

 CA Test Data Manager
4.8.1

 FDM Scaled Masking
 Benchmarking and Best

Practice

Version: 1.6
Date: Wednesday, 8th January 2020
Authors: Keith Puzey, Abderrahmane Zahrir, Walter Guerrero, Salvator Pilo

1

Contents
1 Masking and architectural considerations 3

TDM Masking Deployment and sizing 4

TDM Masking Components explained 4

Sizing Considerations 5

2 Masking very large tables 6

3 Masking Best practices 7

Masking Examples 7

Best Practice and Advice: 7

4 Environment 8

TDM Environment 8

Target Database 8

FDM Configuration Settings 8

5 Masking Results 9

6 Database Considerations 10

Oracle 10

TEMP Tablespace 10

UNDO Tablespace 11

Oracle DB Instance Parameters 11

Microsoft SQL Server 11

Database Files 11

TEMP Database 12

Shrink Database Files 12

7 Database Statistics 12

Oracle Statistics 12

Troubleshooting Oracle Errors 13

2

1 Masking and architectural considerations

Scalable masking from the TDM Portal was made available with TDM 4.8. This new
feature allows masking jobs to be automatically split across multiple masking engines which
are deployed within Docker containers. By utilising additional masking engines a masking
job is split into parallel threads which reduces the overall masking time.

The architecture diagram below shows the overall TDM architecture when using
scaled masking.

When calculating overall masking time you should consider the following:

1. Over​all masking time is dependent on the number of individual cell updates to be
masked not just the number of rows. As an example a table with 100 rows and 10
columns will update 1000 cells.

2. Different types of masking function and the use of large seedlists can affect the
overall masking time

3. Performance and configuration of the target database can affect the time to complete
masking

4. An average 4 Million cell updates per minute can be expected on a moderate size
environment. More details can be found in the results section of this document.

The scaled masking feature will dynamically split a masking job to utilise separate

FDM engine instances for scale out masking of large tables and it can also be used to split
very large tables to utilise multiple threads within a single FDM engine instance. The
following explains the default rules when using scaled masking:

1 Each Data Source within a masking job will be allocated a separate FDM
masking engine instance

2 Each FDM Docker container will run 4 FDM masking engine instances by
default

3 The following setting in the application.properties file can be used to control
when an individual table is also assigned a separate FDM engine instance. The

3

default setting is 1 Million so any individual table with over 1 million rows
will use a separate FDM instance.

i. tdmweb.TDMMaskingService.tableTaskRowThreshold

4

TDM Masking Deployment and sizing

The TDM Docker masking containers can generate a high load when running multiple
masking jobs so it is recommended to separate the docker masking engines from other TDM
components. In the sample architecture below the TDM Portal / Messaging and OrientDB
containers are deployed separately from the masking containers. The masking containers are
configured to communicate with the messaging container on the primary TDM server.

TDM Masking Components explained

TDM Portal TDM Manager and UI Server

TDM Repository Oracle Database storing TDM data

OrientDB TDM Internal Database (Models and Find and Reserve data)

Messaging Container Communication bus between TDM Portal and Masking engines

Masking Engines
Container

Docker container hosting FDM Engines

FDM Engine Instances Each Masking engine container can run four separate masking
engine instances

FDM Processes Each FDM Masking engine can spawn additional FDM Processes
when using the large table masking functionality

5

Sizing Considerations

A standard masking container masking a single table will utilise approximately 1.5Gb
of memory and 500 millicores (½ CPU). TDM will utilise separate FDM masking engines
instances for each table that has over 1 million rows.

The following table shows how memory and CPU consumption increases as more
FDM masking engines are used:

Number of Tables Memory Usage (GB) CPU Usage (millicores)

1 1.3 550

2 1.75 2070

3 2.9 3100

4 3.5 4100

When using the large table splitting functionality to mask very large tables the

masking job will run on a single masking engine but will spawn multiple FDM processes and
this will increase the CPU Usage, generally each FDM process will consume 1000 millicores
(1 CPU)

6

2 Masking very large tables

From ​TDM 4.8.135 and above, ​when masking a very large table with a primary key or
a unique index, you can improve performance by using the following options.

LARGETABLESPLITENABLED

Enables large tables processing.
Set this parameter to Y to enable, and to N to disable.
Default: N
LARGETABLESPLITSIZE

Defines the minimal number of rows for Fast Data Masker to start using large table
processing.

Default: 1000000

With this setting, Fast Data Masker processes large tables by generating several
blocks, with each block containing ​LARGETABLESPLITSIZE​ rows to be processed.

