

NNiimmBBUUSS

Perl extension for the
NimBUS Message Bus

Nimbus Software as

 1/20

Perl extension for NimBUS Nimbus Software AS

Contents

1. Introduction ..5

2. Concept...5

2.1. Overview... 5

3. Nimbus – API..7

4. NimBUS – PDS ...11

5. NimBUS – Session...12

6. Nimbus CFG ...15

7. Terminology ...18

7.1. License System.. 18

7.2. Nimbus Manager.. 18

7.3. Nimbus Service Controller ... 18

7.4. NimBUS domain... 18

7.5. Robot .. 18

7.6. Controller.. 18

7.7. Spooler ... 19

7.8. Hub.. 19

7.9. Probe(s) .. 19

7.10. NimBUS Address... 19

7.11. Message model .. 19

7.12. Prog. Interfaces.. 20

7.13. Gateways .. 20

7.14. Perl .. 20

 2/20

Perl extension for NimBUS Nimbus Software AS

Nimbus Software AS

Nimbus Software AS is an independent software consulting and development
company located in Oslo, Norway. The company has an extensive knowledge of
managing systems, applications and networks in client/server environments. All
consultants and system developers are specialists in advanced UNIX and
Windows NT technologies and have an in depth understanding of the core
technical foundation of these platforms.

Nimbus Software AS
Olaf Helsets vei 6

N-0621 Oslo, Norway
Phone: +47 2262 7160

Fax: +47 2262 7161

e-mail: nimsoft@nimsoft.no
http://www.nimsoft.no

 3/20

Perl extension for NimBUS Nimbus Software AS

Nimbus Design Strategies

Based on years of development experience and installations of systems
management solutions world-wide, spanning global enterprises to small and
medium sized companies, we have focused on the following areas when
developing the Nimbus Technology:

• Minimum impacts on system resources like CPU, disk and memory.

• Intelligent message handling to avoid unnecessary networks traffic, i.e.
message suppression.

• 100% guaranteed message transfer - no lost messages. Lost messages is
typically a problem using unreliable network management protocols like
SNMP or in situations where there is network failure.

• Secure message transfer between Robot and receiver by use of
cryptographic tools like kerberos or other proprietary protocols.

• The ability to communicate across Firewalls.

• Support for dialled-up ISDN communication.

• Fast and easy deployment, providing rapid return on investment.

• Preserves technology investments by leveraging existing enterprise
management solutions as well as integrating existing in-house developed
management solutions.

• Scalability, both horizontally and vertically.

• Ease of customisation and development of in-house Robot Probes without
having to learn complex, inadequate and proprietary languages.

 4/20

Perl extension for NimBUS Nimbus Software AS

1. Introduction

Nimbus Software AS has designed the message-bus (NimBUS) to be as open as
possible with respect to the various (and specific) user needs. In order to be able
to interface the NimBUS, extensions to existing programming environments are
available. The following programming languages/environments are currently
supported:

• Perl5 (WIN32,UNIX)
• C/C++ using dynamic shared libraries (or as a COM object for WIN32)
• Visual Basic or VB Scripts

This document describes how you can build your own NimBUS Probes using
Perl.

2. Concept

This section describes the NimBUS Concept.

2.1. Overview

The NimBUS

Probe
A program designed specifically towards a certain task, such as monitoring an
application, a filesystem, a database etc. or by providing services as a traditional
server. The probe may be designed to behave as a timed probe by running once
and terminating upon completion of the task, or it may be designed as daemon
probe by running constantly with some kind of waiting mechanism built into it. The
daemon probes are monitored by the robot controller, and is restarted if it
terminates. Probes ca be developed using Perl, Visual Basic or C/C++

 5/20

Perl extension for NimBUS Nimbus Software AS

Robot
The entry-point for a system (host) into NimBUS. The Robot contains all
necessary infrastructure. Its primary task is to maintain and manage as set of
probes, and to collect messages sent (published) by its clients. The Robot
consists of a controller and a spoolerspooler . A Robot will attempt to establish
contact with a hub during startup-time. The NimBUS robot will automatically
detect hubs in the network segment, and connect to one of these (unless
specifically specified) during its initialisation process.

