
cmd 2.00

CMD V2.00

Release history
Version Author Comments

1.0 Gijsbert Wiesenekker Initial release.

1.1 Gijsbert Wiesenekker Added alias support.

1.2 Gijsbert Wiesenekker Removed qos_float option.

1.3 Gijsbert Wiesenekker Added qos_float back in again as you cannot mix
NimQoSSendValue and NimQoSSendValueStdev calls.

1.4 Gijsbert Wiesenekker Fixed publishQoS bug and added support for execution of
commands like iostat that have to run continuously in the
background.

1.5 Gijsbert Wiesenekker Added support for exit code monitoring.

1.6 Gijsbert Wiesenekker It is now possible to use the members of a USM group as the
source for resource names.
It is now possible to send QoS’s as if originating from another
probe.
The probe now supports auto-clear for all threshold alerts.

1.7 Gijsbert Wiesenekker Fixed a bug that caused certain cmd sections to be skipped.
It is now possible to use expressions for the samplevalue.
The documentation explains one of the examples in the
supplied configuration file.

1.8 Gijsbert Wiesenekker Enabled track changes.
Disabling/enabling commands using active now works.
It is now possible to use sub-directories of a directory as the
source for resource names.

1.82 Gijsbert Wiesenekker Each command can be scheduled at it’s own interval and
possibly at an exact time.

2.001.9 Gijsbert Wiesenekker ActiveState Perl is no longer required on Windows.
conf_cmd.exe is a standalone executable that you can use to
construct a regular expression.
You can specify the CI type, the CI name and the metric ID for
QoS's if you want the data to show in USM.

2.00 Gijsbert Wiesenekker The standalone Perl probe executable on Windows is now
called cmd.bin instead of cmd.exe for obvious reasons.
The username/password to login to Nimbus can be specified as
command-line options when running the probe interactively.
The alarm description can be any valid Perl eval() expression.
You can specify a suppression key for the alarm.

Description
This probe can execute commands and turn the output into QoS messages and/or alarms. The

1

cmd 2.00

logmon probe can do this too, but the logmon probe gives you no control over the source and target
for the Qos messages and the source of alarms, you cannot publish floating point values and the
alarm expression is limited to simple comparisons only. For example, if you want to query the read-
and write-latency of multiple Netapp devices using the native Netapp rsh command-line interface
you cannot use the name of the Netapp device as the source for the QoS message or the alarm. This
probe allows you to do so.

Installation
Ensure SDK_Perl 5.04 or greater is deployed to the robot that will run cmd.
Deploy the probe.

Usage
You can run the probe from the command-line using
cmd.bin [-u <username>] -p <password>

on Windows or
./cmd.pl [-u <username>] -p <password>

on Linux. The username/passsword is required to login to Nimbus. The default username is
administrator.

UsageConfiguration
Double click the probe in Infrastructure Manager to raw configure it or edit the configuration file
with a text-editor (recommended):

Name Optional/Required Description
interval Optional. The default is 300. The scheduling interval of the probe.

dap_addr Optional. The default is undefined. The Nimbus address of the dap probe if resources
have been specified as USM groups.

For each command in the <cmds> section you specify:

Name Optional or required Description
active Optional. Default:

yes
If no the command is disabled. This allows
you to keep a command that you currently no
longer need for future reference.

description Optional. Not used by
the probe

A description of the command for
documentation purposes.

2

cmd 2.00

Name Optional or required Description
resources Optional. The default

is the hostname.
A comma-separated list of resources (IIS
resource pools, Netapp devices, hostnames
etc.) the command will be executed against.
For remote resources the resource-name is
often ‘the’ host-name or device-name, but
sometimes the command can only be
executed through a management interface
that is only known by a different host-name
or an IP-address, and sometimes a user-name
has to be specified as well like root@IP-
address. As this would make the resource
name unsuitable for the source or target of
QoS messages and the source of alarms, you
can specify an alias in the resource-name by
specifying a ‘:’ followed by the alias-name.
The alias-name can be used in the source or
target of QoS messages and in the source of
alarms.
You can specify a USM group by enclosing
the group name by a pair of ?, for example:
resources = ?usm group?

The resources will consist of all group
members in that case. The advantage is that
if you add a member to the USM group cmd
will be automatically executed against it.
You can specify the sub-directories of a
directory by enclosing the directory name by
a pair of !, for example:
resources = !/ppm/metrics/lvs!

cmd Required. The command to execute. It will be executed
by the Perl system command with
redirection of stdout and stderr. The
command can refer to the Perl variable
$resource, in which case the command will
be executed against each resource in the list
of resources in turn, for example:
cmd = uptime
cmd = ssh host-name uptime
cmd = ssh root@1.2.3.4:logical-name
uptime
cmd = ssh $resource uptime
cmd = cat /ppm/metrics/lvs/
$resource/storeprod

interval Optional. The default
is the scheduling
interval of the probe.

The scheduling interval of the command.

3

mailto:roo@1.2.3.4

cmd 2.00

Name Optional or required Description
percentage Optional. The default

is -1 (disabled).
A floating point value specifying at which
time within the interval the command has to
be scheduled. If equal to -1 the command
will be run at probe startup, and
subsequently at every interval, so if the probe
is (re-)started at 2 minutes past the hour and
the interval is equal to 5 minutes, the
command will run at 2, 7, 12 minutes etc.
past the hour. If the percentage is not equal
to -1 the command will be run at exactly (to
within 5 seconds and possibly limited by
other scheduled commands) at the
percentage of the interval past the hour and
subsequently at every interval. So if the
interval is equal to 5 minutes and the
percentage is equal to 0 the command will
be scheduled at 0, 5, 10.. minutes past the
hour; if the interval is equal to 15 minutes
and the percentage is 33.33, the command
will be scheduled at 5, 20, 35 minutes past
the hour.

qos_on_exit_code Optional. The default
is yes.

