
White Paper

Broadcom HDC-Db2-zOS-WP100
August 6, 2020

Overview

With Db2 12 for z/OS function level 504 (FL504), the capability has been delivered to exploit the Huffman compression
feature introduced in z14. This whitepaper will explain Huffman compression, its benefits, and how to enable it. This paper
will also discuss the impact on the Broadcom CA Database Management Solutions for Db2 for z/OS software.

Huffman Data Compression in IBM
Db2 for z/OS

Broadcom HDC-Db2-zOS-WP100
2

Huffman Data Compression in IBM Db2 for z/OS White Paper

Introduction

The target audience for this document are people who are involved in Db2 z/OS administration and data processing in
general. Compression of data is an important technique to increase the capacity of your direct access storage device
(DASD). When you compress data, you need less DASD space for your Db2 tables.

Data compression will improve I/O performance through the reduction of DASD utilization, and can benefit Db2 buffer pool
performance resulting in lower CPU utilization. Over time, IBM has delivered numerous enhancements in the compression
space for Db2 z/OS that have reduced the compression overhead, making it more attractive for customers to utilize.

With FL504, Huffman compression uses IBM z14 hardware to compress data before it is stored and to decompress the data
that is retrieved from a page in the buffer pool.

Huffman compression, in general, will provide better compression ratios, but may have a higher CPU cost than fixed-length
for decompression. We will explain more about that later, but first let us start with an overview of compression capabilities
on z/OS and its exploitation by Db2.

Compression Support Options on z/OS

The development of Db2 data compression support has progressed over the course of the product lifecycle. Initially, the only
way to compress Db2 table data was to use an EDITPROC, a software algorithm high in the computational stack. The cost
of compression and decompression was often prohibitive.

In the Db2 V3 time-frame, IBM introduced the CMPSC instruction. Initially, the instruction was implemented in millicode. So,
the operation was brought down significantly in the stack of computational layers. This capability reduced the cost of
compression and decompression and made the larger scale compression of Db2 tablespaces possible.

The z800 and z900 machine models were the first to implement the CMPSC instruction in a special hardware co-processor.
The hardware implementation offers considerably better performance than what was available on earlier systems.

Processors prior to the z14 had hardware support for only a Lempel/Ziv type of compression. The z14 introduced Huffman
compression. The z15 introduced on-chip Gzip compression. Before the z15, Gzip compression was a separate feature on
the zEDC express (PCIe) card. With the z15, it is now an on-chip accelerator, avoiding the overhead of data movement to
and from the PCIe card. The z15 on-chip accelerator reportedly boosts compression throughput from 1 to 16 GB per second.

As these hardware improvements became available, the Db2 engine exploited z-synergy strategies and made internal
improvements, as well. All of these combined compression support options resulted in improved compression performance
over the course of the various Db2 releases.

Db2 for z/OS Compression

Various elements of a Db2 subsystem can be compressed. However, the only compression type that is affected by the new
Huffman compression support is the dictionary-based compression as executed by the CMPSC instruction.

Broadcom HDC-Db2-zOS-WP100
3

Huffman Data Compression in IBM Db2 for z/OS White Paper

Tablespaces

Data compression for Db2 started with tablespace compression. Initially this was through software, but IBM quickly brought
hardware support in the form of the CMPSC instruction. The CPMSC instruction takes a piece of data (a row) and
compresses or decompresses it using a dictionary. While compression is enabled at the tablespace partition level, a partition
may contain a combination of compressed and uncompressed rows. Before rows can be compressed, the compression
dictionary must first be constructed. An important characteristic of tablespace compression is that the data is compressed
in the bufferpool.

This type of compression also applies to XML data.

The compression dictionary can be rebuilt by executing a REORG or LOAD REPLACE utility of a partition. The main
difference between REORG and LOAD REPLACE is the number of rows used to build the dictionary.

Lob Data

With Db2 12, LOB data can be compressed, as well, using zEDC compression and not using a compression dictionary. Since
this paper is on Huffman compression, LOB data compression is beyond its scope.

Indexspaces

Indexspaces can also be compressed in order to save DASD space. The compression is dictionary-less and performed by
the Db2 I/O engines. The page in the bufferpool is, therefore, in an uncompressed format. As a result, there is no impact on
either the bufferpool hit ratio or on virtual storage savings.