HUB
Is the central connection point for a set of robots. It receives all messages posted
(sent) by any client (usually via the spooler) and distributes these messages to a
set of subscribers of the publishing-subject. It keeps track of the NimBUS
addresses in the domain of hubs, as well as information about all its robots.

 6/20

Perl extension for NimBUS Nimbus Software AS

3. Nimbus – API

Nimbus::API - Perl extension for the Nimbus Message Bus

SYNOPSIS
 use Nimbus::API;

 nimInit(iFlag);
 nimEnd (iFlag);

my($iRet,$szIp,$iPort) = nimGetNameToIp($szName);
my($iRet,$szName) = nimGetIpToName($szIp,$iPort);

my($szSup) = nimSuppToStr($bHold,$iNumber,$iSeconds,$szSuppKey);
my($iRet,$szId) = nimAlarm($iLevel,$szMsg[,$szSub[,$szSup[,$szSrc]]]);
my($iRet,$szId) = nimPostMessage($szSubject,$iLevel,$szSup ,$udata);
my($iRet,$rdata) = nimRequest($szAddr,$iPort,$szCmd,$udata [,$iSec]);
my($nims) = nimSession ($szAddr, $iPort);

nimSessionFree ($nims);

my($iRet,$rdata) = nimSessionRequest ($nims,$szCmd,$udata [,$iSec]);
my($iRet) = nimSessionSend ($nims,$szCmd,$udata);
my($iRet) = nimRegisterProbe ($szProbeName,$iPort);
my($iRet) = nimUnRegisterProbe ($szProbeName);
my($rc,$value) = nimGetVarInt($symbol);
my($rc) = nimSetVarInt($symbol,$value);
my($rc,$value) = nimGetVarStr($symbol);
my($rc) = nimSetVarStr($symbol,$value);

my($login) = nimLogin($user,$password);

nimLogSet($szFile,$szPrefix,$iLevel,$iFlags);
nimLogSetLevel($iLevel);
nimLog ($iLevel,$szString);
nimLogClose();

my($cfg) = cfgOpen ($szFile,$bReadOnly);
my($iRet) = cfgClose ($cfg);
my($iRet) = cfgSync ($cfg);
my($list) = cfgKeyList ($cfg,$szSection);
my($iRet) = cfgKeyWrite ($cfg,$szSection,$szKey,$szValue);
my($szValue) = cfgKeyRead ($cfg,$szSection,$szKey);
my($iRet) = cfgKeyRename ($cfg,$szSection,$szOld,$szNew);
my($iRet) = cfgKeyDelete ($cfg,$szSection,$szKey);
my($list) = cfgSectionList ($cfg,$szSection [,$bRecurse]);
my($iRet) = cfgSectionDelete ($cfg,$szSection);
my($iRet) = cfgSectionRename ($cfg,$szOld,$szNew);
my($iRet) = cfgSectionCopy ($cfg,$szFrom,$szTo);
my($list) = cfgListRead ($cfg,$szSection);
my($iRet) = cfgListWrite ($cfg,$szSection,$szKey,$list);
my($iRet) = cslMatchRegExp ($szTargetString, $szMatchExpr);

 7/20

Perl extension for NimBUS Nimbus Software AS

DESCRIPTION
This module will wrap the Nimbus Message Bus (NimBUS), easing
the development of probes written in Perl. The functions available in this
module are data manipulating routines (pds - Portable Data Stream) and the
functions for sending an Alarm, posting a message and sending a request
taken from the Nimbus API.

Conventions used when prototyping the functions:

 sz - prefix for string
 i - prefix for integer (number)
 b - prefix for boolean (true(1)/false(0))

 iRet is the Return Code (integer)

The client functions:

Initialize the NimBUS
nimInit(iFlag);
(This method is called upon loading, and is therefore not

necessary.)

• Create suppression definition string.
my($szSup) = nimSuppToStr($bHold,$iNumber,$iSeconds,$szSuppKey);

$szSup = nimSuppToStr(0,0,0,"FileSystem|$name");
$szSup = nimSuppToStr(1,0,60,"");

• Post alarm message
my($iRet,$szId) = nimAlarm($iLevel,$szMsg[,$szSub[,$szSup[,$szSrc]]]);

iLevel is the alarm level (see Level constants).
szMsg is the alarm message.
szSub is the subsystem identifier eg. 1.2.3 (default: 1.1).
szSup is the suppression definition (default: none).
szSrc is the alarm source (default: localhost).

