
Quick	
 Reference	
 to	
 Primary	
 Introscope	
 Metrics

0s

Average Response Time (ms)
Interval 1: <small> B,E,F,G
Interval 2: <longer> A,C,H,J,K,L,M,N,O
Interval 3: <even longer> P,Q,R,S,T,U

Value is average of all finished invocations of a
method or component. Zero usually indicates
no invocations during that interval. Count is
number of transactions finished that interval.
Min and Max are fastest and slowest
measurements respectively.

15s 30s 45s

A
B C

D

F

G

H
J

K

L
M
N

O

P

Q

R
S
T

U

E

1 2 3 0

Responses Per Interval
Interval 1: 4 - B,E,F,G
Interval 2: 9 - A,C,H,J,K,L,M,N,O
Interval 3: 7 – D,P,Q,R,S,T,U

Value reflects number of invocations finished
in that interval. Min, Max, and Count all agree
with value. When querying historical data to
make comparisons, be careful to account for
changes in interval units.

Count of Average Response Time is identical
to Responses Per Interval.

Concurrent Invocations
Interval 1: 4 - A,C,D,K (max: 5 – A,B,D,E,F)
Interval 2: 2 – D,P (max: 7 – A,D,H,J,L,M,N)
Interval 3: 0 - <none> (max: 5 – Q,P,R,S,T)

Min is the minimum number of threads in a
method or component over the interval. Max
is the peak number of threads. Value is the
final sampling of how many threads were in
the method at the end of the interval. Count is
the total of entries and exits to the method.

AKA Work in Process. When more work
comes in than is being completed, this
increases, indicating the “Pig-in-a-Python”
analogy. If it spikes and then returns, this
indicates a bottleneck (perhaps due to load)
that was temporary.

Max
Concurrency: 5

Max
Concurrency: 7

Max
Concurrency: 5

Errors Per Interval (X)
Interval 1: 1 – G
Interval 2: 2 – L,D
Interval 3: 1 – Q

Any exception caught in the stack will be
reported and a snapshot gathered (kept 14
days).

X X

X

Stall Count (XX)
Interval 2: 1 – D

When methods take too long (30 sec by
default), they indicate a stuck thread, usually
due to infinite loop, deadlock, or constrained
resources. Snapshots are gathered (kept 14
days).

Questions?
Chris.Kline@ca.com

Intervals

XX

M
ethod X

(A

pplies to any instrum
ented m

ethod, be it
S

Q
L call, w

eb service, servlet, custom
 class, etc.)

Quick	
 Reference	
 to	
 Java	
 Metrics	

Frontends
/url-root – metrics describing performance of all requests
for that URL root.

Servlets – common application dispatcher. Good proxy for
evaluating all application transactions.

JSPs - common user interface display component.

Backends
JDBC– SQL statements used to query and update a
relational database.

Web Services – HTTP-wrapped calls to external services.

Sockets – Performance stats associated with access to a
remote machine.

JMS - Java Messaging Service. Backed by a JMS queue,
for example WebSphere MQ. Logic and Other APIs

Struts– SQL statements used to query and update a
relational database.

Session EJBs – “conversation-driven” bits of business
logic.

Entity EJBs – “persistence-focused” bits of business logic

Message-driven EJBs – “message backed” bits of
business logic

JNDI - Java’s Naming and Directory Interface. Often
represents a distributed lookup, and can be a source of
latency.

JavaMail - Sending and receiving e-mail

XML – Often a source of significant CPU usage and
latency. Data-driven parsing, analysis, and processing.

JMX or WebSphere PMI
Metrics produced by an application server or directly by an
app itself, and recorded by Wily. For exact meaning of
JMX metrics, consult vendor documentation. Usually
contains information about thread pools, sessions, and
database connection pools.

V2.02	
 ©	
 Copyright	
 2011-­‐2014	
 	
 CA,	
 Inc	
 	
 All	
 Rights	
 Reserved	

Logic

“Muck in the
Middle”

Backends Frontends

Database
Mainframe
Web Services
JMS / MQ
Sockets

Most modern applications use a 3-tier architecture.
Requests enter a frontend, are then processed by the
logic tier (AKA “the muck in the middle,” and in turn
handled by calls to various backend systems.

Introscope watches ALL calls to instrumented methods
and reports data every 15 seconds. Metrics are
reported with 4 data points each: the min, max, count,
and value of the type observed.

EJB
Custom Classes

Servlet, JSP
JSF, etc.

Calls that interact
outside the JVM

Triage Technique

Performance problems are effectively triaged by first looking at frontend metrics to diagnose slowness. Frontends are not normally the cause of
application slowness. Then move to the backend to see if a corresponding slowdown can be located. If so, then don’t bother looking at the Logic tier,
as the problem likely lies in the backend. If the backends are performing properly, however, then move to the Logic tier to triage issues. The “muck in
the middle” likely has the more-challenging components; look there last.

Resources
CPU, Disk, Heap/Memory, Threads & Connection Pools

Resources
CPU
% utilization (process) – Percentage of total available CPU
in use by JVM (e.g. 25% on a 4-CPU machine equals one
CPU fully in use.)
% utilization (aggregate) – Percentage of a single
processor in use by any process, including but not limited
to the JVM.

Memory (GC Heap)
Bytes In Use – Number of bytes currently allocated by the
JVM for use by running app. Reclaimed through garbage
collection at regular intervals.
Bytes Total - Max number of bytes currently available for
allocation to running app by JVM.

Input / Output
File – bytes per second read or written to a file by the
running app. Count reflects total number of bytes written
during that interval.
Socket – incoming requests accepted, opened, and closed
during that interval. Threads concurrently reading or
writing to the socket during that interval.

Threads
Active Threads – number of threads currently live in the
JVM. Threads may not be active.

BlamePoint Metrics
Most instrumented components will show 5 “BlamePoint”
metrics (SEE REVERSE): including response time,
invocation rates, and error-processing. Understanding
these 5 metrics unlocks the triage process.

3

Interpreting Performance Metrics (Production)
M

et
ric

 D
et

ai
l

Low

High

Ability to Respond Reactive Proactive

Heap Dumps
Thread Dumps

Log Files

Pingers
Process

Brewing Lagging Hosed

Mean Time To Resolution High Low

Response Time

Throughput

GC Monitor

GC Heap
CPU Utilization

Stall Count

Concurrency
Error Count

Instance Counts

Thread Pools
JDBC Pools

Med

