Symantec™ Data Loss
Prevention Detection
Customization Guide

Version 11.0

v Symantec.

Symantec Data Loss Prevention Detection
Customization Guide

The software described in this book is furnished under a license agreement and may be used
only in accordance with the terms of the agreement.

Documentation version: 11

Legal Notice
Copyright © 2011 Symantec Corporation. All rights reserved.

Symantec and the Symantec Logo are trademarks or registered trademarks of Symantec
Corporation or its affiliates in the U.S. and other countries. Other names may be trademarks
of their respective owners.

This Symantec product may contain third party software for which Symantec is required
to provide attribution to the third party (“Third Party Programs”). Some of the Third Party
Programs are available under open source or free software licenses. The License Agreement
accompanying the Software does not alter any rights or obligations you may have under
those open source or free software licenses. Please see the Third-Party License Agreements
document accompanying this Symantec product for more information on the Third Party
Programs.

The product described in this document is distributed under licenses restricting its use,
copying, distribution, and decompilation/reverse engineering. No part of this document
may be reproduced in any form by any means without prior written authorization of
Symantec Corporation and its licensors, if any.

THEDOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO
BELEGALLY INVALID. SYMANTEC CORPORATION SHALL NOT BE LIABLE FORINCIDENTAL
OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED
IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, "Rights in
Commercial Computer Software or Commercial Computer Software Documentation", as
applicable, and any successor regulations. Any use, modification, reproduction release,
performance, display or disclosure of the Licensed Software and Documentation by the U.S.
Government shall be solely in accordance with the terms of this Agreement.

Symantec Corporation
350 Ellis Street
Mountain View, CA 94043

http://www.symantec.com

http://www.symantec.com

Technical Support

Symantec Technical Support maintains support centers globally. Technical
Support’s primary role is to respond to specific queries about product features
and functionality. The Technical Support group also creates content for our online
Knowledge Base. The Technical Support group works collaboratively with the
other functional areas within Symantec to answer your questions in a timely
fashion. For example, the Technical Support group works with Product Engineering
and Symantec Security Response to provide alerting services and virus definition
updates.

Symantec’s support offerings include the following:

m A range of support options that give you the flexibility to select the right
amount of service for any size organization

m Telephone and/or web-based support that provides rapid response and
up-to-the-minute information

m Upgrade assurance that delivers automatic software upgrades protection

m Global support purchased on a regional business hours or 24 hours a day, 7
days a week basis

m Premium service offerings that include Account Management Services

For information about Symantec’s support offerings, you can visit our web site
at the following URL:

www.symantec.com/business/support/
All support services will be delivered in accordance with your support agreement
and the then-current enterprise technical support policy.

Contacting Technical Support

Customers with a current support agreement may access Technical Support
information at the following URL:

www.symantec.com/business/support/

Before contacting Technical Support, make sure you have satisfied the system
requirements that are listed in your product documentation. Also, you should be
at the computer on which the problem occurred, in case it is necessary to replicate
the problem.

When you contact Technical Support, please have the following information
available:

m Product release level

www.symantec.com/business/support/
www.symantec.com/business/support/

Hardware information

Available memory, disk space, and NIC information

Operating system

Version and patch level

Network topology

Router, gateway, and IP address information

Problem description:

m Error messages and log files

m Troubleshooting that was performed before contacting Symantec

m Recent software configuration changes and network changes

Licensing and registration

If your Symantec product requires registration or a license key, access our technical
support web page at the following URL:

www.symantec.com/business/support/

Customer service

Customer service information is available at the following URL:

www.symantec.com/business/support/

Customer Service is available to assist with non-technical questions, such as the
following types of issues:

Questions regarding product licensing or serialization

Product registration updates, such as address or name changes

General product information (features, language availability, local dealers)
Latest information about product updates and upgrades

Information about upgrade assurance and support contracts

Information about the Symantec Buying Programs

Advice about Symantec's technical support options

Nontechnical presales questions

Issues that are related to CD-ROMs or manuals

www.symantec.com/business/support/
www.symantec.com/business/support/

Support agreement resources

If you want to contact Symantec regarding an existing support agreement, please
contact the support agreement administration team for your region as follows:

Asia-Pacific and Japan customercare_apac@symantec.com
Europe, Middle-East, and Africa semea@symantec.com
North America and Latin America supportsolutions@symantec.com

Additional enterprise services

Managed Services

Consulting Services

Education Services

Symantec offers a comprehensive set of services that allow you to maximize your
investment in Symantec products and to develop your knowledge, expertise, and
global insight, which enable you to manage your business risks proactively.

Enterprise services that are available include the following:

These services remove the burden of managing and monitoring security devices
and events, ensuring rapid response to real threats.

Symantec Consulting Services provide on-site technical expertise from
Symantec and its trusted partners. Symantec Consulting Services offer a variety
of prepackaged and customizable options that include assessment, design,
implementation, monitoring, and management capabilities. Each is focused on
establishing and maintaining the integrity and availability of your IT resources.

Education Services provide a full array of technical training, security education,
security certification, and awareness communication programs.
To access more information about enterprise services, please visit our web site
at the following URL:
www.symantec.com/business/services/

Select your country or language from the site index.

mailto:customercare_apac@symantec.com
mailto:semea@symantec.com
mailto:supportsolutions@symantec.com
www.symantec.com/business/services/

Technical SUPPOIt ..o 4

Chapter 1

Chapter 2

Chapter 3

Introducing the DLP Scripting Language 9
About the scripting languagecoooviiiiiiiiiii 9
About the scripting language syntaxccccoeeeiiiiiiiiiininiieeeene. 10
System variablescoiuiiiiii e 11
Assert Statemento 11
If/EISE STAteIMENTS ...uvininieie it 12
Evaluate statementcc.veniniiiniiiiie e 13
Evaluate statement functionsc.coeeviiiiiiiiiiiiii i 14
Example scripts for custom file type detectionc.coevvviniininnnnn.. 17
Example scripts for custom validatorsooiiiiii. 19