• Post user defined message
my($iRet,$szId) = nimPostMessage ($szSubject,$iLevel,$szSup ,$udata);

szSubject is the post channel.
iLevel is the post priority (see Level constants).
szSup is the suppression definition.
udata is a PDS record with user-data.

 8/20

Perl extension for NimBUS Nimbus Software AS

• Map NimBUS name to host-ip and port
my($iRet,$szIp,$iPort) = nimGetNameToIp ($szName);

szName is the official NimBUS name (of probe, hub,...).

• Map host-ip and port to NimBUS name
my($iRet,$szName) = nimGetIpToName ($szIp,$iPort);

szIp is the hostname or host-ip address of target system.
iPort is the port number of the targeted service.

• Send request over the NimBUS to a server.
my($retdata) = nimRequest ($szAddr, $iPort, $szCmd, $udata, $iSec);

szAddr is the host-name or host-ip.
iPort is the service port (see nimGetNameToIp).
szCmd is the service command.
udata is the PDS record with user data (see pdsCreate).
iSec is time in seconds to wait for reply.

retdata is the return PDS record.

The constants:

 Level constants:
 NIML_CLEAR (0)
 NIML_INFO (1)
 NIML_WARNING (2)
 NIML_MINOR (3)
 NIML_MAJOR (4)
 NIML_CRITICAL (5)

The log functions:

• Initialize the log system.
nimLogSet ($szFile, $szPrefix, $iLevel, $iFlags);

szFile is the logfile name (or "stdout").
szPre is the message prefix (incase of multiplexed log).
iLevel is the current loglevel (levels <= iLevel are logged).
iFlags is currently not supported...

• Set new loglevel
nimLogSetLevel ($iLevel);

iLevel is the new loglevel.

• Write to log
nimLog ($iLevel, $szString);

iLevel is the loglevel (0 is system errors).
szString is the message to log.

• Close current log.
nimLogClose ();

The config-file functions:

• Open config-file

my($cfg) = cfgOpen ($szFile, $bReadOnly);

• Close config-file
my($iRet) = cfgClose($cfg);

• Synchronize the config-file (buffer) to disk.
my($iRet) = cfgSync($cfg);

• Write value to config-file.
my($iRet) = cfgKeyWrite ($cfg,$szSection,$szKey,$szValue);

• Read value from config-file.
my($szValue) = cfgKeyRead ($cfg,$szSection,$szKey);

• List array of keys in section from config-file.
my($list) = cfgKeyList ($cfg,$szSection);

 9/20

Perl extension for NimBUS Nimbus Software AS

• Rename key in section from config-file.
my($iRet) = cfgKeyRename ($cfg,$szSection,$szOld,$szNew);

• Delete key in section from config-file.
my($iRet) = cfgKeyDelete ($cfg,$szSection,$szKey);

• Read array of values from config-file.
my($fsList) = cfgListRead ($cfg,$szSection);

• Write array of values to config-file.
my($iRet) = cfgListRead ($cfg,$szSection,$szKeyBody,$List);

• Read array of sections in config-file.
my($list) = cfgSectionList ($cfg,"setup");

• Delete named section
my($iRet) = cfgSectionDelete ($cfg,$szSection);

• Rename named section
my($iRet) = cfgSectionRename ($cfg,$szOld,$szNew);

• Copy named section to a new section
my($iRet) = cfgSectionCopy ($cfg,$szFrom,$szTo);

• Check string with pattern matching or reg.exp string
if (cslMatchRegExp("help me now","*me*")) {

print "Found match...";
}

The data manipulation functions:

 PDS *pdsCreate ();
 int pdsDelete (PDS *pds);
 int pdsReset (PDS *pds);
 int pdsRewind (PDS *pds);
 void pdsDump (PDS *pds);
 int pdsSearch (PDS *pds, char *key);
 int pdsPut_INT (PDS *pds, char *key, int i);
 int pdsPut_PCH (PDS *pds, char *key, char *s);
 int pdsPut_PDS (PDS *pds, char *key, PDS *p2);
 int pdsGet_INT (PDS *pds, char *key);
 char *pdsGet_PCH (PDS *pds, char *key);
 PDS *pdsGet_PDS (PDS *pds, char *key);

 my($rc,$key,$type,$size,$data) = pdsGetNext(PDS *pds);

AUTHOR
 Nimbus Software AS. mailto:nimsoft@nimsoft.no,
 http://www.nimsoft.no

SEE ALSO
 perl(1).

