

ITMS Implementation Best Practices & Review

Brian Sheedy

Sr. Principal TEC, Endpoint Management

SMP/SQL Implementation & Design

ITMS Component Design Analysis

Common Issues that indicate a problem:

- Incorrectly matched architecture for implementation
- Insufficient configuration for the architecture
- Rollout didn't match design
- Excessive non-essential data movement due to incorrect use case analysis
- Site configuration deficiencies
- IO & resource deficiencies
- Ongoing alignment with use cases and business requirements
 - Growth, Security, compliance & regulation

- Server Specification is directly proportional to number of managed endpoints
 - Up to 35,000 Endpoints on a single Notification Server
 - More Cores + More RAM + Faster Disk I/O = Higher managed endpoints

Symantec.

• The Number of solutions utilized affects the maximum endpoint count

- Where the MS SQL Server software is installed
 - This has a direct affect on the number of endpoints a Notification Server can support
 - You should always consider off-box MS SQL Server for more than 5,000 managed endpoints with full ITMS

Symantec..

- An Optimized ITMS configuration can increase the number of supported managed endpoints.
 - This can be achieved by:
 - Executing less frequent inventory, software, patch and other policies & tasks
 - Spreading tasks across multiple time slots instead of concurrently

- Utilizing Site Servers can increase the supported endpoint count on a Notification Server
 - Multiple Site Servers placed in strategic locations will greatly reduce load on the Notification Server

Notification
Server
(SQL Off-Box)

5,000 - 10,000 | 10,000 - 20,000 | 20,000 - 35,000 Component 100 - 1,0001,000 - 5,000**PROCESSORS** 4+ 8 cores 8+ cores 16+ cores 32+ cores 100GB (OS) 100GB (OS) 100GB (OS) 100GB (OS) C: **300 IOPS** 300 IOPS 600 IOPS 600 IOPS 300GB STORAGE (OS/SMP) +100GB (ITMS App) 100GB (ITMS App) D: 100GB (ITMS App) 100GB (ITMS App) 200 IOPS 500 IOPS Storage + Storage + Storage **300 IOPS** 200 IOPS 200 IOPS Storage Storage E: **200 IOPS** 200 IOPS **MEMORY** 8 GB 16GB 16 GB 16 GB (24 Parent) 32 GB

Notification
Server
(SQL On-Box)

Component		1 - 1,000	1,000 - 5,000	> 5,000
PF	ROCESSORS	8 Cores	12 - 16 cores	
	C:	200GB (OS, ITMS) + Storage 300 IOPS	100GB (OS) 300 IOPS	
STORAGE	D:		100GB (ITMS App) + Storage 300 IOPS	Not
STO	E:	200GB (SQL) 200 IOPS	200GB (SQL + DB) 300 IOPS	Recommended
	F:		200GB (Tlogs, TempDB) 300 IOPS	
	MEMORY	8-16 GB	20GB	

On Box or Off-Box SQL?

otificatio Server (SQL On-Box)

Component	100 – 1,000	1,000 - 5,000	5,000 - 10,000	10,000 - 20,000	20,000 – 35,000
PROCESSORS	4+	8 cores	8+ cores	16+ cores	32+ cores
C:	300GB	100GB (OS) 300 IOPS	100GB (OS) 300 IOPS	100GB (OS) 600 IOPS	100GB (OS) 600 IOPS
STORAGE	(OS/SMP) + Storage	100GB (ITMS App) + Storage 200 IOPS	100GB (ITMS App) + Storage	100GB (ITMS App) 200 IOPS	100GB (ITMS App) 500 IOPS
E:	300 IOPS		200 IOPS	Storage 200 IOPS	Storage 200 IOPS
MEMORY	8 GB	16GB	16 GB	16 GB (24 Parent)	32 GB

Component		1 - 1,000	1,000 - 5,000	> 5,000
PI	ROCESSORS	8 Cores	12 - 16 cores	
	C:	200GB (OS, ITMS) + Storage 300 IOPS	100GB (OS) 300 IOPS	
STORAGE	D:		100GB (ITMS App) + Storage 300 IOPS	Not
STO	E:	200GB (SQL) 200 IOPS	200GB (SQL + DB) 300 IOPS	Recommended
	F:		200GB (Tlogs, TempDB) 300 IOPS	
	MEMORY	8-16 GB	20GB	