Using the File Type Analyzer utility for custom file

type detection ... 23
About the File Type Analyzer utilitycoooiiiiiiiiiiiiiin 23
Installing the File Type Analyzer utilityccocovvviiiiiiiiiiiiiinninenn.n. 24
Launching the File Type Analyzer utilitycocooviviiiiniiniininnnen. 25
Creating the datasetcooviiiiiiiiiii e 25
Analyzing dataset resultscoooiiiiiiiiiiiii e 27
Testing the script SOIUtioncoooviiiiiiiii e 28
Saving, opening, editing a datasetc.ocoiiiiiiiiiii 29
Increasing the Java heap size for large or recursive datasets 29
Increasing the number of bytes that are analyzed 30
TULOTIAlS oo, 31
Detecting custom file typesccooiviiiiiiiiiii e 31
Tutorial 1: Detecting Java class filesocooiiiiiiiiiii i, 32
Tutorial 2: Detecting an encrypted ZIP file format 35

8 | Contents

Introducing the DLP
Scripting Language

This chapter includes the following topics:

About the scripting language

About the scripting language syntax

System variables

Assert statement

If/Else statements

Evaluate statement

Evaluate statement functions

Example scripts for custom file type detection

Example scripts for custom validators

About the scripting language

Symantec Data Loss Prevention provides a basic scripting language that you can
use to detect custom file types and to validate custom data identifiers. You can
deploy custom scripts for both server and endpoint agent detection. You can
extend the language using pre-built functions.

10 | Introducing the DLP Scripting Language
About the scripting language syntax

Table 1-1 Detection features supporting scripting

Feature Description

Custom File Type Signature | The DLP Scripting Language lets you write a script that
detection detects the unique bytes of a custom file type.

See “Detecting custom file types” on page 31.

Custom Script validators | The DLP Scripting Language lets you write a script to validate
for custom data identifiers | patterns in a message.

About the scripting language syntax

The Symantec Data Loss Prevention Scripting Language is similar in syntax to
the Perl programming language but simplified for ease of use. The Symantec Data
Loss Prevention Scripting Language uses statements to perform operations on
constant or variable values to check or manipulate data.

The Symantec Data Loss Prevention Scripting Language provides various system
variables that you can use to access stored data.

See “System variables” on page 11.

The Symantec Data Loss Prevention Scripting Language provides three types of
statements that you can use to check or manipulate data:

m Assert
See “Assert statement” on page 11.

m If/Else
See “If/Else statements” on page 12.

m Evaluate
See “Evaluate statement” on page 13.

The Symantec Data Loss Prevention Scripting Language has the following
syntactical characteristics:

m Statements must end in a semicolon.
m Multiple statements can be included on a single line of code.

m Each statement must stand alone; nested statements are not supported.

Note: Symantec Data Loss Prevention may update statement names and may add
additional statement functions

Introducing the DLP Scripting Language | 11
System variables

System variables

System variables store data that you can check and manipulate. For custom file
type detection, the script has access to the entire file by the sdata variable. For
custom validators, the script has access to the raw message, the normalized
message, and the 10 bytes preceding and trailing the matched data. For custom
validators the script does not have access to the entire message.

Warning: Do not assign values to system variables. These variables already hold
system-defined data. Use a local variable such as sresult to assign values. You
should not use system variables with logical, assignment, or arithmetic operations.

Table 1-2 System variables
System variable Description
$data The script engine creates the byte array $data variable when

it reads in a file. The $data variable stores the entire file. In
previous releases of the scripting language, this variable was
limited to 4 KB. In the version 11 release of the scripting
language the entire file is stored in the $data variable.

$match The script engine stores the data matched by the pattern in
the $match variable before it is normalized.

$normalizedMatch The script engine stores the normalized matched data in the
$normalizedMatch variable after it is normalized.

SmatchPrefix You can use this method to verify if a message starts with a
certain pattern. The methods checks 10 bytes before the
matched pattern.

SmatchSuffix You can use this method to verify if a message ends with a
certain pattern. The methods checks 10 bytes after the
matched pattern.

Assert statement

The Assert statement evaluates a Boolean expression and asserts the value "true"
when the expression returns a match. The Assert statement must end with a
semicolon.

The Assert statement supports all regular Boolean expressions:

m == evaluates to

12

Introducing the DLP Scripting Language

If/Else statements

m >= greater than or equal to
m <=less than or equal to

m > greater than

m <lessthan

m !'=does not evaluate to

Table 1-3 Assert statement
Statement Use Example
assertTrue The assertTrue statement checks | assertTrue ($variable == 3);

if the value of the $variable
evaluates to the specified value
(in this example, 3). If it does the
Boolean expression asserts the
value of true.

If/Else statements

You use the If/Else conditional statement to control the flow of program execution.
The If/Else statement lets you include conditional logic in your script when you
need to evaluate the unique bytes of a complex dataset.

The If/Else condition operates the same as conditional statements that other
programming languages provide. The If/Else statement takes a Boolean expression,
evaluates it, and alters the execution of the program based on the result of the
expression.

The following example shows one way to use the If/Else conditional statement:

if ($varl == 3)
{
// statement
// statement
}
else

// statement

The scripting language supports nested execution of the statements that are
contained within the conditional statement. To use nested statements, you use
brackets within the scope of an If/Else statement to offset the multiple script
statements.

Introducing the DLP Scripting Language | 13
Evaluate statement

If the dataset you want to evaluate requires more advanced conditional logic, you
can declare multiple If/Else statements nested within each other.

Evaluate statement

The Evaluate statement provides a number of functions that you can you use to
evaluate data. Not all functions are available for each feature.

Table 1-4 Evaluate statement functions per feature
Evaluate statement Custom File Type Custom Script Validator
function
Addition X X
AsciiValue X NO
Datalength X X
GetAsciiStringAt* X X
GetBinaryIntValue* X NO
GetBinaryValueAt X NO
GetHexStringValueAt X NO
GetIntegerAt* X X
GetStringValueAt* NO X
Modulus X X
Multiply X X
Subtract X X

Key:

m X = Feature supports the statement on server and endpoint.
m NO = Statement not supported by that feature.

m * = New function in Symantec Data Loss Prevention version 11.

14 | Introducing the DLP Scripting Language

Evaluate statement functions

Evaluate statement functions

You use Evaluate statements to execute functions on variable or constant data
values. You can save the return value of an Evaluate function as a variable or
discard the return value. Evaluate statements must end with a semicolon.