The Db2 deferred write engine asynchronously compresses a leaf page from a buffer into an I/O work area and then writes
the page to disk. Conversely, pages are read from the disk into the I/O work area and then expanded into a buffer, in the
buffer pool. The expansion is synchronous if the I/O itself is synchronous and the expansion is asynchronous if the I/O itself
is asynchronous. All synchronous CPU time is counted as class 2 CPU time. All asynchronous CPU time is counted as
DBM1 SRB time (which is zIIP eligible).

Log Data

Db2 archive log datasets can be compressed by a data facility storage management subsystem (DFSMS). With the zEDC
feature (either as a separate card or by exploiting the compression core on Z15 machines), archiving log datasets has
become an attractive option. Compressed archive datasets allow more log data to be available on expensive DASD,
optimizing a log intensive recovery.

Compression Method for Db2 Tablespaces

There are many compression methods. For database systems such as Db2, the method must allow the original data to be
perfectly reconstructed from the compressed data so that after compression and decompression, the data is identical to the
original data. Lempel/Ziv or Huffman compression methods are the most commonly used of the general purpose
compression methods. In their simplified essence, both methods replace a string of data with a shorter representation.

Db2 builds or rebuilds the dictionary during execution of the LOAD utility or REORG utility. Since Db2 11, a compression
dictionary can also be built dynamically when adding a sufficient amount of data to a tablespace, defined with COMPRESS
YES. A compression dictionary can be built during SQL INSERT or MERGE, or execution of a LOAD RESUME utility.

Broadcom HDC-Db2-zOS-WP100
4

Huffman Data Compression in IBM Db2 for z/OS White Paper

What is Lempel/Ziv Compression?

Both Lempel/Ziv and Huffman use a dictionary to support compression and decompression of the data. The variation of
Lempel/Ziv used by Db2 (and supported by CMPSC) is LZ78. In LZ78, the shorter representation is actually a pointer to the
entry in the decompression dictionary.

The dictionary can be seen as a table with the entries representing the data that has been replaced by a shorter code. The
shorter code is stored in the compressed image of the row. Typically, Db2 has 4,096 entries in the dictionary. When building
this dictionary, Db2 attempts to optimize the compression ratio by keeping the most frequently used byte strings as entries
in the dictionary. As an example, the effect of replacing a 12 byte string by a 12 bit pointer only once in a 25 MB dataset is
hardly measurable. However, replacing a 6 byte string a million times by a 12 bit pointer in the same 25 MB dataset will shrink
it significantly.

Figure 1: A 16 byte (128 bits) string gets reduced to three index entries in the table containing 4,096 entries. The index entry
could fit in 12 bits. This results in 128 bits being reduced to 36.

While the example in Figure 1 is severely oversimplified, it demonstrates the principle of Lempel/Ziv compression.

What is Huffman Compression?

Just like Lempel/Ziv, Huffman is a dictionary-driven compression and decompression algorithm. However, the entries in the
dictionary are sorted by frequency of occurrence. The entries with the highest frequency get a shorter bit pattern to identify
the entry in the dictionary. This typically results in a much improved compression ratio.

The best way to visualize Huffman compression is to imagine the entries being organized in a tree-like structure. This is not
imaginary since this is actually the way Huffman compression algorithms build the dictionary. In order to achieve this, in
addition to gathering the entries as for a Lempel/Ziv type dictionary, the selected entries are sorted in ascending frequency
order.

Broadcom HDC-Db2-zOS-WP100
5

Huffman Data Compression in IBM Db2 for z/OS White Paper

Figure 2: For example, let us use the same entries from the example for Lempel/Ziv compression in the previous section and
add imaginary frequencies, as follows:

An algorithm uses the frequencies of the entries and gives the shortest bit pattern to the entry with the highest frequency. To
support this, a tree-like structure is built.

Figure 3: A tree-like structure is based on the frequencies of the entries.

In the above diagram of the tree-like structure, the oval shapes represent the entries. Each entry carries the value it
represents as well as the frequency of the entry. The rectangular shapes represent intermediate nodes that represent the
frequency of the subtree structures (or nodes) below them.