	Cor	nponent	100 – 1,000	1,000 - 5,000	5,000 - 10,000	10,000 - 20,000	20,000 – 35,000
C	PRO	CESSORS	4+	8 cores	8+ cores	16+ cores	32+ cores
ficatio	ш	C:	300GB	100GB (OS) 300 IOPS	100GB (OS) 300 IOPS	100GB (OS) 600 IOPS	100GB (OS) 600 IOPS
Notification Server (SQL Off-Box)	STORAGE	D:	(OS/SMP) + Storage	100GB (ITMS App) + Storage	100GB (ITMS App) + Storage	100GB (ITMS App) 200 IOPS	100GB (ITMS App) 500 IOPS
S (s)	65	E:	300 IOPS	200100	200 IOPS	Storage 200 IOPS	Storage 200 IOPS
			o GB	16GB	16 GB	16 GB (24 Parent)	32 GB
	Less	Less Resources					
			4				
		omponent	1	- 1,000	1,000	- 5,000	> 5,000
		OCESSORS	_	- 1,000 Cores		0 – 5,000 16 cores	> 5,000
tion er 30x)	PR	<u>-</u>	200GB (os		12 - 1 100		> 5,000
fication Prver On-Box)	PR	OCESSORS	200GB (os	Cores ,ITMS) + Storage	12 - 2 100 30 100GB (ITM)	16 cores GB (OS)	Not
otification Server (SQL On-Box)		C:	200GB (os 3(Cores ,ITMS) + Storage	12 - 3 100 30 100GB (ITMS 30 200GB	16 cores GB (OS) 0 IOPS S App) + Storage	
Notification Server (SQL On-Box)	PR	C:	200GB (os 3(Cores JIMS) + Storage OO IOPS OGB (SQL)	12 - 3 100 30 100GB (ITMS 30 200GB 30 200GB (T	GB (OS) 0 IOPS S App) + Storage 0 IOPS (SQL + DB)	Not
Notification Server (SQL On-Box)	STORAGE	C: D:	200GB (os 30 200 20	Cores JIMS) + Storage OO IOPS OGB (SQL)	12 - 3 100 30 100GB (ITMS 30 200GB 30 200GB (T 30	GB (OS) 0 IOPS S App) + Storage 0 IOPS (SQL + DB) 0 IOPS Tlogs, TempDB)	Not

Notification
Server
(SQL Off-Box)

Co	mponent	100 – 1,000	1,000 - 5,000	5,000 - 10,000	10,000 - 20,000	20,000 – 35,000
PRO	OCESSORS	4+	8 cores	8+ cores	16+ cores	32+ cores
ш	C: 261 CB		100GB (OS)	100GB (OS) 300 IOPS	100GB (OS)	100GB (OS) 600 IOPS
STORAGE	D:	30 GB (OSE P) + Storage	100GB (ITIVIS App) + Storage DPIVES	100GB (ITMS App) + Storage 200 IOPS	100G IS App) 200 IOPS	100GB (ITMS App) 500 IOPS
S	E:				Drives 200 IOPS	Storage 200 IOPS
IV	IEMORY	8 GB	16GB	16 GB	16 GB (24 Parent)	32 GB

Notification
Server
(SQL On-Box)

Component		1 - 1,000	1,000 – 5,000	> 5,000
PROCESSORS		8 Cores	12 - 16 cores	
	C:	200GB (OS, ITMS) + Storage 300 IOPS	100GB (OS)	
STORAGE	D:		100GB (ITI) (a) + Storage 300 L PS	lo
STOF	E:	200GB (SQL) 200 IOPS	200GB (SQL + DB)	Recommended
	F:		20 B (10 J, S) 300 IOPS	
	MEMORY	8-16 GB	20GB	

Notification
Server
(SQL Off-Box)

Component 100 - 1,0001,000 - 5,0005,000 - 10,000 | 10,000 - 20,000 | 20,000 - 35,000 **PROCESSORS** 4+ 8 cores 8+ cores 16+ cores 32+ cores 100GB (OS) 100GB (OS) 100GB (OS) 100GB (OS) C: **300 IOPS** 300 IOPS 600 IOPS 600 IOPS **300GB** STORAGE (OS/SMP) +**100GB** (ITMS App) **100GB** (ITMS App) D: 100GB (ITMS App) 100GB (ITMS App) **200 IOPS 500 IOPS** Storage + Storage + Storage **300 IOPS 200 IOPS** 200 IOPS Storage **Storage** E: **200 IOPS** 200 IOPS 16 GB (24 Parent) **MEMORY** 8 GB 16GB 16 GB 32 GB