Table 1-5 Evaluate statement functions
Function Description Example
Addition The Addition function takes two | Add two variables together and
values as arguments and adds returns the value in the variable
add
them together. The values can be | $result.
variables or constants. You can Sresult = add(Svarl,
save the returned result as a s 4
ar ;
variable or discard the result. v
Add two constants together but
discards the value.
add (1, 2);
AsciiValue The AsciiValue function takes a | Sresult = ascii ('CFV');
ingle ASCII stri t
ascii smgle . S ringasa palTa'me er The $result variable is assigned the
and assigns it to the specified e
. specified ASCII value.
variable.
The length of the ASCIL
parameter must be from one to
four characters.
You can use this statement for
readability purposes.
DataLength The DataLength function counts | Sresult =
datalength the length' of the variable a.rray. datalength ($data) ;
The function takes the variable .
The engine creates the byte array
name of a byte array as a . . .
$data variable when it reads in a
parameter and returns the . i
number of bytes in that array file. The $data variable stores up
" | to the first 4 KB of the file.
GetAsciiStringAt | The GetAsciiStringAt function | The variable $data is a byte array
. . treats the data as ASCII with the values: 'abcdef'.getBytes();
getAsciiStringAt

characters and converts the data
into a string. The data is
converted starting from the
specified offset for the specified
number of digits.

The result should be abc.

Sresult =
getAsciiStringAt (Sdata,
0x0, 3);

Introducing the DLP Scripting Language | 15

Evaluate statement functions

Table 1-5 Evaluate statement functions (continued)
Function Description Example
GetBinaryIntValue | The GetHexStringValue function | $result =
et - pulls the bytefi.ata.as an integer | getBinaryIntValueAt ($data,
¥ from the specified index of abyte | 0x0, 1);
array variable. It also allows a . .
. .. The $data variable is byte array
user to specify how many digits ith val b b
to pull from the data. Since the with values {(byte)0x59.(yte)b
return value is an integer, the OxAD,(tl)Jyte) OxlC,(bytel)lprF,(y;e)
number of digits has tobe 1 -4 0x2B,(byte)0x37}. In this example
b the $result should equal 89.
ytes.
This can be used to analyze data | $result =
at specific offsets of abyte array. | getBinaryIntvValueAt ($data,
The number of digits are 1);
C(;nle)lned to form an integer The $data variable is a byte array
vaiue. with values {1, 2, 3}. The $result
should equal 2.
GetBinaryValuteAt | The GetBinaryValuteAt function | The variable $data is byte array
getBinaryValueAt pulls the byte data into a new byte | with values {(byte)0x59,(byte)
array based on the offset and 0xAD, (byte) 0x1C,(byte) OxDF,(byte)
length specified. The new byte 0x2B,(byte)0x37}. The $result
array can then be compared to | should be a byte array with the
other byte arrays for equality. byte 0x59.
This function lets you specify $result =
how many digits to retrieve from | getBinaryValueAt ($data,
the data (from 1 - 4 bytes). You |o0x0, 1);
use this function to analyze data
at specific offsets of a byte array. | The $data variable is a byte array
with values {1, 2, 3}. The $result
should equal a new byte array with
the number 2 in it.
Sresult =
getBinaryValueAt ($data,
1);
GetHexStringValue | The GetHexStringValue function | $result =
getHexStringValue takes a hexadecimal stringasa | getHexStringValue ('DOCF') ;

parameter and converts it to the
byte (binary) representation.

16 | Introducing the DLP Scripting Language

Evaluate statement functions

Table 1-5 Evaluate statement functions (continued)
Function Description Example
GetIntegerAt The GetIntegerAt function is The $data variable is a byte array
similar to GetAsciiStringAt, with the values: '12345'.getBytes();
getintegerht t GetIntegerAt parses the
excep & P The result should be 34.
ASCII characters and converts
them to an integer value. The $result =
data is converted starting from |getIntegerAt (Sdata, 0x2,
the specified offset for the 2);
specified number of digits. If a
character is not a numerical
value, the script throws an
exception.
GetStringValueAt | The GetStringValueAt function | The variable $data is a byte array
) pulls the data into a new with values {(byte)0x59,(byte)
getStringValueAt
character array based on the 0xAD,(byte) 0x1C,(byte) 0xDF,(byte)
offset and length specified. The | 0x2B,(byte)0x37}.
new byte array can then be Sresult =
compared to other byte arrays for)
. getStringValueAt ($data,
equality.
0x0, 1);
The result should be byte 0x59
The variable $data is a byte array
with values {1, 2, 3}.
Sresult =
getStringvValueAt ($data,
1)
The result should equal a new byte
array with the number 2 in it.
(Offset starts at zero.)
Modulus The Modulus (mod) function The result should be 2.
nod returns the mod oftw? Sresult = mod(5, 3);
parameters. The mod is the
remainder of the first parameter
divided by the second.
Multiply The Multiply function takes two | Sresult = multiply (2, 4);
multiply arguments and multiplies their The result should be 8.

values.

Introducing the DLP Scripting Language | 17
Example scripts for custom file type detection

Table 1-5 Evaluate statement functions (continued)

Function Description Example

Subtract The Subtract function subtracts | $result = sub (10, 4);
sub g;e;tsecond parameter from the The result should be 6.

Example scripts for custom file type detection

Listed here are several example script solutions that detect custom file types.
These examples can be used as reference for writing your own custom scripts and
for detecting the indicated custom file type.

The following script example detects the Microsoft Word file type:

$Intl = getHexStringValue ('DOCF');

$Int2 = getBinaryValueAt ($data, 0x0, 2);
assertTrue ($Intl == $Int2);

$Int3 = getHexStringValue ('ECAS5');

$Int4 = getBinaryValueAt ($data, 0x200, 2);
assertTrue ($Int3 == $Int4);

The following script example detects the CDD file type:

$SIntl = getBinaryValueAt ($data, 0x0, 4);
$SInt2 = getBinaryValueAt ($data, 0x8, 4);
assertTrue ($Intl == $Int2);

$SInt3 = getBinaryValueAt ($data, 0x0, 2);
$SInt4 = getBinaryValueAt ($data, 0x2, 2);
assertTrue ($Int3 != $Int4);

SLast = getBinaryValueAt ($data, 0x27, 1);
SRecSep = getHexStringValue('le');

assertTrue ($SLast == $RecSep);

The following script example detects the CATIA file type:

$Intl = ascii('V');

$Int2 = getBinaryValueAt ($data, 0x0, 1);
assertTrue ($Intl == $Int2);

$Int3 = ascii('CEV');

$Int4 = getBinaryValueAt ($data, 0x3, 3);
assertTrue ($Int3 == $Int4);

The following script example detects the EPUB file type.