The bit pattern that is associated with each entry can be determined by following the path from the root towards the entry
and concatenating the bits of the branches taken.

Figure 4: The resulting bit patterns from the sample in Figure 3:

Broadcom HDC-Db2-zOS-WP100
6

Huffman Data Compression in IBM Db2 for z/OS White Paper

Using these bit patterns, the entry with the highest frequency (‘THE’) will be represented with a single bit instead of the 12
bit code as in the Lempel/Ziv example. This demonstrates the important distinction between Huffman and Lempel/Ziv and
explains the values of the ZPARM TS_COMPRESSION_TYPE ‘HUFFMAN’ compared to ZPARM
TS_COMPRESSION_TYPE ‘FIXED_LENGTH’.

Why Huffman Compression?

Huffman compression may achieve better compression ratios in general since it assigns the shortest bit patterns to the
symbols with the highest frequency. For more information, refer to the IBM Db2 z/OS documentation. As is usual with Db2
dictionaries, the method through which they are built may have an impact on the compression characteristics. Only
dictionaries built by the REORG utility have an opportunity to sample the data of the entire partition. Using the REORG utility
typically gives the best compression ratio.

Early IBM lab tests have shown that Huffman typically compresses between 25% and 45% better than Lempel/Ziv. However,
of course, your results may vary.

The diagram below, comes from a presentation by Dr. Christian Jacobi (Chief Architect, IBM Z processor development). The
diagram depicts the achieved improvements in compression ratio. The range in the tests shown here range from 20% to
80% better compression.

Figure 5: Disk reduction from Huffman coding compared to traditional compression methods.

Deciding Whether to Compress a Tablespace Partition

The primary question to answer is “Do I compress or not?”. In preparing this paper, we asked our Db2 customers about their
decision criteria for compression. Some customers answered that they compress by default. Others have some size limits
that need to be met before they decide to compress a tablespace; the decision is made either by developers or is reviewed
on a regular basis. No respondent mentioned actively monitoring the cost of compression and decompression.

When Does It Make Sense to Compress?

The process of compression and decompression results in processing overhead. Db2 z/OS has come a long way with
enhancements involving both hardware and software synergies to reduce this overhead. Even with these enhancements
there may still be some measurable compression overhead.

Broadcom HDC-Db2-zOS-WP100
7

Huffman Data Compression in IBM Db2 for z/OS White Paper

The purpose of compression is to achieve savings by reducing the number of data pages needed for the tablespace. Since
page size on DASD is not affected by tablespace compression, the reduction is achieved only by packing more rows on a
single page. It is clear that reducing the number of pages will have a positive effect on the amount of I/O needed to process
the tablespace and save the CPU to drive the I/O. The process of taking an image copy is a good example of this. The
reduction of pages results in direct savings because taking an image copy does not now require decompression.

However, there are examples where the effect of compression is negated. The fundamental principle of reducing the number
of pages that are required to house the rows by fitting more rows onto a single page may not be achieved in some contexts,
such as the following instances:

 MAXROWS is used to limit the number of rows per page.

 The hard 255 row per page limit is in effect.

 Rows do not compress enough to allow significantly more rows per page.

In these cases, the space savings are not achieved and compression equals pure overhead costs.

Then there will be data access to consider. SQL UPDATE will have to decompress and compress the rows that are updated;
therefore, tablespaces that will have a heavy update workload will be less attractive to compress than tablepaces that are
predominantly INSERT/SELECT.

Going a step deeper, having more rows on each page, in principle, means less getpages (direct CPU savings). When the
clustering of the tablespace supports the processing pattern, the bufferpool hit ratio will also improve. An improved bufferpool
hit ration will provide even more CPU savings. However, there are exceptions to this rule:

 The SQL statements have a high rows scanned to rows qualified ratio.

– The more the rows are spread across pages, the more important this gets.

 The SQL statements do not have to scan many rows (perhaps even direct access) but the bufferpool hit ratio does not
change significantly.

– Hence, there is no real savings in I/O.

Such data access criteria are difficult to use as a general rule. Especially in installations with many tablespaces. The mix is
just too big. However, for exceptional cases, an administrator might conclude that the cost of a highly used and important
SQL statement is affected negatively by compression.