Notification
Server
(SQL On-Box)

Component		1 - 1,000	1,000 – 5,000	> 5,000
PROCESSORS		8 Cores	12 - 16 cores	
	C:	200GB (OS, ITMS) + Storage 300 IOPS	100GB (OS) 300 IOPS	
STORAGE	D:		100GB (ITMS App) + Storage 300 IOPS	Not
STOF	E:	200GB (SQL) 200 IOPS	200GB (SQL + DB) 300 IOPS	Recommended
	F:		200GB (Tlogs, TempDB) 300 IOPS	
N	MEMORY	8-16 GB	20GB	

MS SQL is responsible for most of ITMS Operation

- MS SQL is responsible for most of ITMS Operation
- Is the SQL Server Database Sized Properly?
 - Initially, you can expect 8MB/endpoint +10%
 - i.e. 5,000 Endpoints x 8MB = 40GB + 4GB = 44GB CMDB minimum

- MS SQL is responsible for most of ITMS Operation
- Is the SQL Server Database Sized Properly?
 - Initially, you can expect 8MB/endpoint +10%
 - i.e. 5,000 Endpoints x 8MB = 40GB + 4GB = 44GB CMDB minimum
 - Beyond Initial Creation, account for:
 - Fragmentation
 - Number of Solutions
 - Policies, tasks schedules

Symantec

• How is the SQL Server Implemented?

- How is the SQL Server Implemented?
 - Modern Storage like SSD Drives or PCIe Flash Cards?

- How is the SQL Server Implemented?
 - Modern Storage like SSD Drives or PCIe Flash Cards?
 - <u>Separated</u> SQL Application, DB, TempDB and Transaction Logs?

- How is the SQL Server Implemented?
 - Modern Storage like SSD Drives or PCIe Flash Cards?
 - <u>Separated</u> SQL Application, DB, TempDB and Transaction Logs?
 - Traditional HDDs in use?
 - RAID 10 gives the best performance for Databases/Tlogs
 - RAID 0+1 for TempDB.

Microsoft SQL Server

	Component	1 – 1,000	1,000 - 5,000	5,000 - 10,000	10,000 - 20,000	20,000 – 35,000
Р	ROCESSORS	4 cores	8 cores	8-16 cores	16+ cores	32+ cores
	OS + SQL	100GB 180 IOPS				
age	DB		200GB 300 IOPS	300GB 400 IOPS	600GB 600 IOPS	800GB 1200 IOPS
Storage	TLogs	100GB 200 IOPS	100GB 300 IOPS	100GB 400 IOPS	200GB 600 IOPS	300GB 600 IOPS
	TempDB		100GB 200 IOPS	100GB 300 IOPS	200GB 400 IOPS	300GB 1200 IOPS
	MEMORY	12 GB	16+ GB	24+ GB	32+ GB	64+ GB

A SQL Server configuration that meets or exceeds the specifications above will result in a better performing ITMS

Microsoft SQL Server

	Component	1 – 1,000	1,000 - 5,000	5,000 - 10,000	10,000 – 20,000	20,000 – 35,000
Р	ROCESSORS	4 cores	8 cores	8-16 cores	16+ cores	32+ cores
	OS + SQL	100GB 180 IOPS	100GB 180 IOPS	100GB 180 IOPS	100GB 180 IOPS	100GB 180 IOPS
age	DB	2	2/ 4 B 3 > 5	300GB 400 IOPS	600GB 600 IOPS	800GB 1200 IOPS
Stora	TLogs	100GB 200 IOPS DITIVES	100GB	100GB 400 IOPS	200GB 600 IOPS	300GB 600 IOPS
	TempDB	Drives	Diffwes 100GB 200 IOPS	100GB 300 IOPS	200GB 400 IOPS	300GB 1200 IOPS
	MEMORY	12 GB	16+ GB	24+ GB	32+ GB	64+ GB

A SQL Server configuration that meets or exceeds the specifications above will result in a better performing ITMS