18 | Introducing the DLP Scripting Language
Example scripts for custom file type detection

$slash=getHexStringValue ('2f"');
Sepubl=ascii ('epub');
Sepub2=ascii('zip'");
$Sslashl=getBinaryValueAt ($data, Oxb, 1);
assertTrue ($slash == $slashl);
Swordl=getBinaryValueAt ($data, Oxc, 4);
assertTrue (Swordl == S$Sepubl);
Sword2=getBinaryValueAt ($Sdata, Ox1ll, 3);

assertTrue (Sword2 == Sepub2);

Note: EPUB files are in the open book format (XML) encapsulated in a ZIP file
format. You cannot test this script using the File Type Analyzer utility because
the script detects the "application/epub+zip" string contained in the manifest file
(named "mimetype"). The utility cannot crack the ZIP to read the manifest.
However, the detection engine can crack the ZIP file and read the manifest. You
can implement this script in an instance of the Custom File Type Signature
detection rule and detect EPUB files.

The following script example detects the Amazon Kindle file type:

Sbook=ascii ('BOOK"') ;

Smobi=ascii ('MOBI') ;
Swordl=getBinaryValueAt ($data, 0x3c, 4);
Sword2=getBinaryValueAt ($Sdata, 0x40, 4);
assertTrue ($book == S$Swordl) ;

assertTrue (Smobi == S$Sword2) ;
Snull=getBinaryValueAt ($data, 0x3b, 1);
assertTrue ($Snull == 0);
Snullx=getBinaryValueAt ($Sdata, 0x44, 1);

assertTrue (Snullx == 0);

The following script example detects the Oracle IRM file type, which is used for
Digital Rights Management (DRM):

Ssoft=ascii('Soft'");

Sseal=ascii ('SEAL'");
Swordl=getBinaryValueAt ($data, 0x0, 4);
Sword2=getBinaryValueAt ($data, 0x4, 4);
assertTrue ($soft == Swordl);

assertTrue ($seal == Sword2);

In addition, the following two tutorials offer additional examples of the scripting
language:

Introducing the DLP Scripting Language
Example scripts for custom validators

m Java class files
See “Tutorial 1: Detecting Java class files” on page 32.

m Password encrypted ZIP files
See “Tutorial 2: Detecting an encrypted ZIP file format” on page 35.

Example scripts for custom validators

Listed here are some examples of custom script validators.

The following script is a basic custom validator that validates a 5-digit data
identifier by retrieving the 5th digit and the first 4 digits, assigning them to
variables, and comparing these values against the expected datalength.

Pattern \d{5}
Normalizer Do Nothing
Custom Script $sl = getStringValueAt ($normalizedMatch, 0x0, 5);

$s2 = getStringValueAt ($normalizedMatch, 0x5, 4);
$sizel = datalength($sl);
$size2 = datalength ($s2);
assertTrue ($sizel == 5);
assertFalse ($size2 != 4);

The following custom script validates a 10-character string in the form of
LL/MM/DD/YYYY. The first two characters are the initials of the person and are
excluded from validation. The remaining digits are saved into separate variables,
computed by a multiplier, added, and then compared to ensure that they conform
to a proper day (less than 32), month (less than 13), and year (less than 2051).

Pattern \1{2}\d{8}

Normalizer Digits and Letters

19

20 | Introducing the DLP Scripting Language
Example scripts for custom validators

Custom Script
$ml = getIntegerAt ($normalizedMatch, 0x2, 1);
Sm2 = getIntegerAt ($normalizedMatch, 0x3, 1);
$dl = getIntegerAt ($normalizedMatch, 0x4, 1);
$d2 = getIntegerAt ($normalizedMatch, 0x5, 1);
$yl = getIntegerAt ($normalizedMatch, 0x6, 1);
$y2 = getIntegerAt ($normalizedMatch, 0x7, 1);
$y3 = getIntegerAt ($normalizedMatch, 0x8, 1);
Sy4 = getIntegerAt ($normalizedMatch, 0x9, 1);

Sml = multiply(Sml, 10);
$dl = multiply($dl, 10);
Syl = multiply($yl, 1000);
Sy2 = multiply($y2, 100);
Sy3 = multiply(Sy3, 10);

$Day = Add($dl, $d2);
$Month = Add($ml, $m2);
S$Year = Add(Syl, Sy2, Sy3, Syé);

assertTrue ($Day > 0);
assertTrue ($Day <= 31);
assertTrue ($Month > 0);
assertTrue ($Month <= 12);
assertTrue ($Year >= 1910);
assertTrue ($Year <= 2050);

The following custom script validator can be used to verify the match of a Turkish
ID number. A Turkish ID is an 11-digit number. The first digit cannot be zero. The
10th and 11th digits are check digits for error detection.

Pattern \d{11}

Normalizer Digits Only

Custom Script

$kl = getIntegerAt ($normalizedMatch, 0x0,
$k2 = getIntegerAt (SnormalizedMatch, 0x1,
$k3 = getIntegerAt (S$SnormalizedMatch, 0x2,
$k4 = getIntegerAt ($normalizedMatch, 0x3,
$k5 = getIntegerAt ($normalizedMatch, 0x4,
$k6 = getIntegerAt ($SnormalizedMatch, 0x5,
$k7 = getIntegerAt ($normalizedMatch, 0x6,
$k8 = getIntegerAt (SnormalizedMatch, 0x7,
$k9 = getIntegerAt (S$SnormalizedMatch, 0x8,
$Scl = getIntegerAt ($normalizedMatch, 0x9,
$c2 = getIntegerAt ($normalizedMatch, O0xA,

Introducing the DLP Scripting Language | 21
Example scripts for custom validators

e e e e e e

$i0dds = add($kl, $k3, $k5, $k7, $k9);
SiEvens = add($k2, $k4, $k6, $k8);

$i0ddsMltSeven
$iEvensM1tNine
$10ddsM1tEight
$iMidSum add
$iCheckl = mod

= multiply($i0Odds, 7);
= multiply($iEvens, 9);
= multiply($i0dds, 8);

($i0ddsMltSeven, S$iEvensMltNine) ;
($iMidSum, 10);

assertTrue ($iCheckl == $cl);
$iCheck2 = mod($i0OddsM1ltEight, 10);
assertTrue ($iCheck2 == $c2);

22 | Introducing the DLP Scripting Language
Example scripts for custom validators

Using the File Type Analyzer
utility for custom file type
detection

This chapter includes the following topics:

About the File Type Analyzer utility

Installing the File Type Analyzer utility

Launching the File Type Analyzer utility

Creating the dataset

Analyzing dataset results

Testing the script solution

Saving, opening, editing a dataset

Increasing the Java heap size for large or recursive datasets

Increasing the number of bytes that are analyzed

About the File Type Analyzer utility

To assist you with analyzing custom file types, you can use the Symantec Data
Loss Prevention File Type Analyzer utility.