Restricted Number of Rows for Each Page

The hard limit of the number of rows per page comes from the RID. Even though Db2 12 now supports up to seven byte
RIDs (for RPN tablespaces), the increase in RID length was meant to accommodate more data pages. The part in the RID
that identifies the row within the page is still 1 byte. The net effect is that there can be no more than 255 rows in a single
page, regardless of the page size. So, if the rows are so short that even if they remained uncompressed, 255 rows would
still fit in your chosen page size; and there is absolutely no savings. Thus, in this case, the overhead that it takes to compress
the tablespace does not pay off.

There are also cases where Db2 customers have chosen to limit themselves by using the MAXROWS clause of the CREATE
TABLESPACE. This is typically done to reduce lock contention while avoiding the page p-lock overhead that is associated
with Row Level Locking in data sharing. The extreme case is tablespaces with MAXROWS=1, effectively mimicking Row
Level Locking. Of course, for tablespaces such as these, data compression will only have negative effects.If you use page
level locking, then the span of a lock is all the data on the page. Compression increases the span of a lock, and Huffman
compression can increase that further. At the very least, customers should be aware of and monitor locking as they move to
Huffman. The industry best practice is to not compress tablespaces defined with MAXROWS=1.

Broadcom HDC-Db2-zOS-WP100
8

Huffman Data Compression in IBM Db2 for z/OS White Paper

Huffman Compression Prerequisites

A few requirements must be fulfilled in order to reap the benefits of Huffman compression. First and foremost, your Db2 must
be at V12, functional level 504 or higher (APAR PH04424, PTF UI60685). This functional level delivers the new code in Db2
to build and use Huffman dictionaries.

Further, Huffman compression is ONLY available for UTS tablespaces.

The Huffman dictionaries are only understood by the CMPSC instruction (compression co-processor) of z14 and higher
hardware. Db2 will only build Huffman dictionaries when it is executing on hardware with the required support. If a Huffman
compressed tablespace is accessed from a z13 machine then de-compression will be performed by software emulation. Of
course, this will cause significant CPU overhead.

There are cases where compressing (or using Huffman to compress more) can negatively affect an application that is using
page level locking. Do not compress tablespaces defined with MAXROWS=1.

Implementing Huffman Compression

The value of ZPARM TS_COMPRESSION_TYPE that is in control when a tablespace partition is compressed will determine
the resulting dictionary type. This makes it very hard to manage at an object level in a true productive environment. Currently,
Db2 does not allow specification of the dictionary type at the object level. The easiest way forward would be to test Huffman
in a test environment, validating both the compression improvements and the CPU differences for typical workloads. Based
on this analysis, you can decide on a zParm setting for the production environments.

In a data sharing environment, you could theoretically have different members with different values for
TS_COMPRESSION_TYPE. The member where the dictionary is created (typically the LOAD/REORG without keep
dictionary) would then determine the compression algorithm used. In a data sharing implementation, a best practice is to
give all members the same zParm setting for compression.

As previously stated, the requirements to support Huffman compression for each member are the same.

A Huffman dictionary is only generated for LOAD, REORG, and compress on INSERT under the following conditions:

 Hardware support is present (z14 or later) on the member on which the dictionary is created.

 Function level 504 or higher is activated.

 zParm TS_COMPRESSION_TYPE is set to HUFFMAN.

 The tablespace is a universal tablespace (UTS).

If any of the above conditions are not met, Db2 will generate the classic fixed-length dictionary to be used by Lempel/Ziv.
There is no error message indicating that there is a conflict between members for the zParm setting. And there is no hard
failure. The process simply continues on as before with Lempel/Ziv compression. This process could produce undesired
results in a data sharing infrastructure. Some of these undesired results might include:

 CPU cost incurred while building a new dictionary

 Differences in runtime for LOAD or REORG

 The possibility of reduced compression percentage

If data is compressed using a Huffman encoded dictionary and then moved to a z13 or older system, then data can still be
expanded, but it is done with software, thus resulting in increased resource utilization.

Broadcom HDC-Db2-zOS-WP100
9

Huffman Data Compression in IBM Db2 for z/OS White Paper

Certainly, there will be some customers who might disregard best practices and utilize system affinity in some form. This is
problematic for a variety of reasons, all of which are well known, including the simplest and most detrimental reason, which
is human error. This type of implementation would increase the administrative burden for job execution, and disable some
of the advantages of utilizing data sharing. Therefore, this type of implementation would be a problematic endeavor.