The existing option ​PARALLEL​ defines the number of threads that can run
concurrently to process the blocks. If the ​PARALLEL​ option is not set, and you enable
LARGETABLESPLITENABLED​, then ​PARALLEL​ is set to 10 by default. If there are
more blocks than threads, then remaining blocks are queued for processing and wait for a
thread to become available.

The Parallel option is used to define the maximum number of separate threads that the
FDM instance will utilise, each thread will consume additional CPU cycles as can be seen
from the table in the masking example section.

7

3 Masking Best practices

Masking Examples

Data Sources 1 1 1 1

Number of Tables 10 10 1 1

Rows to mask per
table

500,000 1,000,000 10,000,000 100,000,000

Columns to mask per
table

10 10 10 10

FDM Engine instances
used

1 10 1 1

Large Table Split N N N Y

Number of FDM
threads per instance

1 1 1 8

Cells to Mask 50,000,000 100,000,000 100,000,000 1,000,000,000

Estimated Masking
Time

1 Minute
14 seconds

2 Minutes 15
Seconds

22 Minutes 1 Hour 7
Minutes

Cells Masked Per
Minute

4,166,666 44,444,444 4,545,455 15,151,515

Memory Usage (Gb) 1.3 8 1.8 2

CPU Usage (mcores) 330 7000 1000 5000

Note: 1000 mcores = 1 CPU core

Best Practice and Advice:
When masking a large amount of data it is essential that the Database server has been configured with the

appropriate amount of temporary and data storage

A FDM Docker container by default will run between one and four docker instances. A single FDM instance
will utilise approximately 1.8Gb and this can grow to over 4Gb when four instances are in use.

When utilising the FDM parallel option to split very large tables and run these are separate threads from an
FDM instance the Docker container will consume approximately the same amount of memory but the container
will consume additional CPU cores

8

4 Environment

TDM Environment

 TDM 4.8.1 deployed using Docker containers running on RedHat 7.6.1810 with three scaled masking
engines / 4 CPU’s and 16 GB Memory. The TDM 4.8.1 FDM Docker containers were also deployed to a
CentOS 6.9 with ten scaled masking engines/ 8 CPU’s and 32 GB Memory.

Target Database
Oracle Database 19c Standard Edition Release 19.0.0.0.0 / Windows 4 CPU’s / 16 GB Memory

50 Tables each with 100 Columns, Tables have 1 Million rows and 1 Table with over 100 Million rows

Additionally an Oracle 11.2 Enterprise Editions release 11.2.0.1/Linux with 8 CPU’s / 16 GB Memory

FDM Configuration Settings
BATCHSIZE=37500

BLANKSASNULLS=Y

COMMIT=37500

EMPTYASNULL=Y

FETCHSIZE=75000

GETTABLEROWCOUNTS=N

ORDERBY=N

PARALLEL=10

LARGETABLESPLITENABLED=Y

9

 5 Masking Results

 Broadcom Lab environment
Masking functions used

FIXED
HASHLOV
TRANSLATE

Number
of Data
Sources

Number
of

Tables

Number of
Rows being

Masked

Number of
Columns

being
Masked

Time
Taken

(Minutes)

Rows
Masked

per minute

Cells
Masked per

minute

Number
of FDM
Instances

Total Cells
Masked

1 1 1,000,000 5 1.2 833,333 4,166,667 1 5,000,000
1 1 1,000,000 10 1.98 505,051 5,050,505 1 10,000,000
1 4 4,000,000 40 2.68 1,492,537 22,276,676 4 16,000,000
1 5 5,000,000 50 3.57 1,400,560 26,129,855 5 25,000,000

1 1 13,000,000 10 32 406,250 4,062,500 1 130,000,000
1 1 100,000,000 10 67 1,351,351 13,513,514 1 1,000,000,000

 Customer Environment
 RHEL Enterprise V7.x

6 vCPU
50 GB of RAM
400 GB of local disk allocated to /TDM

Number
of Data
Sources

Number
of

Tables

Number of
Rows being

Masked

Number of
Columns

being
Masked

Time
Taken

(Minutes)

Rows
Masked

per
minute

Cells
Masked

per minute

Number
of FDM
Instances

Total Cells
Masked

1 1 9,493,732 12 20 474,687 5,696,239 1 113,924,784
1 5 229,982,033 67 348 658,603 10,060,611 5 3,501,092,768

10

6 Database Considerations

 ​As the number of rows to be masked start getting into the millions of rows, the users need to take into
account the following database conditions.

Oracle
For a successful masking of very large tables (tables over 100 million rows) in Oracle, we would suggest that

you follow the recommendations:

TEMP Tablespace

To improve the performance of the temporary segment management within a temporary tablespace, the
following recommendations are suggested.

