration, or if the user has no projects configured correctly, the
following error message is presented and no projects are made visible to the user. Configuring any
project is completed in the ‘General Configuration’ Dialog, which is made easily accessible from this
error message.

It appears you have no correctly
configured projects.

Only correctly configured projects will be
made visible.

“2° Setup Configuration

Configuring an Entity

Version Custom Fields

Block Custom Fields Mapping 0 Block | 0 Path | O Flow |!
" 4 Projects
Stored Path Custom Fields
> & ARD: ARD_Projectl Field Name ~ Technical Name Mandatory? Type AgileDesigner Field Name View Valid Values -
GIT File Status > .
ira @ TP: Testing Projec
Team Foundation Server 0 Issue: Task 2 Sprint customfield 10016 7] aray | ~~<nonesee - L
0 Issue: Sub-task
Sprint Boards 0 Issue: Story 3 Reporter reporter user [~~<nones e -
Connectors Options g issue:l:ug 4 Proity priority I8 pricrity | e<nonesere [——
Default Path Types SSUE: Epic
= 0 Iisue Test Case 5 Linked Issues issuelinks B atray | ~<nones e -
Pins
Test Steps Filter 6 Labels labels] aray | ~m~<nones e -
7 FixVersion/s fixVersions =] array | ~~<none>~e - i

All configuration for entities are handled within the ‘General Configuration’ dialog.
When the dialog first launches, make sure you have the correct integration selected.

The next step is to identify the project you wish to configure. To begin configuring a project, expand
the menu where you will see a list of Entities you are able to

The first decision to make when configuring an entity is to decide what object this is equivalent to
within Agile Requirements Designer. We have three object types to choose from

- Block
- Path
- Flow

In certain Integrations Agile Requirements designer is able to make this decision for you and limit the
configuration to a single object type. In the case of others, you will be presented with all the options
to choose.

In our example, we can see that we want to configure a ‘Jira Test Case’ in the Project ‘Testing
Project’. A test case makes most sense to configure to a ‘Path’ within Agile Requirements Designer.
Thus, in this example we will only configure within the ‘Path’ configuration tab.

Entity Attribute Mapping

Configuring an Entity means to map each attribute from the server to an attribute within
Agile Requirements Designer.

Version Custom Fields
Block Custom Fields Mapping 0 Block | @ Path | O Flow |
4] Projects | S |
Stored Path Custom Fields —
> & ARD: ARD Projectl Field Name Technical Name Mandatory? Type AgileDesigner Field Name View Valid Values
GIT File Status 3 .
& DP: Demo Project 1 Summary summary v string || Path Name -
Jira 4 & TP: Testing Project
i E R Fa 0 Issue Task 2 Sprint custornfield 10016 [7] armay | ~~<nonesee -
0 Issue: Sub-task
Sprint Boards 0 Issuc Story 3 Reporter reporter user || Jira Username e
Connectors Options 9 lesue Bug 4 Priority prierity o priofity | ~r~<none = || <View valid values> ~
Default Path Types 0 Issue Epic —_— e
@ Issue Test Case 5 LinkedIssues issuelinks] array | ~me<nonesee lerlialichakiees
Pins —_—
Test Steps Filter 6 Labels labels & aray | ~~<nones e -
| e sl
7 FixVersion/s fixVersions] array | ~e<nOn@n =
8 EpicLink customfield_10017 [0 any L [ONES -
9 Description description =] string | Description of Blocks ™
10 Component/s components] array | ~e<nOn@n =
11 Assignee assignee a user | ~ee<noneEee -

For each object type with Agile Requirements Designer has its own list of attributes to choose from.
For example, when configuring an Agile Requirements Designer ‘Path’ we have the attribute named
‘Path Name’, however if we were configuring a ‘Block” we would not have the same option, but
‘Block Name’.

As we can see, to correctly configure a ‘Jira Test Case’ | need to map at least the two
fields, “Summary” and “Reporter”.

We have mapped our “Test Case: Summary” to our “Path Name”.
We have mapped our “Test Case: Reporter” to our “Jira Username”.

We have mapped our “Test Case: Description” to our “Description of Blocks”.

Once we have correctly mapped at least one entity within the project, the project becomes visible to
us within or Connector.