How Do I Know Which Algorithm Was Used to Compress the Data?

The only way to verify the dictionary type is to execute a DSN1PRNT and look at the value for HPGZLD. There is no
indication in the Db2 catalog table.

A value of ‘H’ (such as in the example below) indicates a Huffman dictionary. A value of ‘L’ is used for Lempel/Ziv (fixed
length) dictionaries. This value designation is also how Db2 knows how to set up for the CMPSC instruction.

Figure 6: A value of ‘H’ indicates a Huffman dictionary.

Using DSN1COMP to Assess Savings

While IBM tests have indicated that Huffman compresses 25% to 45% better than Lempel/Ziv, your results may vary. In order
to provide a better understanding of the effectiveness of Huffman compression for an object, the DSN1COMP standalone
utility has been enhanced to support this assessment.

Table 1: PH19242 (UI6938) added support for Huffman compression to the DSN1COMP standalone utility. The APAR adds the
COMPTYPE keyword to DSN1COMP. The keyword takes any of the following values:

Key Word Value

FIXED DSN1COMP gives an estimate using a fixed
length (traditional) compression dictionary.

HUFFMAN DSN1COMP gives an estimate using a fixed
length (traditional) compression dictionary.

ALL DSN1COMP gives an estimate of both fixed
length and Huffman compression dictionary.
This allows a comparison of both methods.

Broadcom HDC-Db2-zOS-WP100
10

Huffman Data Compression in IBM Db2 for z/OS White Paper

Figure 7: The following report was generated with ‘COMPTYPE(ALL)’ to show there can be a significant improvement in the
compression ratio.

NOTE: DSN1COMP only works with objects that are not currently compressed. Therefore, DSN1COMP cannot be used
to assess the potential impact of switching from traditional compression to Huffman compression.

Broadcom HDC-Db2-zOS-WP100
11

Huffman Data Compression in IBM Db2 for z/OS White Paper

Compressing the Tablespace with REORG

The tablespace used in the following example of DSN1COMP is for a duplicate tablespace. (An exact copy was made of
existing tablespace.)

Figure 8: The tablespace used in the following example of DSN1COMP is for a duplicate tablespace.

The following procedure was executed using REORG to compress both tablespaces:

1. Verify current setting for TS_COMPRESSION (it was HUFFMAN).

2. REORG tablespace MMTSIK1H (Huffman).

3. Set TS_COMPRESSION to FIXED.

4. REORG tablespace MMTSIK12.

5. Set TS_COMPRESSION back to what it was previously.

Figure 9: After REORG was used to compress both tablespaces, the catalog now shows the following results:

In this particular example, Huffman leads to better compression.

Broadcom HDC-Db2-zOS-WP100
12

Huffman Data Compression in IBM Db2 for z/OS White Paper

Broadcom Support

The CA Database Management Solutions for Db2 for z/OS provide toleration support of Huffman compression. The
components of the solution have the ability to process Db2 objects already compressed using the Huffman compression
algorithm. The support is delivered with PTF SO14029 (base install, with co-requisites for installed products).

To implement Huffman compression in your Db2 environments, to build compression dictionaries or to rebuild compression
dictionaries for Db2 objects already compressed using the Huffman Compression algorithm, Broadcom Db2 Utilities (CA
Rapid Reorg and CA Fast Load) calls the equivalent IBM/Rocket Utilities in the background.

Adoption of Huffman compression is still evolving as customers begin to utilize Db2 FL504. As you first begin to adopt
Huffman compression, ensure that you are current on your maintenance for z/OS, Db2 for z/OS, and your Broadcom portfolio
in respect to Huffman.

Sample JCL Delivered by Broadcom

For the CA Database Management Solutions for Db2 for z/OS, three sample JCLs are provided in customer_HLQ.CDBAJCL
that you can use to overcome the fact that DSN1COMP cannot run against a tablespace that is already compressed.