The File Type Analyzer utility helps you find the commonalities and attributes
that describe a custom file type. This data is often referred to as "magic bytes"
because they are unique characters that positively identify the file type.

24 | Using the File Type Analyzer utility for custom file type detection
Installing the File Type Analyzer utility

The File Type Analyzer utility is a standalone Java application that features a
graphical user interface. This utility enables you to perform the following
operations:

m Readin a collection of files from a directory or directories (the "dataset").
m View and compare the unique bytes for each file in the dataset.

m Analyze the bytes across files and determine those that are consistent.

m Test a custom file type detection script.

m Save and open dataset configurations and test scripts.

Figure 2-1 Symantec Data Loss Prevention File Type Analyzer utility interface
0 File Type Anabyzer [O] =]
Fla
TV DataLoss Prevention
Create Dataset
Drectories | Add Dirociory | Sokston

i = getHexSiringValueDOCFY
Rismawe Directony I e = petinanyseal fania (u, 3
ner Trus(irgt == Skl
Filg Nama Filgr k) = (et S VBABSTECAST,
W = ey Vakse Al B (00, 2)
ac-oer TrusCHFE D e Y04

humber of Bytes 1024
Churk Sew 1 This scriph debenis MES WWond e frpes

w1+ i e

Paries Typa | B0 TE
Recuraive Scan I

Aotz Datasat_| Test Sokution

See “Installing the File Type Analyzer utility” on page 24.

Installing the File Type Analyzer utility

The Symantec Data Loss Prevention File Type Analyzer utility is available for
Windows. The software is available for download from
https://fileconnect.symantec.com.

To install the File Type Analyzer utility on Windows

1 Double-click the fileanalyzer windows 4 0 1.exe executable.

2 At the "Welcome" screen, click Next.

3 Accept the default Destination Directory C:\Program Files\File Analyzer.
Or, you can change the Destination Directory to one you prefer.
Click Next to install the utility.

Click Finish to complete the installation process.

https://fileconnect.symantec.com

Using the File Type Analyzer utility for custom file type detection
Launching the File Type Analyzer utility

See “About the File Type Analyzer utility” on page 23.

Launching the File Type Analyzer utility

You can run the File Type Analyzer utility in GUI mode or from the command
line. The GUI mode of operation is recommended because it lets you test your
script against a configured dataset.

Launching the File Type Analyzer utility (GUI version)

1 Obtain the File Type Analyzer utility and install it.

See “Installing the File Type Analyzer utility” on page 24.

2 Navigate to the installation folder where you installed the utility.

For example: C:\Program Files\File Analyzer

3 Double click the analyzer gui.exe executable.

The File Type Analyzer utility interface should appear.

Creating the dataset

The File Type Analyzer utility offers several parameters for configuring the dataset

in preparation for analyzing file type byte data.

Table 2-1

Parameters for configuring the dataset

Parameter

Use

Add
Directory

This option lets you choose which directories to include in the file analysis.
You can add multiple directories to a single dataset.

Each directory you select should contain samples of the file type you want to
analyze and ultimately detect. To have a useful dataset, include several samples
of the file type, including different versions of the product with different
features enabled and disabled.

Note: To achieve the best results, the recommended minimum sample size is
15 files of the same file type.

Remove
Directory

This option lets you remove a directory you have added to the dataset. You
can select multiple directories to remove. When a directory is removed, it is
no longer scanned as part of the dataset.

25

26

Using the File Type Analyzer utility for custom file type detection

Creating the dataset

Table 2-1 Parameters for configuring the dataset (continued)
Parameter | Use
File Name | This field contains a regular expression pattern that tells the utility what files
Filter from each directory to include in the dataset. A regular expression is used
because it provides flexibility for filtering the files you want to include in your
dataset.
The following regular expression reads in all ASCII file names from a directory
(or directories) to a dataset:
[\w\s]+.[\w]+
The following regular expression lets you filter file names that use non-ASCII
characters:
[~0x00]+. [\w]+
Note: For assistance with using regular expressions for file name filtering,
see the topic "About writing regular expressions" in the Symantec Data Loss
Prevention Administration Guide or in the online Help.
Number | This field specifies the number of bytes per file to display for analysis.
of Bytes The default maximum value for this field is 1024 bytes.
See “Increasing the number of bytes that are analyzed” on page 30.
Chunk This field represents the size of the group of bytes to be displayed in a column.
Size For example, if you enter 2 in this field, the utility displays two bytes of data
in each column (offset).
Parser This option defines how the data is displayed for analysis from the scanned
Type dataset.
m The BYTE option displays the analysis results in hexadecimal format
representing the corresponding byte value.
m The ASCII option displays the analysis results as ASCII characters.
m The NUMBER option displays the analysis results in integer format.
Recursive | If this box is checked, the utility scans each directory and any subdirectories
Scan that are included in the dataset. If a directory contains subdirectories where

files you want to scan are located, choose this option.

Note: Recursive scanning is memory intensive. If you want to analyze either
alarge or arecursive dataset, consider increasing the Java heap size to improve
performance.

See “Increasing the Java heap size for large or recursive datasets” on page 29.

Using the File Type Analyzer utility for custom file type detection | 27
Analyzing dataset results

Table 2-1 Parameters for configuring the dataset (continued)

Parameter | Use

Analyze | Click this option when you have completed configuring the dataset. The File
Dataset | Type Analyzer utility validates the input and initiates the file analysis process.
The utility reads in all the necessary data and displays the results in the
"Analyze Dataset" screen.