Microsoft SQL Server

(Component	1 – 1,000	1,000 - 5,000	5,000 - 10,000	10,000 – 20,000	20,000 – 35,000
Р	ROCESSORS	4 cores	8 cores	8-16 cores	16+ cores	32+ cores
	OS + SQL	100GB 180 IOPS				
e)	DB		200GB	300GB	600GB	800GB
် အ	DB	,	300 IOPS	400 IOPS	600 IOPS	1200 IOPS
Storage	TLogs	100GB	100GB	100GB	200GB	ROOGB
S	12083	200 IOPS				
	TempDB		100GB	100GB	200GB	300GB
	Tempoo		200 IOPS	300 IOPS	400 IOPS	1200 IOPS
	MEMORY	12 GB	16+ GB	24+ GB	32+ GB	64+ GB

A SQL Server configuration that meets or exceeds the specifications above will result in a better performing ITMS

Site Server Implementation Best Practices

- Hardware is proportional to the number of endpoints
 - Up to **7,500** Endpoints per Site Server with Server OS and Good HW
 - Up to 600 Site Servers per Notification Server

- Consider utilizing existing hardware
 - An environmentally conscious option
 - Site Servers can be almost any computer or server with sufficient storage space

- Number of solutions utilized affects the storage size
 - Deployment Solution = Image and OS Space
 - Software Management Solution = Application Package Space
 - Patch Management Solution = Software Updates space

- One Site Server for each NS when utilizing Hierarchy
 - It is mandatory because it is the primary mechanism for inter-Notification communication as well as replication of tasks, events and packages.

Site Server

Component	10 – 100	100 – 1,000	3,000 – 5,000	5,000 – 7,500
Operating System	Desktop OS	Server OS	Server OS	Server OS
Processors	2 core	4 cores	6 cores	8 cores
ege C:	100GB (OS, SMP) +	100GB (OS, SMP) +	100GB (OS) 200 IOPS	100GB (OS) 200 IOPS
Storage C:	Storage 200 IOPS	Storage 200 IOPS	20GB (SMP) + Storage 200 IOPS	20GB (SMP) + Storage 200 IOPS
Memory	2 GB	4 GB	6 GB	8 GB

_
<u>a</u>
2
Se
ָש
<u>:</u> :
S

Component	10 – 100	100 – 1,000	3,000 – 5,000	5,000 - 7,500
Operating System	Desktop OS	Server OS	Server OS	Server OS
Processors	2 core	4 cores	6 cores	8 cores
rage C:	100GB (OS, SMP) +	100GB (OS, SMP) +	100GB (OS) 200 IOPS	100GB (OS) 200 IOPS
Stor.	Storage 200 IOPS	Storage 200 IOPS	20GB (SMP) + Storage 200 IOPS	20GB (SMP) + Storage 200 IOPS
Memory	2 GB	4 GB	6 GB	8 GB

Site Server

Component	10 – 100	100 – 1,000	3,000 – 5,000	5,000 – 7,500
Operating System	Desktop OS	Server OS	Server OS	Server OS
Processors	2 core	4 cores	6 cores	8 cores
ege C:	100GB (OS, SMP) + Storage 200 IOPS	C: 100GB (OS, SMP) + 100GB (OS, SMP) +	100GB (OS) 200 IOPS	100GB (OS) 200 IOPS
Storage C:		Storage 200 IOPS	20GB (SMP) + Storage 200 IOPS	20GB (SMP) + Storage 200 IOPS
Memory	2 GB	4 GB	6 GB	8 GB

Site Server

Component	10 – 100	100 – 1,000	3,000 – 5,000	5,000 – 7,500
Operating System	Desktop OS	Server OS	Server OS	Server OS
Processors	2 core	4 cores	6 cores	8 cores
ege C:	100GB (OS, SMP) + Storage 200 IOPS	1000b (O3, 31VIP) + 1000b (O3, 31VIP) +	100GB (OS) 200 IOPS	100GB (OS) 200 IOPS
Storage C:		Storage 200 IOPS	20GB (SMP) + Storage 200 IOPS	20GB (SMP) + Storage 200 IOPS
Memory	2 GB	4 GB	6 GB	8 GB

Package Service

- Package servers are deployment mechanisms to efficiently move data into a site.
- Work with the Notification Server as local file servers for managed computers at a site.
- Do not require server-class hardware and software.
- Helps reduce network traffic by allowing a package to copy across the network only once per site.
- You can place a package server locally at a site to store and deliver packages.
 - This architecture can help you manage sites with lowbandwidth connections to Notification Server.