Both the INSHUFFS and INSHUFFU JCLs load sample data from the identified target table into an uncompressed
tablespace and then run the IBM DSN1COMP standalone utility. INSHUFFS uses SQL INSERT INTO / SELECT FROM to
get a sample of the data into a temporary object. INSHUFFU uses IBM utilities UNLOAD/LOAD to sample the data. If the
sample size is large, it is less efficient to use the SQL version. Typically, you can achieve accurate results with small samples
of 3% to 5%. In addition, the number of rows processed by DSN1COMP can be limited with this keyword:
PARM=’ROWLIMIT’.

INSHUFFS/INSHUFFU follows a logical procedure, such as this one:

1. Check for compression on a target tablespace; set RC=4 uncompressed RC=0 compressed.

2. If the target is not compressed, skip to a DSN1COMP step directly on the target tablespace.

3. If the target is compressed, follow these steps:

a. Create a temporary tablespace (with user supplied variables) and a table using the create table command such as
target table.

b. Unload a sample of data from the target table.

c. Load this sample data into the temporary table.

d. Run DSN1COMP against the temporary tablespace.

e. Drop the temporary tablespace.

f. Create a CSV file from the DSN1COMP output (REXX exec on hlq.CDBACLS0).

g. Load the CSV into the Db2 repository created by INSHUFFC.

Table 2: Provided Sample JCL

JCL Number Function

INSHUFFC Create a Db2 repository for DSN1COMP
statistics

INSHUFFS Run report, take data sample using SQL

INSHUFFU Run report, take data sample using utilities

Broadcom HDC-Db2-zOS-WP100
13

Huffman Data Compression in IBM Db2 for z/OS White Paper

Create the Repository with Statistics
All three examples in the following section require that you specify the following parameters.

Before you use the INSHUFFS and INSHUFFU JCL, you must run the INSHUFFC JCL to create the repository table. The

repository table contains the relevant statistics for all objects that were processed using the INSHUFFS or INSHUFFU JCL.

Table 4: Additional JCL Parameters for INSHUFFC

Selecting Objects of Interest

The rule of thumb (as described by IBM) says that with compression rates below 10% or 20%, compression overhead could
outweigh the savings achieved with compression. Huffman compression could push compression rates that are lower than
10% or 20% to above this ROI threshold.

The following example SQL statement (on the next page) gives a list of partitions that are currently uncompressed and might
benefit from compression due to their size.

Table 3: Parameters Common to All JCL

Parameter Description

SSID The Db2 sub-stem name or the group attach name of the data-sharing group.

DB2EXIT The Db2 SDSNEXIT library.

DB2LOAD The Db2 SDSNLOAD library.

TEP2PLAN The plan name of the DSNTEP2 program in use.

TEP2LOAD The name of the library containing the DSNTEP2 load module.

Parameter Description

CREATE Create repository objects (1 - Yes, 0 - No).

TRUNCATE Truncate repository objects (1 - Yes, 0 - No).

DBNAME The database in which the repository will be created. NOTE: the database will be dropped.

TSNAME The tablespace to contain the repository table.

REPOSTB The name of the repository table. Specify the fully qualified name.

BPOOL The bufferpool for the repository tablespace.

STOGROUP The storage group name for the repository tablespace.

Broadcom HDC-Db2-zOS-WP100
14

Huffman Data Compression in IBM Db2 for z/OS White Paper

This example selects partitions larger than 250 MB.
select strip(tab.creator)
 concat '.' concat
 tab.name as tbname
 ,ts.maxrows
 ,ts.pctfree
 ,prt.partition
 ,max(prt.partition,1) as part
 ,prt.vcatname
 ,prt.iprefix
 ,prt.dbname
 ,prt.tsname
 ,prt.bpool
 ,prt.spacef * 1024 as megabytes
 from sysibm.systablepart prt
inner join sysibm.systables tab
 on tab.dbname = prt.dbname
 and tab.tsname = prt.tsname
inner join sysibm.systablespace ts
 on tab.dbname = ts.dbname
 and tab.tsname = ts.name
where prt.compress = ' '
 and prt.spacef * 1024 > 250
 with ur;

The following example SQL statement gives a list of partitions that are already compressed but might still benefit from
Huffman compression because their current compression ratio is low.