Create a new “BIG FILE” temporary tablespace as the example shown:

CREATE ​BIGFILE​ TEMPORARY TABLESPACE "TEMP01"

TEMPFILE '/opt/ora112/oradata/masker/temp0101.dbf' SIZE 15G

AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL ​UNIFORM
SIZE 264k​;

In the above example, we need to take into account the value of the “uniform size”, where in our example is
264k. The formula is UNIFORM as follows (N* S + B).

Where

● N = positive number
● S = SORT_AREA_SIZE = 262144 = 264k
● B = DB_BLOCK_SIZE = 8192 (this is usually the default value) = 8k

So the formula breaks down to (1 * 264 + 8), which equals 264k. This should be the minimum recommended
value, since your “SORT_AREA_SIZE” value will drive this value.

This temporary tablespace is useful for the management of the large number of temporary segments that will
be used during the masking process, as well as utilizing a “BIGFILE” definition for generating a very large file
that can grow to a maximum size of 32TB (per 8k db block size).

Please make sure that the user running the masking jobs in the Oracle database instance, defaults to this new
temporary tablespace with the following command:

Alter user <masking_user>

Temporary tablespace temp01;

11

UNDO Tablespace

You might need to set the following parameter in the UNDO tablespace to work in coordination with the
temporary segments management.

CREATE​ ​BIGFILE ​UNDO​ ​TABLESPACE​ "UNDOTS2" ​DATAFILE
'/opt/ora112/oradata/masker/undots101.dbf'​ ​SIZE​ 100G ​AUTOEXTEND​ ​ON​ ​NEXT​ 100M ​MAXSIZE
UNLIMITED​ ​RETENTION GUARANTEE;

ALTER SYSTEM​ set undo_tablespace=UNDOTS2 scope=both sid='*';

DROP TABLESPACE ​UNDOTBS1;

 This will allow the Oracle database instance to automatically manage the segments in the UNDO tablespace,
just like what is happening in the BIGFILE temporary tablespace that we created.

The recommendation is to change the system level “undo_tablespace” parameter to reflect the newly created
undo tablespace and drop the prior undo tablespace.

Oracle DB Instance Parameters

The following database instance parameters need to be modified to at least the values below or higher.

● SORT_AREA_SIZE=262144
● SORT_AREA_RETAINED_SIZE=262144
● UNDO_MANAGEMENT=AUTO
● UNDO_RETENTION=75000
● RESULT_CACHE_MAX_SIZE=0
● RESULT_CACHE_MODE=AUTO

For the “undo_retention” value, you will arrive at the required value by running the following query

select max(maxquerylen) from v$undostat;

select (<maxquerylen-value>/60)/60 query,(25000/60)/60 retention from dual;

Where the “maxquerylen” value will be provided to the second query, this will provide you with a number for
the “undo_retention” value.

12

Microsoft SQL Server
Database Files
As the database is defined, the LOG files need to be at 80% of the ROWS files.

TEMP Database
Make sure that the TEMP database has at least 90% of the available capacity of the client’s database where the large
tables to be masked are located.

Shrink Database Files
Prior to executing the masking in the large tables, perform a database shrink command via the SSMS and select the

client database or TEMP database to shrink, you can also issue the T-SQL command “

SELECT​ name,
file_id,
type_desc,
size​ * 8 / 1024 [TempdbSizeInMB]
FROM​ tempdb.sys.database_files
ORDER BY ​type_desc ​DESC​,
file_id;

After you have reviewed the database size, you can issue the “​DBCC SHRINKFILE(temp,10)”.

13

7 Database Statistics
Oracle Statistics
The following queries need to be executed to find out the collection of statistics at the database instance (SYS –

DBA_*) objects and the fixed (X$) objects loaded into the SGA.

prompt 'Statistics for SYS tables'

SELECT NVL(TO_CHAR(last_analyzed, 'YYYY-Mon-DD'), 'NO STATS') last_analyzed, COUNT(*)
dictionary_tables

FROM dba_tables

WHERE owner = 'SYS'

GROUP BY TO_CHAR(last_analyzed, 'YYYY-Mon-DD')

ORDER BY 1 DESC;

prompt 'Statistics for Fixed Objects'

select NVL(TO_CHAR(last_analyzed, 'YYYY-Mon-DD'), 'NO STATS') last_analyzed, COUNT(*) fixed_objects

FROM dba_tab_statistics

WHERE object_type = 'FIXED TABLE'

GROUP BY TO_CHAR(last_analyzed, 'YYYY-Mon-DD')

ORDER BY 1 DESC;

If you find out that the statistics are old, you need to run the following Oracle packages.