) Configuration = [@ |[5= | | |Jira: hitps://aqiledesigner.atlassian.net
> @ TP: Testing Project
‘C:/Users/tay]ouﬁfDesb«oplconﬁgs/demo.conﬂg @ > 4, My Openlssues
> 4 MyFilters
Version Custom Fields
> 4 Last Updated
Block Custom Fields Mapping 0 Block | 3 Path | 0 Flow |
4 [Projects
Stored Path Custom Fields -
> @ ARD: ARD_Projectl Field Name ~ Technical Name Mandatory? Type ~AgileDesigner Field Name *
GIT File Status >)]
& DF: Demo Project 1 Summary summary string | Path Name -
Jira 4 @ TP: Testing Project
Team Foundation Server 0 Issue: Task 2 Sprint custemfield 10016 [array | ~~<nonesmes -
0 Issue: Sub-task
Sprint Boards 0 Issue: Story 3 Reporter reporter user |Jira Username =
COTIEERE GEilE B) lszue Bug 4 Prioity priority =] priority | ~~<nones -~ -
0 Issue Epic
Default Path Types) A
@ Issue: Test Case 5 Linked Issues issuelinks] array | ~e~<nones e ME
Pins
Test Steps Filter 6 Labels labels] array |~ <nones~e -
7 FixVersion/s fixVersions.] array | ~~<nonesees -
8 EpicLink customfield 10017 [] any | ~o<nones~e -
9 Description description [} string | Description of Blocks ™
10 Component/s components] array | me<nones e -
[l user | wncnones e |-

11 Assignee assignee
4|

Save][Save As][Save&c\nse][Close.

Sub Entities

In some examples just configuring a single entity may not give you the desired results when using
the Integrations. For example, in some instances a “Test Case” is actually made up of multiple
“Steps”. So to export a “Test Case” with multiple “Steps” both Entities must be correctly configured.
The integration with ALM is a good example of this. We have the parent entity “Test” and the child
entity “Design Step”.

Version Custom Fields
Block Custom Fields Mapping

Stored Path Custom Fields ‘ demain (1)
4 [7] catom (5)

GIT File Status Fl TestCaseOptimizatio...
ALM ‘3 design-step
Team Foundation Server © test
TDMI (1)
Sprint Boards 3 catdmdemo (1)
Connectors Options > TDM2 (1)

Default Path Types gtautomation (1)

Fins
Test Steps Filter

Creating Attributes within Agile Requirements Designer

In certain situations, there are attributes for an Entity which has no relevant connection to a variable
in Agile Requirements Designer. A good example of this is a username. | am trying to configure a
“lJira Test Case” and one of the attributes is “Reporter”. We need to provide a person who reported
the test, but Agile Designer Requirement has no appropriate field in the list of options to choose
from.

In this situation we are able to create a variable per ‘Object Type’, Block, Path and Flow.

gCDm’\guration ==
|C:f’Usersjtay]00ﬁfDesktopr()nﬂgs.fdemo.conﬂg E]
Version Custom Fields
4 Add custom field
Block Custom Fields
. Field Mame Default Value Field Association
Stored Path Custom Fields
GIT File Status Jira Username : joshua.taylor@ca.com [[NONE] ']
ALM
Jira
Team Foundation Server
Sprint Boards
Connectors Options
Default Path Types
Pins
Test Steps Filter
Save] [Save As] [Save&close] [Close

For our purposes we are configuring a “Jira Test Case” as a “Path” Object, thus | need to create a
“Stored Path Custom Field”, once saved the new “Custom Field” is available in the drop down.

Valid Values

If an attribute from the server needs to be chosen from a list. Agile Requirements Designer will
display the list.

€ Configuration o |- S
‘C:,'USersftayjoﬂﬁlDesktop,’Conﬂgsfmain.conﬁg E]
Version Custom Fields
Block Custom Fields Mapping 0 Block | @ Path | 0 Flow |
4 [] Projects
Stored Path Custom Field o
Lo > @ ARD: ARD_Projectl Field Name Technical Name Mandatory? Type AgileDesigner Field Name View Valid Values
GIT File Status z) i
> DP: Dema Project 1 Summary summary string | Path Name T
ALM 4 (@ TP: Testing Project
Jira 0 Issue Task 2 Sprint customfield 10016 [7] array | ~~<non@~ =
0 Issue: Sub-task ﬁ
Team Foundation Server @ Issue: Story 3 Reporter reporter user | Jira Username -
Sprint Boards 0 Issue: Bug 4 Priority priority = priority | ~a<nones e <view valid values> ~
Connectors Options @ lssue Epic i i
@ Issue: Test Case 5 Linkedlssues issuelinks] amay | ~e<nongsee <View valid values>
Default Path Types
Test Steps Filter 7 FixVersionfs fid/ersions |} array | sm<nonesee
8 EpicLink custemfield_10017 [C] any e SNIONEZ
9 Description description (=] string | Description of Blocks ol
10 Component/s components] aray | ~ee<none>~er i
11 Assignee assignee (] user | ~ee<none> e -
[Save] [Save As] [Save&c\use] [Close

Export Types

Each integration is capable of exporting items from Agile Requirements Designer to a selected place
on the server side. The type of object Agile Requirements Designer is able to export changes per
Integration. The object Types are ‘Block’, ‘Path’ and ‘Flow.

If the integration you are using is capable of exporting ‘Paths’, you will be able to choose this export
option from ‘Path Explorer’, when clicking the ‘Export Paths’ button you will see a list of applicable
integrations which can export ‘Paths’. The ‘Paths’ must be saved and you must be within the ‘View
Stored Paths’ Screen.