 10/20

Perl extension for NimBUS Nimbus Software AS

4. NimBUS – PDS

Nimbus::PDS - Object interface wrapping the PDS

SYNOPSIS
 use Nimbus::PDS

 my $pds = Nimbus::PDS->new([$pdsData]);

 $pds->data();
 $pds->dump();
 $pds->rewind();
 $pds->reset();
 $pds->remove($name);
 $pds->string($name,$value);
 $pds->number($name,$value);
 $pds->putString($name,$value);
 $pds->putNumber($name,$value);
 $pds->put ($name,$value [,$type]);
 $pds->putTable ($name,$value [,$type]);
 $value = $pds->getTable ($name [,$type]);
 $value = $pds->get ($name [,$type]);
 $hptr = $pds->asHash();

DESCRIPTION
 The PDS object is a class wrapper around the Nimbus::API PDS
 functions.

CLASS METODS

• get the get method....

• Put The put method....

• Dump The dump method....

• PutTable The putTable method....

• asHash

 The asHash method will produce an associative array (hash) by
 traversing the PDS. If the PDS contains other PDS's, then the
 hiearchy will be preserved by nesting.

 Example:

 use Nimbus::PDS;
 my $pds = Nimbus::PDS->new();
 $pds->putString("name","Donald Duck");
 $pds->putString("age",60);

 my $h = $pds->asHash();
 print "name: $h->{name}, age: $h->{age}\n";

AUTHOR

 Nimbus Software AS.
 mailto:nimsoft@nimsoft.no
 http://www.nimsoft.no
SEE ALSO

Nimbus::API, perl(1).

 11/20

Perl extension for NimBUS Nimbus Software AS

5. NimBUS – Session

Nimbus::Session - Object interface ontop of the NimBUS

SYNOPSIS
 use Nimbus::Session

 my $nim = Nimbus::Session->new($id, [$session]);

 $nim->subscribe ($subjects [,hubip [,hubport]]);
 $nim->attach ($queue [,hubip [,hubport]]);
 $nim->dispatch ($timeout_ms [,$breakOnEvent]);
 $nim->addCallback ($command [,$format [,$security_level]]);
 $nim->server ([$port, [$timeoutCB [,$restartCB]]]);
 $nim->setInfo ($version,[$company]);
 $nim->setRetryInterval ($intervalAsSeconds);
 $nim->setPostCallback ($function_name);

DESCRIPTION
 The Session object is a class wrapper around the Nimbus::API
 module, and raises the abstraction layer from the low-level
 NimBUS API. You may create a server (TCP/IP), that accepts
 commands over the port(s) registered by the $nim->*server*
 method. The command will be dispatched by the command dispatcher
 to the function with the same name as the command. A command
 without a matching function causes an abort situation. Another
 feature of this class is the connection possibilities to a
 NimBUS hub. The functions $nim->*attach* and $nim->*subscribe*
 both connects to the hub and receives postings over the
 hubpost function, see the CALLBACKS manpage.

 12/20

Perl extension for NimBUS Nimbus Software AS

 subscribe
 The subscribe method....

 attach
 The attach method....

 dispatch
 The dispatch method....

 addCallback
 The addCallback method....

 server
 The server method....

 When called without parameters the constant NIMPORT_ANY will be
 used. An arbitrary port will be tied to the session. The example
 below illustrates a server that responds to various events
 dispatched by NimBUS.