Analyzing dataset results

The Analyze Dataset screen displays the results of the dataset based on the criteria
you specified.

Once the utility filters the files in your dataset, it sorts and displays the data by
tabs according to file extension. You can further sort the data by clicking the
column names. You can also delete columns or rows of irrelevant data by selecting
the row or column and performing a right-click.

Note: The File Type Analyzer utility uses the file extension to organize by tab the
files in your dataset. However, the file extension is not a reliable means of detecting
a file type because the file extension can easily be changed. Symantec Data Loss
Prevention detects file type based on uniquely-identifying specific bytes.

When you analyze dataset results, your goal is to locate the unique bytes that are
consistent for each instance of the file type. These unique bytes are the "magic
bytes" for the analyzed file type. You must determine what the magic bytes are
to write a script that detects the custom file type. For example, the first two bytes
of a Microsoft Word file (*.doc) are DO CF (in hexadecimal format).

To help you assess the results and find the magic bytes for the custom file type,

click the Analyze Table Data option. With the default option COLUMN_MATCH
selected, the File Type Analyzer utility highlights the columns that are the same
across all files in the selected tab.

The ROW_OFFSET_MATCH option looks for byte matches within the same file
(row). The offsets (columns) that match in the same row are highlighted; those
that match the same offset in another row are not. This option is useful for a few
file types that use unique bytes within the same file to indicate file type. For
example, the CADAM file type (*.cdd) uses the same values for bytes 0 - 3 and
bytes 8 - 11 within each file, but these values are different across files.

Once you have analyzed the results and determined the magic bytes, the next step
is to write a script to detect the file type.

28

Using the File Type Analyzer utility for custom file type detection
Testing the script solution

See “About the scripting language syntax” on page 10.

Refer to the tutorials for instructions on creating the dataset, analyzing the results,
and writing a script to detect a custom file type. These tutorials demonstrate how
the File Type Analyzer utility works and should help you get started scripting
solutions to detect custom file types.

See “Tutorial 1: Detecting Java class files” on page 32.

See “Tutorial 2: Detecting an encrypted ZIP file format” on page 35.

Testing the script solution

The File Type Analyzer utility provides fields for entering your custom script
solution, annotating it, and testing the solution against the dataset.

Table 2-2 Parameters for testing the script solution against the dataset

Parameter |Use

Solution This field is where you enter the script text you want to use to detect the
custom file type.

See “About the scripting language syntax” on page 10.

Notes This field provides a mechanism for annotating the dataset you have
configured and your script solution.

See Figure 2-1 on page 24.

This field is useful for saving your dataset configurations and script
solutions.

See “Saving, opening, editing a dataset” on page 29.

Test Solution | Click this option to verify that your script accurately detects the custom
file type.

When you test your solution, the utility takes the data from the dataset table and
filters the files based on the dataset criteria. Once the dataset is built, the script
engine runs the solution against the dataset and displays the results in the "Test
Dataset Results" screen. The displayed results give you an indication of how well
your script has worked to detect the custom file type.

The "Test Dataset Results" screen displays the results of the test in two tabbed
panes:

m Matched Files - The top pane lists all the files in the configured dataset that
your script detected.

Using the File Type Analyzer utility for custom file type detection
Saving, opening, editing a dataset

m Mismatched Files - The bottom pane displays all the files in the configured
dataset that your script did not detect.

This bifurcated display lets you quickly assess the accuracy of your script. You
can easily see files matched that should not (false positives). You can also see the
files that failed to match but should have (false negatives). Finally, you can see if
there is any discrepancy between a file extension and the actual file type based
on its unique bytes.

Saving, opening, editing a dataset

The File Type Analyzer utility lets you save configured datasets for subsequent
reuse. You can open a saved dataset configuration and reanalyze the data at
anytime. You can also edit a configured dataset, change its configuration
parameters, and update your script solution.

Table 2-3 Options for saving, opening, editing a dataset
Parameter Use
Save You can perform a File > Save action to save your dataset configuration

and script solution.

The file is saved as a *.fgi file type.

Open You can perform a File > Open action to open a saved dataset. Browse
to the *.fgi file and open it.

Edit Dataset Use this option to change the configuration parameters of an active
dataset.

You can add directories to or remove directories from the dataset,
change configuration parameters, or update the script solution.

Increasing the Java heap size for large or recursive

datasets

If you analyze a large or a recursive dataset, you may have to wait to analyze or
test the files in the dataset. The File Type Analyzer utility needs to scan each
directory in the dataset and perform I/O operations on each file that meets the
dataset criteria.

If the utility runs out of memory before it processes the files, it freezes and does
not move on to the expected screen.

29

30

Using the File Type Analyzer utility for custom file type detection
Increasing the number of bytes that are analyzed

If you analyze a large dataset (100,000+ files) or use recursive scanning to create
the dataset, increase the maximum Java heap size.

To increase the Java heap size for the File Type Analyzer utility (GUI version)

1
2

Open a command line interface (Windows) or a console interface (Linux).

Launch the File Type Analyzer utility from the command line using the
following command:

analyzer gui.exe -Xmx1024m
The interface should launch with the Java heap size increased accordingly.

You should now be able to analyze or test alarge or a recursive dataset without
error or significant delay.

Increasing the number of bytes that are analyzed

The maximum value for the number of bytes that the Symantec Data Loss
Prevention File Analyzer utility allows for a dataset is 1024. Generally this value
is sufficient to analyze custom file types since the signature bytes typically exist
at the beginning of the file.

To analyze more than the first 1024 bytes of data, modify the File Analyzer utility
as follows.

Increasing the number of bytes that are analyzed

1

[«) I © 2 R ~ N 8

Using WinRAR, open the file c:\Program Files\File
Analyzer\lib\filegenie.jar

Within the filegenie.jar file, open the file

create-dataset-form-context.xml.

In the first bean, locate the property element maxNumByteSize.
Change the value from "1024" to the desired number of bytes.
Save the XML file and update the JAR.

Run the File Analyzer and verify that the additional bytes are read and
displayed in the user interface.

Tutorials

This chapter includes the following topics:
m Detecting custom file types
m Tutorial 1: Detecting Java class files

m Tutorial 2: Detecting an encrypted ZIP file format

Detecting custom file types

Symantec Data Loss Prevention detects more than 300 file types. However, if the
type of file you want to detect is not supported, you can detect it using a custom
script. To do this, you use the Symantec Data Loss Prevention Scripting Language
to write a script that detects the binary signature of the particular file format you
want to detect.

