READ Performance for Developers

Session 740

Alan Bartholomew Texas Instruments

1

© Texas Instruments 1996

CAUTION

2

- This presentation contains "typical" good practices
- There are *exceptions* to these guidelines
- Optimizing READ performance involves many factors outside the scope of this presentation
 - For example, index selection and transparent denormalization

Objectives

- Be reasonably efficient all the time
- Be **exceptionally** efficient 10 20% of the time
- Balance efficiency against business benefit

3

Outline

- Minimize execution of READ statements
 - Optimize the READ statement

4

• Minimize READ locking

Minimize Execution of READs

- Save data in memory
- Perform re-sort/re-filter on client
- Use SOME ... THAT construct
- Take advantage of JOINs
- Use persistent views

Online: Save Data in Memory

5

- Read data in one action block and pass it to another action block
- Read data in one procedure and pass it via dialog flow client-to-client or screento-screen
- Read data during one execution and save it in PrAD import/export views
- Read data in one action block and save in uninitialized local views

6

Online: Save Data in Memory

- Non-optimized example:
 - Every execution of the transaction reads security_access

```
READ security_access
WHERE DESIRED security_access user_id IS EQUAL
TO USERID
WHEN SUCCESSFUL
disable logic ...
```

```
© Texas Instruments 1996
```

Online: Save Data in Memory

7

- Optimized example:
 - Import view mapped to export view
 - Only initial execution of transaction

reads security_access

```
IF import security_access authorization_level IS EQUAL TO SPACES
```

```
READ security_access

WHERE DESIRED security_access user_id IS EQUAL

TO USERID

WHEN SUCCESSFUL

MOVE security_access TO export security_access

disable logic ...
```

Batch: Save Data in Memory

- Read data in one action block and pass it to another action block
- Read data in one action block and save in uninitialized local views

Batch: Save Data in Memory

9

- Non-optimized example:
 - Every execution of the action blocks reads shoe-size code

```
READ shoe_size

WHERE DESIRED shoe_size length IS EQUAL TO

import shoe_size length

WHEN SUCCESSFUL

...

WHEN NOT FOUND

EXIT STATE IS invalid_shoe_size
```

© Texas Instruments 1996

Batch: Save Data in Memory

- Optimized example:
 - View property must be set to NOT initialize on every entry
 - Handling group view overflow:
 - » Stop processing

-- OR --

»Keep processing but execute READ validation if no match is found in group view

*Write warning message to a log file

- For large group views, consider binary search

11

© Texas Instruments 1996

Batch: Save Data in Memory

Optimized example:

IF local_group_uninit IS EMPTY
 READ EACH shoe_size
 TARGETING local_group_uninit FROM THE
 BEGINNING UNTIL FULL
 MOVE shoe_size TO local_single shoe_size
 SET local ief_supplied flag TO "N"
 FOR EACH local_group_uninit
 IF import shoe_size length IS EQUAL TO
 local_single shoe_size length
 SET local ief_supplied flag TO "Y"

IF local ief_supplied flag IS EQUAL TO "N" EXIT STATE IS invalid_shoe_size

Perform Re-sorting/ Re-filtering on Client

- Where possible, have DBMS perform sort/filter for initial READ EACH
 - More maintainable than a client sort/filter
- If the group view can hold all rows that meet selection criteria, then perform re-sort/re-filter in the client procedure
- Data currency
 - Data on database may change while you are re-sorting on client

13

© Texas Instruments 1996

When Not to Re-sort on Client

• What's wrong with this example?

		Initia	al Sort	Clier	nt Re-Sort	
Customer Table		State ASC		Num	Number ASC	
State	Number	Group	View (3)	Grou	p View (3)	
AZ	777	State	Number	State	Number	
AZ	999	AZ	777	AZ	555	
AZ	555	AZ	999	AZ	777	
CO	333	AZ	555	AZ	999	

• The re-sort should put CO 333 as the first occurrence

14

© Texas Instruments 1996

र्षे

Use SOME ... THAT Construct

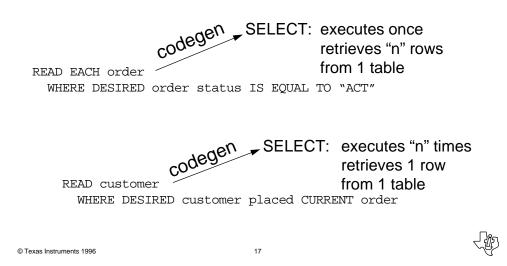
- Non-optimized example
 - This is non-optimized assuming that there is no need to read ORDER

READ order WHERE DESIRED order number IS EQUAL TO import order number READ order_line WHERE DESIRED order_line number IS EQUAL TO import order_line number AND DESIRED order_line is_part_of CURRENT order

© Texas Instruments 1996

Use SOME ... THAT Construct

15


• Optimized example:

READ order_line
WHERE DESIRED order_line number IS EQUAL TO
 import order_line number
AND DESIRED order_line is_part_of SOME order
AND THAT order number IS EQUAL TO import order
 number

Take Advantage of JOINs

• Non-optimized example:

Take Advantage of JOINs

• Optimized example:

READ EACH customer order WHERE DESIRED customer places DESIRED order AND DESIRED order status IS EQUAL TO "ACT"

Use Persistent Views

- Composer requires that a READ occur in the same action diagram before certain actions
 - Update, Delete, Associate, Disassociate, Transfer
- If you have already READ in a calling action diagram and don't want to READ again, then use persistent views
- Review the need carefully before using persistent views

© Texas Instruments 1996

Passing Currency

19

• Non-optimized example:

Action Block A READ x USE b

Passing Currency

• Optimized example:

Action Block A READ x USE b

Action Block B UPDATE persistent x CREATE y ASSOCIATE WITH persistent x

21

© Texas Instruments 1996

Passing Currency

- · Can only do an update if currency is passed "down"
- Illegal example:

Action Block B READ x

Outline

- Minimize execution of READ statements
- \Box Optimize the READ statement
 - Minimize READ locking

Optimize the READ Statement

23

- Starve views
- Qualify correctly
- Minimize sorting
- Compare appropriately
- Sequence qualifiers (DBMS-specific)

24

• OR

Starve the Entity Types in the READ List

- READ List should include only:
 - What you need back from the database to display or manipulate
 - What you need to sort on
 - What you need to have entity types in READ List related to each other
 - »Example: if you need customer and order line only, go ahead and put order in the READ List.
- It is OK for an entity action view to be referenced in the WHERE clause only

© Texas Instruments 1996

Entity Action View Population

25

• Optimized example:

Entity Action order_line	1		
number	< populated		
price	< populated		
order			
number	< NOT populated!		
READ order_li	ne		
WHERE DESIR	WHERE DESIRED order_line number IS EQUAL TO		
impor	t order_line number		
AND DESIR	ED order_line is_part_of SOME order		
AND THAT	order number IS EQUAL TO import order		
numbe	r		

Starve the Attributes in Entity Action Views

• Non-optimized example (will cause join):

Entity Action Views customer number name order number date_placed READ EACH customer order WHERE DESIRED customer places DESIRED order AND DESIRED order date_placed IS EQUAL TO CURRENT DATE

Variable Qualifying

- · Commonly required for browsers or lists
- User can enter some or all of many different selection criteria

 For example, five selection criteria yield 120 combinations!

- Minimize the number of combinations where possible
- Write specific optimized READs for common combinations
- Write "generic" unoptimized READ for uncommon combinations

Variable Qualifying Example

```
IF import customer state IS EQUAL TO SPACES
  SET local_low customer state TO ' '
  SET local_high customer state TO 'ZZ'
ELSE
  SET local_low customer state TO import customer
  state
  SET local_high customer state TO import customer
  state
IF import customer name IS EQUAL TO SPACES
  SET local_low customer name TO ' '
  SET local_high customer name TO 'ZZ'
ELSE
  SET local_low customer name TO import customer
 name
  SET local_high customer name TO import customer
  name
```

© Texas Instruments 1996

Variable Qualifying Example

29

- This READ handles four different combinations of selection criteria
 - (e.g., name only, state only, name & state, neither)

READ EACH customer WHERE DESIRED customer state IS LESS THAN OR EQUAL TO local_high customer state

- AND DESIRED customer state IS GREATER THAN OR EQUAL TO local_low customer state
- AND DESIRED customer name IS LESS THAN OR EQUAL TO local_high customer name AND DESIRED customer name IS GREATER THAN OR
 - EQUAL TO local_low customer name

Minimize Sorting

- Sort only when necessary
- · Sort only those columns that must be sorted
- Try to sort on column(s) that are part of an index
 - If you must sort but don't care what you are sorting on, choose identifying attributes
- Try to sort in the same order as the index columns are in
- Refer to earlier slide regarding sorting in client rather than server

© Texas Instruments 1996

Sorting Example 1

31

READ EACH customer order SORTED BY customer number ASCENDING SORTED BY order number ASCENDING WHERE DESIRED customer places DESIRED order

32

Sorting Example 1–Next

 Required when there are more rows on the database than can be saved in memory

READ EACH customer order SORTED BY customer number ASCENDING SORTED BY order number ASCENDING WHERE DESIRED customer places DESIRED order AND ((DESIRED customer number IS GREATER THAN import_last customer number) OR (DESIRED customer number IS EQUAL TO import_last customer number AND DESIRED order number IS GREATER THAN import_last order number))

© Texas Instruments 1996

Sorting Example 2

33

- Sorting on non-identifying attributes
- OK -- if the group view can hold all rows that meet selection criteria

34

READ EACH customer SORTED BY customer state ASCENDING

Sorting Example 2–Next

• Why won't this work?