Package Server Considerations

 Fully understand your own network topology and its network traffic capabilities before rolling out Package Servers.

Package Server Considerations

- Ensure that the Package Service is installed on the proper storage location
 - Package Service will store files on the drive that the Agent resides on by default
 - Packages will be saved and served from this location until it fills up – then it saves to the next drive.
 - To avoid this issue:
 - Install or Re-Install the agent on an adequate drive

Package Server Considerations

- Ensure that the Package Service is installed on the proper storage location
 - Package Service will store files on the drive that the Agent resides on by default
 - Packages will be saved and served from this location until it fills up – then it saves to the next drive.
 - To avoid this issue:
 - Install or Re-Install the agent on an adequate drive
 - Manually install the agent with proper command line
 - 1. Copy the file AeXSwdInstSvc.exe from the Notification Server to the desired Site Server Target
 - 2. Run the following command (note the –d parameter):

AeXSwdInstSvc.exe -u https://NSserver/Altiris/NS/NSCap/Bin/Win32/x86/Ns Client Package/AeXNSC.exe -s "NSserver" -w "http://NSserver/Altiris/" -d "E:\Program Files\Altiris\Altiris Agent" -notrayicon —nostartmenu

Package Server Considerations

Symantec

- Stagger the deployment of Package Servers.
 - Reduces spikes in network utilization

Package Server Considerations

- Stagger the deployment of Package Servers.
 - Reduces spikes in network utilization

Stagger the deployment of Packages to the Site Server

- Deploy a few packages at a time on all Package Servers
- Or deploy a reasonable amount of packages to only a few Package Servers at a time.

Package Server Considerations

- Use Package Servers with Multicasting enabled
 - Can help you optimize your Package Server use
 - Enables efficient delivery of data to many locations on a network
 - Reduces the load on Package Servers by reducing the number of agents that need to connect to and download from Package Servers
 - Decreases network utilization by multicasting package data to peers

- Unconstrained Configuration
 - NS subnet added to Site B and Site C

- Unconstrained Configuration
 - NS subnet added to Site B and Site C
 - *Unconstrained* Site Server on each Site

- Unconstrained Configuration
 - NS subnet added to Site B and Site C
 - *Unconstrained* Site Server on each Site
 - Provides WAN Bandwidth Savings
 - Packages are Received from NS to SS1, SS2
 - In this case there are 2 connections to the NS

- Unconstrained Configuration
 - NS subnet added to Site B and Site C
 - *Unconstrained* Site Server on each Site
 - Provides WAN Bandwidth Savings
 - Packages are Received from NS to SS1, SS2
 - In this case there are 2 connections to the NS
 - Excellent Local File Service
 - Clients will Receive files from their SS

- Multiple Unconstrained Configuration
 - NS subnet added to Site B and Site C

- Multiple Unconstrained Configuration
 - NS subnet added to Site B and Site C
 - Multiple *Unconstrained* Site Servers on each Site

- Multiple Unconstrained Configuration
 - NS subnet added to Site B and Site C
 - Multiple *Unconstrained* Site Servers on each Site
 - Provides Some WAN Bandwidth Savings
 - Packages are Received from NS to SS1, SS2, SS3, SS4
 - In this case there are now 4 connections to the NS

- Multiple Unconstrained Configuration
 - NS subnet added to Site B and Site C
 - Multiple *Unconstrained* Site Servers on each Site
 - Provides Some WAN Bandwidth Savings
 - Packages are Received from NS to SS1, SS2, SS3, SS4
 - In this case there are now 4 connections to the NS
 - Excellent Local Load Balancing
 - Clients will Receive files from one SS or the other SS
 - Will even switch between them in busy times

Multiple Unconstrained Configuration

- NS subnet added to Site B and Site C
- Multiple *Unconstrained* Site Servers on each Site
- Provides Some WAN Bandwidth Savings
 - Packages are Received from NS to SS1, SS2, SS3, SS4
 - In this case there are now 4 connections to the NS
- Excellent Local Load Balancing
 - Clients will Receive files from one SS or the other SS
 - Will even switch between them in busy times
- Fault Tolerance
 - If a site server goes down, the other will serve the files
 - Will even switch over in the middle of an operation

- Hybrid Configuration
 - NS subnet added to Site B and Site C

- Hybrid Configuration
 - NS subnet added to Site B and Site C
 - One *Unconstrained* and One *Constrained* per Site