B Path Explorer = [Fr=
Control Dok L] Table View Dock L]
Generate Test Cases Test cases (2)) (36
Stared Path Type: |Test Cases (_:; Block Make fnd TestData Importsnce Observable Blacktype Expected resuts
Fiter: SIS S
. Hove Lowest
Have. Lowest
j\ Want Milk = True Lowest
Hee Lomest
€D Test Case Expont Dislog = o
Want Sugar = Troe Lowest
Export Hove Lowest
Lot ® @ i Senvce Yitualization =
Have Water--Have Milk-Make Tea--7 Steps x Ca Service Vinualization Make Tea Lowest
Have Weter--Have Milk-Don't meke Tea--7 Steps & B raiy End
5 A
ALM Test Cases (GT HP ALM Service)
I
Team Foundstion Server L
el i Automtior
3 VersionOne
Details View Dock o x
Goneral | Details | Settmgs | Modification tistory | Runs | People and Roles | Extemal Links | Automation | Custom Fields | Jobs Fired
Hame: Have Water--Have Mik--Make Tea-7 Steps
Hetes: Stored o3 poth number 1 of 2 using optmizatin typs: Maumel Coverage - All Hodes
Test State: ot Tasted
Test Inportance ¢ Importance override
Blocks Count: 8
Source: Fath Explorer
Details: Stored as path number 1 of 2 using optim(zation type: Maximal Coverage - All Nodes
Shaving Path 1] autof 2 f—
Sort by: |Path length (shartest first))85 | stored in version: [10.02
] | | creseea: Frue Feb 14 10:33:43 2017
& W @ @& &) Modfied: [Tue Feb 14 10:33:43 2017

[

If the integration you are using is capable of exporting ‘Paths’ or ‘Blocks’ you will be able to choose
this export option from the connector panel once you are logged in. If you hover over each button it
will describe which object type you are exporting. The first is to export a ‘Flow’, and the second is
used to export a ‘Block. Please note, not all integrations may offer these export options.

EEE EIE

Exporting

When exporting an object from Agile Requirements Designer there are two main decisions to make.

1) What Entity Type you want to export the Agile Requirements Designer object as.
2) The location where the Entity should be created on the server.

@ AgileDesigner = [@]=]
Jira: https://ag tassian.net
> @ TP: Testing Project sue: Test Case -
s xy ST”] SSSSS Name External Link [#] Expand SubFlow [“lnclude SubFlow [[IPathImage [T| AttachedImages [T TestData [T| Attach "Automation Script Layer” Script
y Fil
4 Last Updated 1 [V] Have Water--Have Milk--Make Tea--7 Steps]]]]]
2 [V] Have Water--Have Milk--Don't make Tea--7 Steps =] = = = =]

The Entity Type selection is drop by the dropdown options and the location is handled by clicking a
location within the servers’ tree structure. Agile Requirements Designer will handle validation once
the user clicks the ‘Ok’ button, various error messages can be presented to the user such as
‘Incorrect Export Location’.

The dropdown options to select an Entity Type will only show correctly configured Entity Types for
the Agile Requirements Designer object type the user is currently exporting. For example, if am
exporting the object type “Paths” from within “Path Explorer” | will only be presented with Entity
types correctly mapped as “Paths”.

Export Options

The user also has a number of extra options when exporting. Most of these are to control if any
attachments should be sent to the server. These can be found as optional tick boxes when exporting.

Block

1) Attached Images — Constructs and attaches images which are attached to the block itself.

1) Path Image — Constructs and attaches the image of the test case in the flow.

2) Expand SubFlow — If the Stored Path utilises subflows, it will use every block from the
subflows.

3) Include SubFlow — If a stored path utilises subflows, it will not use blocks from the subflow,
rather the test case will represent a subflow as a single step.

4) Test Data — Constructs and attaches a CSV of test data for this path.

5) Attach Automation — Constructs and attaches an automation script for a given layer.

1) Flow Image — Constructs and attaches an image of the flow.

Default Export Options

For each possible export option, except attaching automation scripts, it is possible set defaults. If the
user wishes to always attach an image when exporting, this can be set in the ‘General Configuration’
dialog under ‘Connectors Options’'.

a Configuration = |E”El
|C:,.I'Users,l’tayjoUﬁfDesI-rtopj’Conﬁgs{main.conﬂg G
Version Custom Fields N

Block Customn Fields S
Stored Path Custom Fields [T] Default Export Include SubFlows:
GIT File Status Default Export Expand SubFlow:
ALM [T] Default Export Image:
Jira [] Default Export Attached Images:

Sprint Boards ["] Default Export Test Data: =
Connectors Options [T] Default Export Test Scripts: —
Default Path Types Default Block Export Type: ’ ']

FL Default Path Export Type: [Issue: Test Case "]
Test Steps Filter Default Flows Export Type: ’ v] A

[Save H Save As ”Save&tlose” Close l