READ EACH customer		
SORTED BY customer state	e ASCENDING	
WHERE DESIRED customer	state IS GREATER THAN	
import_last customer state		
Customer Table State Number	Group View Max = 3	

State	Number	Gloup view wax - C
ΑZ	777	
ΑZ	999	
ΑZ	555	
ΑZ	888	
ΑZ	222	
CO	333	

© Texas Instruments 1996

Sorting Example 2–Next

35

Customer Table		Initial		Ν	Next	
State	Number	Gro	up View	Grou	ıp View	
AZ	777	State	Number	State	Number	
AZ	999	AZ	777	CO	333	
AZ	555	AZ	999			
AZ	888	AZ	555			
AZ	222					
CO	333					

36

ł

Sorting Example 2–Correct

Initial READ

READ EACH customer SORTED BY customer state ASCENDING SORTED BY customer number ASCENDING
Next READ
READ EACH customer
SORTED BY customer state ASCENDING
SORTED BY customer number ASCENDING
WHERE (DESIRED customer state IS GREATER THAN
<pre>import_last customer state)</pre>
OR (DESIRED customer state IS EQUAL TO
import_last customer state
AND DESIRED customer number IS GREATER THAN
<pre>import_last customer number)</pre>

© Texas Instruments 1996

Comparisons with LIKE

37

- May be inefficient if:
 - It causes comparisons against a large number of rows
 - No other qualifiers are used to narrow the search
- Review with DBA before changing your READ

≺₡₽

Comparisons with LIKE

- Non-optimized example:
 - User wants to find names that include the letters "JO"
 - DBMS must scan all rows and do comparison in order to determine a match

READ EACH customer WHERE DESIRED customer name IS LIKE `%JO%'

39

© Texas Instruments 1996

Comparisons with LIKE

• Optimized example:

READ EACH customer WHERE DESIRED customer postal_code IS EQUAL TO 98765 AND DESIRED customer name IS LIKE `%JO%'

40

Sequence Qualifiers

- Sequence of qualifiers may impact performance
 - For DB2, sequence does NOT matter
 - In general, put qualifiers first that help the DBMS narrow the number of rows to be searched
- Work with DBA to develop guidelines for your DBMS

© Texas Instruments 1996

OR and Attribute Qualifiers

41

- Composer DOES optimize when there is an OR separating attribute qualifiers
 - OR optimization capability is part of 5.2
 Mainframe 9403C and Workstation
 5.2.9312A and all subsequent releases

READ EACH customer			
WHERE	(DESIRED customer state IS EQUAL TO 'DE'		
OR	DESIRED customer state = 'NJ')		
AND	DESIRED customer is_supported_by CURRENT		
	customer_representative		

OR and Relationship Qualifier

- Composer does NOT optimize when there is an OR next to a relationship qualifier
- Review with DBA before changing your READ

READ EACH customer WHERE DESIRED customer state IS EQUAL TO import customer state OR DESIRED customer is_supported_by CURRENT customer_representative

© Texas Instruments 1996

Outline

43

Minimize execution of READ statements

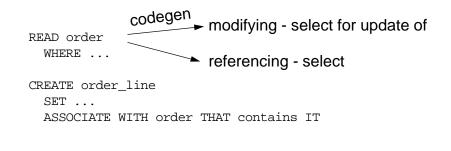
44

- Optimize the READ statement
- ⇒ Minimize READ locking

Minimize READ Locking

- Choose referencing option for a relationship
- Separate READs for conditional updates

Choose Referencing for Relationship


45

- Property of the "many" side of the relationship
- **Only** impact of this property is the type of lock placed on a READ for:

46

- ASSOCIATE
- DISASSOCIATE
- TRANSFER

Choose Referencing for Relationship

Separate READs for Conditional Update

47

- If an update is performed on an entity action view, then all READs against that view will be "FOR UPDATE OF"
- If the update is rarely performed or it is an extended READ then:
 - Create one entity action view for the READ
 - Create a second entity action view for the update
- Review with DBA before adding the extra view

© Texas Instruments 1996

Separate READs for Conditional Update

• Non-optimized example:

READ EACH customer	select customer order	
order	select customer for update of	
MOVE order TO export order select order for update		
IF order date_filled IS LESS	THAN CURRENT DATE	
UPDATE order		
SET		
exas Instruments 1996	49	

© Texas Instruments 1996

Separate READs for Conditional Update

• Optimized example: select customer codegen order READ EACH customer order MOVE order TO export order IF order date_filled IS LESS THAN CURRENT DATE READ existing order Codegen select order for update of UPDATE existing order SET ...

READ Performance Summary

- Minimize execution of READ statements
- Optimize the READ statement

51

• Minimize READ locking

READ Performance for Developers

Session 740

Alan Bartholomew Texas Instruments