Hybrid Configuration

- NS subnet added to Site B and Site C
- One *Unconstrained* and One *Constrained* per Site
- Reduces WAN Bandwidth
 - Packages are Received from NS to SS1, SS3
 - In this case there are only 2 connections to the NS
 - Packages are Received from SS1 to SS2, SS3 to SS4

- Hybrid Configuration
 - NS subnet added to Site B and Site C
 - One Unconstrained and One Constrained per Site
 - Reduces WAN Bandwidth
 - Packages are Received from NS to SS1, SS3
 - In this case there are only 2 connections to the NS
 - Packages are Received from SS1 to SS2, SS3 to SS4
 - Excellent Local Load Balancing
 - Clients will Receive files from one SS or the other SS

- Hybrid Configuration
 - NS subnet added to Site B and Site C
 - One Unconstrained and One Constrained per Site
 - Reduces WAN Bandwidth
 - Packages are Received from NS to SS1, SS3
 - In this case there are only 2 connections to the NS
 - Packages are Received from SS1 to SS2, SS3 to SS4
 - Excellent Local Load Balancing
 - Clients will Receive files from one SS or the other SS
 - No Fault Tolerance on Sites
 - If Unconstrained Site Server goes down
 - **NO** New/Updated files served
 - If Remaining PS set to Constrained the Notification Server codebase will *not* be returned

Task Services

- Task communications are unique from policy communications.
 - Managed computers start policy communications
 - The server starts task communications.

Task Services

- Task communications are unique from policy communications.
 - Managed computers start policy communications
 - The server starts task communications.
- You can do the following with the task service:
 - Execute multiple tasks in a defined sequence called a Job.
 - Provide logic to handle task errors or other return codes.
 - Deliver command-line and script capabilities to endpoints
 - Provide out-of-the-box power management.
 - Execute client-side and server-side tasks.
 - Reuse tasks in multiple Jobs.

Task Services

- Task communications are unique from policy communications.
 - Managed computers start policy communications
 - The server starts task communications.
- You can do the following with the task service:
 - Execute multiple tasks in a defined sequence called a Job.
 - Provide logic to handle task errors or other return codes.
 - Deliver command-line and script capabilities to endpoints
 - Provide out-of-the-box power management.
 - Execute client-side and server-side tasks.
 - Reuse tasks in multiple Jobs.
- At least one task server per Notification Server.
 - Places a performance demand on the NS due to tickle status.
 - Negatively influences SQL data loading and user interface responsiveness.

Reduce traffic to the NS using Task Services

- Reduce traffic to the NS using Task Services
- Create a site for the NS that is a Class C subnet
 - NS will be limited to registering no more than 254 clients

- Reduce traffic to the NS using Task Services
- Create a site for the NS that is a Class C subnet
 - NS will be limited to registering no more than 254 clients
- Create sites for each of your Task Servers.
 - Task Server can support 7500 clients if it is scaled appropriately
 - Requirements are very modest (e.g.. Desktop or Server OS, Low Resources)

- Can assign multiple Task Servers to each site
 - Not managed like Package Servers with Constrained or unconstrained servers.
 - For load balancing utilize the Site Server configuration settings in the Task Agent Settings

- Can assign multiple Task Servers to each site
 - Not managed like Package Servers with Constrained or unconstrained servers.
 - For load balancing utilize the Site Server configuration settings in the Task Agent Settings
- In larger environments:
 - Task Agent settings: Increase the Client Task Interval to > 30 minutes
 - Task Service Settings: Increase the Task Update interval to > 5 minutes

WWW Publishing) when configuration changes

Apply to • 🖉 🔀 View: Targets 🗸

Client to Task Server tickle: 50124

Count Apply date

Symantec.

- DO include multiple subnets and include the NS subnet
 - They might pick up clients from the NS's subnet, but the NS will not pick up clients from the others.
 - As long as bandwidth is good from the clients to the Site Servers

Figure 1

- DO include multiple subnets and include the NS subnet
 - They might pick up clients from the NS's subnet, but the NS will not pick up clients from the others.
 - As long as bandwidth is good from the clients to the Site Servers
- DO Place Task Servers closer to your remote clients.
 - Used by companies with larger remote environments
 - Each major office may have their own data-centers

Figure 1

Figure 2

Symantec.