In addition, you can use the design-time Symantec Data Loss Prevention File Type
Analyzer utility to help you determine the unique bytes of the custom file type
you want to detect.

To detect custom file types

1 Create a sample archive or directory containing several instances of the
custom file or document type you want to detect.

Create different samples of the document, with different features turned on
and off, and based on different software versions.

2 Use the Symantec Data Loss Prevention File Type Analyzer utility to read in
the bytes of the dataset.

Look for patterns among the file bytes to determine file type recognition
characters (also known as "magic bytes"). Refine the sample and run more
scans as necessary.

See “About the File Type Analyzer utility” on page 23.

32

Tutorials

Tutorial 1: Detecting Java class files

Use the Symantec Data Loss Prevention Scripting Language to write a script
that detects the custom file type. Use the File Type Analyzer utility to test
and refine your script.

See “Example scripts for custom file type detection” on page 17.
See “Testing the script solution” on page 28.

Enable the Custom File Type Signature detection rule so it appears in the
Enforce Server policy builder interface.

See the topic "Enabling custom file type detection" in the online Help and the
Symantec Data Loss Prevention Adminstration Guide.

Deploy an instance of the Custom File Type Signature condition in one or
more detection rules or exceptions.

See the topic "Configuring the Custom File Type Signature condition" in the
online Help and the Symantec Data Loss Prevention Adminstration Guide

Author a policy that uses the detection rule or exception. Test and refine the
policy as necessary.

Tutorial 1: Detecting Java class files

This tutorial provides instructions for using the File Type Analyzer utility to
analyze a dataset and determine the magic bytes. It also demonstrates how to use
the scripting language to author and test a solution.

In this first tutorial you analyze and detect Java class files. This tutorial assumes
that you use the Windows-based GUI version of the File Type Analyzer utility.

Tutorial 1: Detecting Java class files

1

Install the File Type Analyzer utility.

See “Installing the File Type Analyzer utility” on page 24.
Launch the File Type Analyzer utility.

See “Launching the File Type Analyzer utility” on page 25.
Prepare the dataset for this example.

Copy several (15 or more) Java class files (*.class) to a directory on your file
system. (For the purposes of this tutorial, the directory that is used is
C:\temp\JavaClassFiles.)

In addition, to ensure that your script matches only Java class files, add a few
non-Java class files to the same directory.

10

Tutorials | 33
Tutorial 1: Detecting Java class files

Add the dataset directory to the File Type Analyzer utility.

In the File Type Analyzer utility, click Add Directory. Browse to and select
the directory where you copied the files and click Open.

In the File Name Filter field enter a regular expression to filter the files.

For example, the following regular expression screens all files in the selected
directory: [\w\s]+. [\w]+

This regular expression matches:

m (\w) Any alphanumeric character, digit, or underscore

(\s) Any whitespace
m (+) One or more of the previous characters must match
m () Any single character, including itself

You may need to adjust this expression to find the files you want to analyze
in the specified directory. For example, if a file name contains a dash (-), adjust
the expression as follows: [\w\s-]+. [\w]+

See “Creating the dataset” on page 25.
In the Number of Bytes field, enter 1024.

The magic bytes of a file are almost always contained within the first 1024
bytes of a file. If you want to analyze more than the first 1024 bytes of data,
you must increase the number of bytes that the File Type Analyzer utility
can read and display.

See “Increasing the number of bytes that are analyzed” on page 30.
For the Chunk Size enter 1.
For the Parser Type choose BYTE.

If the files you want to screen are in nested directories, choose the Recursive
Scan option.

Note: If you choose the Recursive Scan option, or you have a large dataset,
increase the Java heap size allocated to the File Type Analyzer utility.

See “Increasing the Java heap size for large or recursive datasets” on page 29.

Click Analyze Dataset. The utility analyzes all files in the directory and
displays the results. The utility organizes each file by tabs according to its
extension. In the All tab the utility displays all screened files. In the .class
tab the utility displays only the Java class files.

34 | Tutorials

Tutorial 1: Detecting Java class files

11

12

13

Click Analyze Table Data again. This time the utility highlights the bytes
within each file that match across all files.

Asyou can see, for Java class files there are several bytes in common, including
the first four (0 through 3): CA FE BA BE. These bytes are the magic bytes
for Java class files.

In the drop-down menu at the bottom you can change how the utility analyzes
table data. The default option is COLUMN_MATCH, which generally provides
the most accurate matching. If you switch to this analysis mode you need to
click Analyze Table Data again to see the matching bytes by row.

Now that you know what the magic bytes are for Java class files, you can
author a script to detect this file type. You can then test your script using the
File Type Analyzer utility.

In the Solution field, enter the following script to detect Java class files:

$Intl = getHexStringValue ('CAFE');

$Int2 = getBinaryValueAt ($data, 0x0, 2);
assertTrue ($Intl == $Int2);

$Int3 = getHexStringValue ('BABE');

$Int4 = getBinaryValueAt ($data, 0x2, 2);
assertTrue ($Int3 == $Int4);

Click Test Solution. At the top of the interface you see the Matched Files.
Only those files containing the CAFE BABE magic bytes appear in the "Matched
Files" section of the interface. Files that do not contain these magic bytes
appear in the Mismatched Files section at the lower-half of the interface.

Analysis of the script solution:

m When you analyze the dataset, the File Type Analyzer utility indicates
that the first two bytes of a Java class file are CA FE. So, in the first
statement of the script you assign that value as a hexadecimal string to
the variable $Int1.

m In the second statement of the script you get the firsts two bytes of each
file and assign that value to the variable $Int2. The "0x0, 2" portion of the
statement tells the script engine to start at the first byte and get the first
two.

m In the third statement you compare the values of the two variables and
check for a match.

m The process is repeated for the third and the fourth bytes ("0x2, 2"), looking
for amatch on BA BE. Files that match both evaluations are detectable by
the script and appear in the "Matched Files" portion of the interface.

Tutorials | 35
Tutorial 2: Detecting an encrypted ZIP file format

14 In the Note section enter a comment about the solution, such as "Custom
script for detecting Java class files."

15 In the File Type Analyzer interface, select File > Save. Give the file a name
and save it to a local directory, such as c:\temp\JavaClassFiles.fgi.