 Example:

 use Nimbus::Session;

 ##
 # Various callbacks...
 ##
 sub testit {
 my ($hMsg,$level,$name,$age) = @_;
 nimLog(1,"(testit) - level: $level, name: $name, age: $age");
 nimSendReply($hMsg);
 }

 sub debug {
 my ($hMsg,$level) = @_;
 imLog(1,"(debug) from $debug to $level");
 nimSendReply($hMsg);
 }

 sub timeout {
 nimLog(1,"(timeout) - got kicked");
 }

 sub restart {
 nimLog(1,"(restart) - got restarted");
 }

MAIN ENTRY

 sub testit {

 $sess = Nimbus::Session->new("perl");

 $sess->setInfo("1.0","Nimbus Software as.");

 if ($sess->server (NIMPORT_ANY,\&timeout,\&restart)==0) {
 $sess->addCallback ("testit","level,name,age%d");
 $sess->addCallback ("debug", "level%d");
 }else {
 nimLog(0,"unable to create server session");
 }

 $sess->dispatch();

 getSessionList

 The getSessionList method....

CALLBACKS
 The "hubpost" callback function synopsis:

 Whenever 'attach' and 'subscribe' sessions are created, the
 postings will be delivered over the hubpost function. It must be
 declared. This example shows a *very* simple callback function
 looks like, it merely dumps (using pdsDump) the user-data block
 of the posting. It would be normal to extract the values from
 the *$udata* parameter, as 'subject'. The parameters passed to
 the *hubpost* function are:

 13/20

Perl extension for NimBUS Nimbus Software AS

 $hMsg - Message handle used by nimSendReply.
 $udata - User data block (PDS).
 $full - Complete message block, with embedded udata (PDS).

 sub hubpost {
 my ($hMsg,$udata,$full) = @_;

 $subject = pdsGet_PCH($full,"subject");
 print "The user-data posted under subject: $subject\n";
 pdsDump($udata);

 nimSendReply($hMsg);
 }

The command callback function synopsis:

 Every command added by the addCallback method requires a
 callback function such as the one defined below. The $par1 to
 $parN are specified by the *format* element in the addCallback
 parameter list. The $hMsg is the message handle, and is required
 by the Nimbus::API::nimSendReply function.

 sub <command> {
 my ($hMsg,$par1,...,$parN) = @_;
 nimSendReply($hMsg);
 }

 Example:

 sub debug {
 my ($hMsg,$level) = @_;
 nimLog(1,"(debug) from $debug to $level");
 nimSendReply($hMsg);
 nimLogSetLevel($level);
 }

 $nim->addCallback("debug","level%d");

CHANGES
 Please note that the interface has changed for the following
 methods:

 new([$sesslist]) -> new([$id [,$sesslist]])
 server([$port[,$name[,$cpny[,$vers]]]]) ->
server([$port[,$toutCB[,$restCB]]])

 The changes may cause problems for scripts using the
 Nimbus::Session module prior to version 1.05

AUTHOR

 Nimbus Software AS.
 mailto:nimsoft@nimsoft.no
 http://www.nimsoft.no
SEE ALSO

 14/20

Perl extension for NimBUS Nimbus Software AS

6. Nimbus CFG

SYNOPSIS
 use Nimbus::CFG

 my $cfg = Nimbus::CFG->new(["my.cfg" [,$hptr]]);

 $cfg->open("my.cfg" [,$hptr]);
 $cfg->getValues($hptr);
 $cfg->getKeys($hptr);
 $cfg->getSections($hptr);
 $cfg->setConverter(\&src [,\&dst]);
 $cfg->debug($boolean);
 $cfg->dump($cfg);

DESCRIPTION
 The CFG object is a class wrapper around the functions targeted
 against configuration files. The relevant functions are
 Nimbus::API::cfg* .

 When a new CFG object is constructed the constructor takes one
 required argument (the configuration filename), and one optional
 (a 'private' hash). It would be normal to maintain the hash
 within the CFG object, but some cases could occur where it would
 be useful to add the configuration data to a private hash. Eg.
 when 2 or more configuration-files are referenced by one hash!