- DO include multiple subnets and include the NS subnet
 - They might pick up clients from the NS's subnet, but the NS will not pick up clients from the others.
 - As long as bandwidth is good from the clients to the Site Servers
- DO Place Task Servers closer to your remote clients.
 - Used by companies with larger remote environments
 - Each major office may have their own data-centers
- Don't put Task Servers in every location with a Package Server.
 - This scenario is no longer demanded by Deployment Solution versions 7.6+
 - Due to constraints in communication between the Task Servers and the NS, this is not recommended.

Figure 1

Figure 2

Figure 3

- Provides PXE Boot services and boot packages for network segments.
 - Restoring a standard image for support or for rolling out new computers during initial provisioning.

- Provides PXE Boot services and boot packages for network segments.
 - Restoring a standard image for support or for rolling out new computers during initial provisioning.
- Typically, PXE protocol is controlled on a network.
 - May be limited to work within a subnet or other defined range based on IP helpers.
 - If many systems must be reimaged simultaneously:
 - Place NBS within each network subnet and add more in a large subnet.
 - In addition to providing PXE services, a network boot server is similar to a package server in that it hosts packages called boot images.

- Provides PXE Boot services and boot packages for network segments.
 - Restoring a standard image for support or for rolling out new computers during initial provisioning.
- Typically, PXE protocol is controlled on a network.
 - May be limited to work within a subnet or other defined range based on IP helpers.
 - If many systems must be reimaged simultaneously:
 - Place NBS within each network subnet and add more in a large subnet.
 - In addition to providing PXE services, a network boot server is similar to a package server in that it hosts packages called boot images.

- Provides PXE Boot services and boot packages for network segments.
 - Restoring a standard image for support or for rolling out new computers during initial provisioning.
- Typically, PXE protocol is controlled on a network.
 - May be limited to work within a subnet or other defined range based on IP helpers.
 - If many systems must be reimaged simultaneously:
 - Place NBS within each network subnet and add more in a large subnet.
 - In addition to providing PXE services, a network boot server is similar to a package server in that it hosts packages called boot images.
- When new settings are applied they are delivered with a policy to other NBS and an updated boot image is compiled locally

Network Boot Services Implementation

- Each subnet must have access to a NBS Server
 - However, routers normally block PXE broadcast packets.

Network Boot Services Implementation

- Each subnet must have access to a NBS Server
 - However, routers normally block PXE broadcast packets.
- Can use the following methods to provide each subnet with access:
 - Use "DHCP forced mode"
 - A DHCP setting that forwards client PXE requests to the closest network boot server.
 - Use "IP Helpers"
 - A setting you can configure at each router that lets you forward PXE requests across subnets.
 - Install a NBS on each subnet.
 - This method is **not** recommended because it creates unnecessary overhead.

Monitor Services

- Lets you perform agentless monitoring remotely
- Default Install on the Notification Server
- Distribute the monitoring load to other site servers
 - Reduces the load on Notification Server.
- Can be removed from the NS to further reduce load
- Integrated with the site server infrastructure.
 - Can specify the resources that each site server monitors.

- Supported site server operating systems (version 8.1):
 - Microsoft Windows Server 2008 R2 x64
 - Microsoft Windows Server 2012 R2 x64
 - Microsoft Windows Server 2016

- Supported site server operating systems (version 8.1):
 - Microsoft Windows Server 2008 R2 x64
 - Microsoft Windows Server 2012 R2 x64
 - Microsoft Windows Server 2016
- Policies do not require any special configuration to work with a monitor service on one or more site servers.

- Supported site server operating systems (version 8.1):
 - Microsoft Windows Server 2008 R2 x64
 - Microsoft Windows Server 2012 R2 x64
 - Microsoft Windows Server 2016
- Policies do not require any special configuration to work with a monitor service on one or more site servers.
- Only install monitor service on a computer that is secure and trusted.
 - The security settings of the Notification Server computer must also apply to the site server computer.