16 Close the File Type Analyzer interface and relaunch it. Choose File > Open
then browse to and select the JavaclassFiles. fqi file.

The dataset parameters and script solution appear in the interface. From
here you can reanalyze the dataset and refine your solution as necessary.
Click Edit Dataset to add or remove directories containing files you want to
analyze. You can also right-click a row and remove an individual file from
the dataset.

17 Once you have debugged your solution, deploy your script to an instance of
the Custom File Type Signature rule. You can then author and deploy new
policies that use this rule to detect the custom file type.

Tutorial 2: Detecting an encrypted ZIP file format

This tutorial demonstrates how to write a custom script to detect password
protected (encrypted) ZIP files. While a Symantec Data Loss Prevention detection
server can detect encrypted ZIP files, an endpoint agent cannot. The solution that
is provided here lets you work around this issue.

Note: This script detects if a ZIP file is encrypted by checking if the encryption
bit is enabled on the first file entry. Because ZIP allows encryption on a per file
basis, this script only works if all files or the first file in the ZIP are encrypted.

This tutorial assumes that you completed the first tutorial.
To detect an encrypted ZIP file format

1 Create several (15 or more) password-protected ZIP files and put them in a
directory such as c:\temp\files\ZIP.

2 Create a second set of ZIP files (5 or more) that are not encrypted so that you
have both matched and mismatched results.

Place these non-encrypted ZIP files in a second directory such as
c:\temp\files\ZIP2.

Launch the File Type Analyzer utility (analyzer gui.exe).
4 Addthec:\temp\files\zIp directory as the dataset.

Also add the c:\temp\files\z1P2 directory to the dataset.

36

Tutorials

Tutorial 2: Detecting an encrypted ZIP file format

Enter and select the required dataset parameters:
m File Name Filter: [\w\s]+.[\w]+

m Number of Bytes: 1024

m ChunkSize: 1

m Parser Types: BYTE

Click Analyze Dataset.
With COLUMN_MATCH selected, click Analyze Table Data.

The utility highlights the byte matches across all files. Note the exact matches
for the first 6 bytes of all files. Note also that the 7th byte is zero for the ZIP
files that are not encrypted. The 7th bit is the encryption bit.

In the Solution field, enter the following script:

Spktag=ascii ('PK');
Sfrecord=getHexStringValue ('0304");
Spkbytes=getBinaryValueAt ($data, 0x0, 2);
assertTrue ($Spktag == $pkbytes);
Srecordbytes=getBinaryValueAt ($data, 0x2, 2);
assertTrue ($Sfrecord == S$recordbytes);
ScryptByte=getBinaryValueAt ($data, 0x6, 1);
Sencrypted=mod (ScryptByte, 2);

assertTrue (Sencrypted == 1);

The solution should match only those ZIP files in the dataset that are
encrypted. The ZIP files that are not encrypted should appear in the
"Mismatched Files" pane.

Analysis of this script solution:
m $pktag=ascii('PK");
The first statement assigns the "$pktag" variable the value "PK." If you

switch the Parser Type to ASCII, you see that the first two bytes of all ZIP
files are "P" and "K".

m $frecord=getHexStringValue('0304');
The second statement assigns the "$frecord" variable the value of "0304",
which are the 3rd and 4th bytes of the ZIP files. (Switch back to BYTE for
the Parser Type to confirm this value.)

m $pkbytes=getBinaryValueAt($data, 0x0, 2);
The third statement gets the binary value of the first two bytes.

m assertTrue($pktag == $pkbytes);

Tutorials
Tutorial 2: Detecting an encrypted ZIP file format

The fourth statement compares the values of the "$pktag" and "$pkbytes"
variables, looking for an exact match of "P" and "K". If the values match,
the assertTrue value is achieved.

$recordbytes=getBinaryValueAt($data, 0x2, 2);

The fifth statement checks the binary value of the 3rd and 4th bytes (start
at the 3rd byte and count 2). Here the values (in BYTE mode) are "03" and
"04".

assertTrue($frecord == $recordbytes);

The sixth statement compares the values of the "$frecord" and the
"$recordbytes" variables. If the returned value ("$recordbytes") matches
the value assigned to the "$frecord" variable ("03" and "04"), the assertTrue
value is achieved.

$cryptByte=getBinaryValueAt($data, 0x6, 1);
The seventh statement gets the binary value at the 7th byte (column 6).

$encrypted=mod($cryptByte, 2);

The eighth statement divides the value of the 7th byte (as assigned to the
"$cryptByte" variable) by "2." It then assigns this remainder to the
"$encrypted" variable.

assertTrue($encrypted == 1);

The ninth statement checks the value of the "$encrypted" variable. If the
value is zero (no remainder), then the ZIP file is not encrypted. If there is
aremainder then the ZIP file is encrypted.

37

38 | Tutorials
Tutorial 2: Detecting an encrypted ZIP file format

C

custom file type detection

F

workflow 31

file type analyzer

S

about 23

analyzing results 27
column match 27

dataset creation 25
editing 29

increase Java heap size 29
increase number of bytes analyzed 30
install 24

launching 25

opening 29

row offset match 27
saving 29

testing script solutions 28

scripting language

about 9

assert statement 11

encrypted ZIP files 35

evaluate statement 13

evaluate statement functions 14
example custom file type scripts 17
example custom validator scripts 19
if/else statements 12

Java class files 32

syntax 10

system variables 11

	Symantec™ Data Loss Prevention Detection Customization Guide
	Technical Support
	Contents
	1. Introducing the DLP Scripting Language
	About the scripting language
	About the scripting language syntax
	System variables
	Assert statement
	If/Else statements
	Evaluate statement
	Evaluate statement functions
	Example scripts for custom file type detection
	Example scripts for custom validators

	2. Using the File Type Analyzer utility for custom file type detection
	About the File Type Analyzer utility
	Installing the File Type Analyzer utility
	Launching the File Type Analyzer utility
	Creating the dataset
	Analyzing dataset results
	Testing the script solution
	Saving, opening, editing a dataset
	Increasing the Java heap size for large or recursive datasets
	Increasing the number of bytes that are analyzed

	3. Tutorials
	Detecting custom file types
	Tutorial 1: Detecting Java class files
	Tutorial 2: Detecting an encrypted ZIP file format

	Index