-- gathering statistics for SYS

exec dbms_stats.gather_schema_stats('SYS');

exec dbms_stats.gather_database_stats (gather_sys=>TRUE);

exec dbms_stats.gather_dictionary_stats;

-- gathering statistics for fixed objects

exec dbms_stats.gather_fixed_objects_stats;

If you need to re-compute the statistics for the given table (greater than 100m rows), you can use the following Oracle
package

exec DBMS_STATS.GATHER_TABLE_STATS (ownname => '"LARGESET"',tabname => '"CDBAADMTST"',
estimate_percent => 50);

14

Troubleshooting Oracle Errors
If you are encountering ORA-30036 errors, you can use the following scripts to help you solve this type of

ORA error.

I)​ Check free space in the undo tablespace​.

select sum(bytes) from dba_free_space where tablespace_name='<undo tablespace>';

select sum(bytes) from dba_data_files where tablespace_name='<undo tablespace>';

II)​ Check whetherUndo tablespace datafile is autoextensible.

select autoextensible from dba_data_files where tablespace_name='<undo tablespace>;

III)​ Check whether unexpired extents are available in the same segment as the current transaction.

SELECT DISTINCT STATUS, SUM(BYTES), COUNT(*) FROM DBA_UNDO_EXTENTS GROUP BY
STATUS;

In case no undo space is left, then we try to use unexpired extents (Undo Extent required to honor
UNDO_RETENTION).

This sometimes results in ORA-1555 errors. Now if you do not have unexpired extents also, then you need to
add space to undo tablespace.

IV)​ Check the status of the Undo extents.

SELECT DISTINCT STATUS, SUM(BYTES), COUNT(*),TABLESPACE_NAME FROM
DBA_UNDO_EXTENTS GROUP BY STATUS,TABLESPACE_NAME;

If there are no Expired extents that can be re-used then its possible to encounter ORA-30036. If we see mostly
Active extents then this is most likely Undo sizing issue. In this case, check if Undo Tablespace is correctly sized.
The following query calculates the number of bytes needed (based on the current workload):

 SELECT (UR * (UPS * DBS)) + (DBS * 24) AS "Bytes"

FROM (SELECT value AS UR FROM v$parameter WHERE name = 'undo_retention'),

(SELECT (SUM(undoblks)/SUM(((end_time - begin_time)*86400))) AS UPS FROM v$undostat),

(select block_size as DBS from dba_tablespaces where tablespace_name=

(select value from v$parameter where name = 'undo_tablespace'));

*(UR) UNDO_RETENTION in seconds

*(UPS) Number of undo data blocks generated per second

*(DBS) Overhead varies based on extent and file size (db_block_size)

Sizing an UNDO tablespace requires three pieces of data.

(UR) UNDO_RETENTION in seconds

15

(UPS) Number of undo data blocks generated per second

(DBS) Overhead varies based on extent and file size (db_block_size)

The undo space needed is calculated as:

UndoSpace = UR * (UPS * DBS)

Two of the pieces of information can be obtained from the instance configuration: UNDO_RETENTION and
DB_BLOCK_SIZE. The third piece of the formula requires a query being run against the database. The
maximum number of undo blocks generated per second can be acquired from V$UNDOSTAT.

 The following formula calculates the peak undo blocks generated per second:

SELECT undoblks/((end_time-begin_time)*86400) "Peak Undo Block Generation" FROM v$undostat
WHERE

undoblks=(SELECT MAX(undoblks) FROM v$undostat);

Column END_TIME and BEGIN_TIME are DATE data types. When DATE data types are subtracted, the
resulting value is the # of days between both dates. To convert days to seconds, you multiply by 86400, the
number of seconds in a day (24 hours * 60 minutes * 60 seconds).

The following query calculates the number of bytes needed to handle a peak undo activity:

SELECT (UR * (UPS * DBS)) AS "Bytes"

FROM (SELECT value AS UR FROM v$parameter WHERE name = 'undo_retention'),

(SELECT undoblks/((end_time-begin_time)*86400) AS UPS

FROM v$undostat

WHERE undoblks = (SELECT MAX(undoblks) FROM v$undostat)),

(SELECT block_size AS DBS

FROM dba_tablespaces

WHERE tablespace_name = (SELECT UPPER(value) FROM v$parameter WHERE name =
'undo_tablespace'));

For 10g and Higher Versions where Tuned undo retention is being used, please use below query:

SELECT (UR * (UPS * DBS)) AS "Bytes"

FROM (select max(tuned_undoretention) AS UR from v$undostat),

(SELECT undoblks/((end_time-begin_time)*86400) AS UPS

FROM v$undostat

WHERE undoblks = (SELECT MAX(undoblks) FROM v$undostat)),

(SELECT block_size AS DBS

16

FROM dba_tablespaces

WHERE tablespace_name = (SELECT UPPER(value) FROM v$parameter WHERE name =
'undo_tablespace'));

17