 Lets call this configuration 'test.cfg':
 <setup>
 logfile = stdout
 loglevel = 2
 <names>
 name_0 = luke
 name_1 = leia
 name_2 = r2d2
 </names>
 </setup>

 The following code will access the values from the setup section:

 use Nimbus::CFG;
 my $cfg = Nimbus::CFG->new("test.cfg");
 print "The logfile : $cfg->{setup}->{logfile}\n";
 print "The loglevel: $cfg->{setup}->{loglevel}\n";

 15/20

Perl extension for NimBUS Nimbus Software AS

CLASS METHODS
 open

 The open method takes a filename/path as a required parameter,
 and a hashptr as an optional parameter. This method is used when
 a postponed parsing is needed, due to setting eg. the name
 converter prior to parsing the file. In result it deliveres the
 same as a 'new' does.

 getValues

 The getValues method takes a hashptr as its input parameter, and
 returns an array of the values taken from each key/value pair in
 the section.

 We're using the configuration file 'test.cfg' from the DESCRIPTION.
 And the following code segment to extract and access the data:

 use Nimbus::CFG;
 use strict;

 my $cfg = Nimbus::CFG->new("test.cfg");
 my @names = $cfg->getValues($cfg->{setup}->{names});

 @names now holds 3 names...

 setConverter

 The setConverter method takes a reference to a function as
 parameter. This function is called whenever a new section is
 parsed. The default converter substitutes every hash(#) in a
 section name with a slash(/). This is useful when eg. using the
 slash (/) character as part of the section/key name, such as a
 filename or equal. Consider the following code and configuration
 file:

 my.cfg:

 <filesystems>
 <#dev#dsk#c0t3d0s4>
 name = /usr
 high = 99
 low = 70
 </#dev#dsk#c0t3d0s4>
 </filesystems>

 16/20

Perl extension for NimBUS Nimbus Software AS

 my_wo_converter.pl:
 ##
 # Script using the standard/builtin converter

 use Nimbus::CFG;
 my $cfg = Nimbus::CFG->new("my.cfg");

 my $fs1 = $cfg->{filesystems}->{'/dev/dsk/c0t3d0s4'};

 print "filesystem1: $fs1->{name}, high:$fs1->{high} \n";

 ==> will print 'filesystem1: /usr, high:99'

 my_w_private_conv.pl:
 ##
 # Script using a private converter

 use Nimbus::CFG;

 sub myconv {
 my $s = shift;
 $$s =~ s/\#/\>/g; # convert from hash(#) to GT(>)
 }

 my $cfg = Nimbus::CFG->new();

 $cfg->setConverter(\&myconv);
 $cfg->open("my.cfg");

 my $fs1 = $cfg->{filesystems}->{'>dev>dsk>c0t3d0s4'};

 print "filesystem1: $fs1->{name}, high:$fs1->{high} \n";

 ==> will print 'filesystem1: /usr, high:99'

AUTHOR

 Nimbus Software AS.
 mailto:nimsoft@nimsoft.no
 http://www.nimsoft.no
SEE ALSO

Nimbus::API, perl(1).

 17/20

Perl extension for NimBUS Nimbus Software AS

7. Terminology

7.1. License System

The license information consists of the following parameters:

Product : Name and version of product or component installed
Info : Description, name of product, licensee etc..
IP : IP-address of the system. * means a site-license
: Number of clients
Expire : Date of expire
Code : License key

In order to use the Nimbus system, a valid License Certificate including a
License Key is required.

NOTE: The product comes with a 30 days valid License Key.

The license information can be changes from the HUB Configure program.

7.2. Nimbus Manager
The Nimbus Manager is the main application for administration and configuration
of all the nimBUS components. The application has a GUI and is run under
Windows.

7.3. Nimbus Service Controller

There is one Windows NT Service running called Nimbus Watcher.
The service startup parameters are: Login on as ’System account’ and Startup
type as’ Automatic’.

The application called Nimbus Service Controller is a GUI which makes it easy to
start and stop this service. An alternative is to use Services from Control Panel.

7.4. NimBUS domain

7.5. Robot
The robot is the clients (and servers) entry-point into the NimBUS system. Its
primary task is to maintain and manage as set of probes, and to collect messages
published by its clients. The Robot consists of a controller and spooler . A Robot
will attempt to establish contact with a hub during startup-time. The NimBUS
robot will automatically detect hubs in the network segment, and connect to one
of these (unless specifically specified) during its initialization process.