- Supported site server operating systems (version 8.1):
 - Microsoft Windows Server 2008 R2 x64
 - Microsoft Windows Server 2012 R2 x64
 - Microsoft Windows Server 2016
- Policies do not require any special configuration to work with a monitor service on one or more site servers.
- Only install monitor service on a computer that is secure and trusted.
 - The security settings of the Notification Server computer must also apply to the site server computer.
- Minimum Requirement on the site server:
 - Symantec Management Agent
 - The Pluggable Protocols Architecture (PPA)
 - The credential manager client computer component

ITMS Component Implementation & Design

Components with ITMS	Range
Managed Computers per Notification Server (NS)	
Site Servers per NS (Task/Package Services)	
Network Boot Servers per NS	
Clients per Site Server	
PXE sessions per Network Boot Server (concurrent)	
Console sessions per NS (concurrent)	
Internet Gateway	

Components with ITMS	Range
Managed Computers per Notification Server (NS)	1-35,000
Site Servers per NS (Task/Package Services)	
Network Boot Servers per NS	
Clients per Site Server	
PXE sessions per Network Boot Server (concurrent)	
Console sessions per NS (concurrent)	
Internet Gateway	

Components with ITMS	Range
Managed Computers per Notification Server (NS)	1-35,000
Site Servers per NS (Task/Package Services)	1-600
Network Boot Servers per NS	
Clients per Site Server	
PXE sessions per Network Boot Server (concurrent)	
Console sessions per NS (concurrent)	
Internet Gateway	

Components with ITMS	Range
Managed Computers per Notification Server (NS)	1-35,000
Site Servers per NS (Task/Package Services)	1-600
Network Boot Servers per NS	1-300
Clients per Site Server	
PXE sessions per Network Boot Server (concurrent)	
Console sessions per NS (concurrent)	
Internet Gateway	

Components with ITMS	Range
Managed Computers per Notification Server (NS)	1-35,000
Site Servers per NS (Task/Package Services)	1-600
Network Boot Servers per NS	1-300
Clients per Site Server	1-7,500
PXE sessions per Network Boot Server (concurrent)	
Console sessions per NS (concurrent)	
Internet Gateway	

Components with ITMS	Range
Managed Computers per Notification Server (NS)	1-35,000
Site Servers per NS (Task/Package Services)	1-600
Network Boot Servers per NS	1-300
Clients per Site Server	1-7,500
PXE sessions per Network Boot Server (concurrent)	1-200
Console sessions per NS (concurrent)	
Internet Gateway	

Components with ITMS	Range
Managed Computers per Notification Server (NS)	1-35,000
Site Servers per NS (Task/Package Services)	1-600
Network Boot Servers per NS	1-300
Clients per Site Server	1-7,500
PXE sessions per Network Boot Server (concurrent)	1-200
Console sessions per NS (concurrent)	1-100 (75 Mgmt. + 25 Asset)
Internet Gateway	

Components with ITMS	Range
Managed Computers per Notification Server (NS)	1-35,000
Site Servers per NS (Task/Package Services)	1-600
Network Boot Servers per NS	1-300
Clients per Site Server	1-7,500
PXE sessions per Network Boot Server (concurrent)	1-200
Console sessions per NS (concurrent)	1-100 (75 Mgmt. + 25 Asset)
Internet Gateway	15 to 20K Concurrent

Supported Hierarchy:

1 x 6 x 35k = 210,000 endpoints

1 x 6 x 35k = 210,000 endpoints

Agents Report Into Client Facing Servers

1 x 6 x 35k = 210,000 endpoints

Agents Report Into Client Facing Servers

Supported Hierarchy:

 $1 \times 6 \times 35k = 210,000$ endpoints

Less than 35,000 Endpoints?:

- Reduce the amount of Management Points
- Use Organizational Views/Groups instead
- Optimize Site Infrastructure
 - Use Constrained/Unconstrained
- Improves NS Performance and Reduces support costs

Agents Report Into Client Facing Servers

ITMS Topologies

ITMS Topology - 5,000 endpoints

ITMS Topology - 15,000 endpoints

ITMS Topology - 35,000 endpoints

ITMS Topology - 175,000 endpoints

ITMS Topology - 175,000 endpoints

ITMS Topology - 175,000 endpoints

Additional Information

Additional Resources and Summary

If you would like to know more about IT Management Suite please visit:

Product Overviews: https://www.symantec.com/products/it-management-suite

• **Documentation:** https://support.symantec.com/en_US/article.DOC11076.html

Data Sheet: https://www.symantec.com/products/endpoint-management

• Community: http://www.symantec.com/connect/endpoint-management

• Symantec Help Center: https://help.symantec.com/home/ITMS8.5?locale=EN_US

Q&A

Thank You!

Tomas Chinchilla Brian Sheedy