select strip(tab.creator)
 concat '.' concat
 tab.name as tbname
 ,ts.maxrows
 ,ts.pctfree
 ,prt.partition
 ,prt.vcatname
 ,prt.iprefix
 ,prt.dbname
 ,prt.tsname
 ,prt.bpool
 ,prt.compressratio
 from sysibm.systablepart prt
inner join sysibm.systables tab
 on tab.dbname = prt.dbname
 and tab.tsname = prt.tsname
inner join sysibm.systablespace ts
 on tab.dbname = ts.dbname
 and tab.tsname = ts.name
where prt.compress = 'Y'
 and prt.compressratio < 20
 with ur;

Broadcom HDC-Db2-zOS-WP100
15

Huffman Data Compression in IBM Db2 for z/OS White Paper

Gathering the DSN1COMP Statistics for the Objects

The SQL statements in the previous example provide the data that INSHUFFS and INSHUFFU require.

Table 5: Both INSHUFFS and INSHUFFU require the following parameters in addition to the parameters common to all.

Parameter Description

HLQ High level qualifier of datasets internal to the job.

UNIT Unit name for datasets internal to the job.

VCAT High level qualifier of the VSAM cluster for DSN1COMP.

TARGDB The database that contains the partition to be analysed.

TARGTS The tablespace to be analysed.

TARGTB The tablename contained in the tablespace to be analysed.

PART The partition identifier in case the tablespace is uncompressed (part column in sample SQL).

TEMPTS The temporary tablespace where the data from the target tablespace will be stored in case the
tablespace (partition) is currently compressed. A table will be created. The tablespace will be
created in TARGDB.

TEMPTB The name of the table that is created in TEMPTS to temporarily hold the data.

PCTFREE The percent free parameter for the temporary tablespace.

MAXROWS The maximum row parameter for the temporary tablespace.

BPOOL The bufferpool for the temporary tablespace.

STOGROUP The storage group name for the temporary tablespace.

REPOSTB The name of the repository table created in INSHUFFC.

REXXLIB The name of the library containing the distributed REXX exec. <customer HLQ>. CDBACLS0.

ROWS The number of rows to copy to the temporary object in case the target tablespace is
compressed.

IJ This parameter is taken from the iprefix column in the sample SQL.

Broadcom HDC-Db2-zOS-WP100
16

Huffman Data Compression in IBM Db2 for z/OS White Paper

Authors

Toine Michielse, Client Services Consultant

Toine Michielse has been working with Db2 for z/OS ever since the ESP of V1. In his career, he has worked as a COBOL/
IMS/Db2 programmer, and as an IMS/Db2 DBA and Db2 system engineer. He has worked for a number of years as a Db2
Lab advocate, supporting customers worldwide.

Kevin Harrison, Client Services Consultant

Kevin Harrison has extensive experience with Db2 for z/OS and System z. He specializes in the performance and tuning of
Db2 subsystems, database designs, and application architecture. He has worked with hundreds of Db2 customers, tuning
and troubleshooting their applications, and functioning as their Db2 technical advocate.

Broadcom, the pulse logo, Connecting everything, CA Technologies, the CA technologies logo, and Automic are among the
trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2020 Broadcom. All Rights Reserved.

The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,
function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does
not assume any liability arising out of the application or use of this information, nor the application or use of any product or
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

http://www.broadcom.com

	Overview
	Introduction
	Compression Support Options on z/OS
	Db2 for z/OS Compression
	Tablespaces
	Lob Data
	Indexspaces
	Log Data

	Compression Method for Db2 Tablespaces
	What is Lempel/Ziv Compression?
	What is Huffman Compression?
	Why Huffman Compression?
	Deciding Whether to Compress a Tablespace Partition
	When Does It Make Sense to Compress?
	Restricted Number of Rows for Each Page

	Huffman Compression Prerequisites
	Implementing Huffman Compression
	How Do I Know Which Algorithm Was Used to Compress the Data?
	Using DSN1COMP to Assess Savings
	Compressing the Tablespace with REORG

	Broadcom Support
	Sample JCL Delivered by Broadcom
	Create the Repository with Statistics
	Selecting Objects of Interest
	Gathering the DSN1COMP Statistics for the Objects

	Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Broadcom_TechPubs_High'] This is the preferred settings file for Broadcom customer documents. These settings include a higher resolution and embedded thumbnails.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