7.6. Controller
The contact point of a robot seen from other NimBUS components, such as the
hub and other clients of the NimBUS. It maintains a set of probes that it starts and
stops according to a configuration. The probes may be started in a timed fashion

 18/20

Perl extension for NimBUS Nimbus Software AS

or in a standalone mode called daemon. It responds to requests on the tcp/48000
port.

7.7. Spooler
The spooler receives messages published by the probes (clients) and delivers
these messages to the hub, unless its configured to spool (hold) the message
until a certain criteria is met. The spooler responds to requests on the tcp/48001
port.

7.8. Hub
As the name implies the hub is a connection point of a collection of robots. It
receives all messages posted by any client (usually via the spooler) and
distributes these messages to a set of subscribers of the publishing-subject. It
keeps track of the NimBUS addresses in the domain of hubs, as well as
information about all its robots.

7.9. Probe(s)
A probe is a task-oriented program designed specifially towards a certain task,
such as monitoring an application, a filesystem, a database etc. or by providing
services as a traditional server. The probe may be designed to behave as a timed
probe by running once and terminating upon completion of the task, or it may be
designed as daemon probe by running constantly with some kind of waiting
mechanism built into it. The daemon probes are monitored by the robot controller,
and is restarted if it terminates. A probe may be active in the sense of registering
itself within the NimBUS system, and responding to commands issued by clients
understanding the protocol of the probe. Or it may be passive, meaning it doesn't
make itself available by the

NimBUS addressing scheme.

7.10. NimBUS Address
A NimBUS address consists of four basic elements, the domain, hub, hostname
and probe. For example, the address /nimbus/oslo/wscase/nas will resolve into
the ip-address of the host wscase and the port-number of the probe/service
called nas.

7.11. Message model
The NimBUS message model are based on the request/response and the
publish/subscribe models. Request/Response are the standard ways of
communicating over the network. A client issues a request to a server and the
server responds to the request. The publish/subscribe model is useful when a
client wishes to send of some kind of data without a designated receiver. This
could be messages containing performance-data, an alert, data to be inserted
into some database, or messages targeted for gateway servers. The servers on
the other hand merely listens on a one or more specific subjects (registered by
the hub), and is notified by events when data is available on the subject.

 19/20

Perl extension for NimBUS Nimbus Software AS

7.12. Prog. Interfaces
It is possible to interface the NimBUS by using many of the industry-leading
programming languages, such as C/C++,Perl,Visual Basic, VB Script and JAVA.
The interfaces makes it possible to quickly and seamlessly integrate the NimBUS
with existing tools, or by tailoring the ie. surveillance system for your specific
needs.

7.13. Gateways
A service (an active probe) used to interface other environments, such as other
Enterprise management tools, SNMP based management tools, paging systems,
mail (SMTP) etc.

7.14. Perl
From the net:
- Perl is an interpreted high-level programming language developed by Larry

Wall. According to Larry, he included in Perl all the cool features found in
other languages and left out those features that weren't so cool.

- Perl has become the premier scripting language of the Web, as most CGI
programs are written in Perl. However, Perl is widely used as a rapid
prototyping language and a "glue" language that makes it possible for
different systems to work well together.

- Perl is popular with system administrators who use it for an infinite number of
automation tasks.

- Perl's roots are in UNIX but you will find Perl on a wide range of computing
platforms. Because Perl is an interpreted language, Perl programs are highly
portable across systems.

- Finally, Perl is more than a programming language. It is a part of the Internet
culture. It is a very creative way of thinking about almost anything.

For more detailed information see:
- http://www.perl.com
- http://www.ActiveState.com

 20/20

http://www.perl.com/
http://www.activestate.com/

	NimBUS
	Perl extension for the
	NimBUS Message Bus
	Contents
	Introduction
	Concept
	Overview
	
	
	
	
	The NimBUS
	Probe
	HUB

	Nimbus – API
	NimBUS – PDS
	NimBUS – Session
	Nimbus CFG
	Terminology
	License System
	Nimbus Manager
	Nimbus Service Controller
	NimBUS domain
	Robot
	Controller
	Spooler
	Hub
	Probe(s)
	NimBUS Address
	Message model
	Prog. Interfaces
	Gateways
	Perl