(Unix Only) if yes a QoS message will be
published for the exit code of the command.

alarm_on_exit_code Optional. The default
is no.

A comma-separated list of valid Perl eval()
expressions that refer to the Perl variable $e
to determine if an alarm has to be sent. The
Perl variable $e will be set to the exit code of
the command. Optionally the expression can
be prefixed by the alarm level using any of
the keywords INFO:, WARNING:, MINOR:,
MAJOR: or CRITICAL: For example if you
want a warning alarm to be sent if the exit
code is between 1 and 2 and a critical alarm
to be sent of the exit code is larger than 3
you use:
alarm_on_exit_code = WARNING:($e >
1) and ($e < 2),CRITICAL:$e > 3.

4

cmd 2.00

Name Optional or required Description
header and
header_matchstart

Optional. The default
is undefined.

Commands like iostat have to run for a
certain amount of time (say 60 seconds) to
collect data for the last 60 seconds. The
output of these commands consists of two
blocks: a header, the data since last boot (that
often is not needed), the same header and the
data for the last 60 seconds. If you only want
the data from the second block header
should contain a Perl regular expression to
match the header of the block, and
header_matchstart is the number of the
block that contains the data. The supplied
configuration file gives an example on how
to do this for iostat.
Now the probe will wait for a command like
iostat 60 2 to finish, so cannot execute
other commands during that time. This is not
an issue if there is only one command that
takes only 60 seconds to finish in the
configuration file, but is an issue if there is
are multiple commands like iostat 300 2,
vmstat 300 2 in the configuration file, each
taking 300 seconds to finish and the
scheduling interval of the probe has been set
to 300 seconds. Therefore the probe provides
a Unix shell-script async.sh to launch these
commands in the background. The probe
does not wait for the command to finish, but
reads the output of the last run of the
command. You prefix the command that you
would like to execute in the background by
./async.sh, so:

./async.sh iostat 60 2

If you like you can also use async.sh to
launch commands like df in the background
that exit immediately, but because df exits
immediately it would run continuously
causing high CPU load. For these commands
you should specify the time in seconds to
wait before running the command again as
the first argument to async.sh, so:

./async.sh -60 df

5

cmd 2.00

Name Optional or required Description
prid Optional. If defined QoS’s will be sent as if originating

from probe prid. This allows you to enhance
other probes, and makes it very easy to add
these QoS’s to existing list-views and
performance charts.

Now to turn the output of the commands into QoS and/or alarms you define watchers. For each
watcher in the <watchers> section you specify:

Name Optional or required Description
regexp Required. The default

is undefined.
A Perl regular expression without the leading and
trailing ‘/' to turn the output into QoS messages and
alarms. Each line of the output will be matched
against the regexp. You use the usual Perl grouping
metacharacters () to extract parts of the line into the
Perl special variables $1, $2, etc. These special
variables can be used to construct the samplevalue
of the QoS and the name of target as follows:
For each special variable that contains a
samplevalue you define a sub-section with the name
of that variable without the ‘$’ in the <matches>
section. So if the special variables $3 and $5 contain
samplevalues you define the sub-sections <3> and
<5> in the matches section. For each sub-section you
specify:

qos_definition Optional. If defined a QoS message for the samplevalue will
be published. The qos_definition consists of the
name, the group, the description, the unit and the
abbreviation of the unit separated by a ‘:’. For
example:
IOSTAT_TPS:QOS_APPLICATION:tps:number:nr

The QoS name will be prefixed by the
(impersonated) probe name.

qos_float Optional. The default
is 0.

If equal to 0 the QoS messages will be published as
an integer value. If equal to 1 the QoS will be
published as a floating-point value.

samplevalue Optional. The default
is the value of the Perl
special variable
corresponding to the
current sub-section.

If defined anyAny valid Perl eval() expression that
refers to the Perl special variables $1, $2 etc. The
evaluated expression will also be used in the alarm
expression.

6

cmd 2.00

Name Optional or required Description
source Optional. The default

is the name of the
resource, which by
default is the
hostname.

The source of the samplevalue. The source can be
set to a static name, but also to any valid Perl eval()
expression that refers to the Perl variable $resource
and/or the Perl special variables $1, $2 etc. For
example, if the source should be set to the resource
name you use
source = $resource

This is also the default. If resources have not been
defined $resource will be set to the hostname.
If the source should be set to the Perl special
variable $1 you use:
source = $1

If the source should be set to the concatenation of
the Perl special variables $1 and $2 you use:
source = $1 . '_' $2
If you do not specify the CI type, the CI
name and a metric ID (see below) there is
quite some freedom in choosing the source
and target. Let's take data collected from
stores as an example. You can use say
QOS_STORE_METRIC as the qos_definition,
the name of the store as the source and
total revenue, web store revenue etc. as
the targets, but you could also use total
revenue, web store revenue as the source
and the name of the stores as the targets.
However, if you want to specify a CI type,
a CI name and a metric ID for the QoS the
source HAS to be an IP-addressable device
(the robot or a discovered network
device), so using the name of the store as
the source will not work. You have to
define QOS_TOTAL_REVENUE,
QOS_WEB_STORE_REVENUE as the
qos_definitions, use
$ENV{'NIM_ROBOT_NAME'} as the source and
the name of the stores as the targets in
that case.

NOTE THAT THE ALIAS-NAME WILL BE
SUBSTITUTED FOR $resource IN THESE
EXPRESSIONS IF YOU SPECIFIED AN ALIAS.

7

cmd 2.00

Name Optional or required Description
target Required. The name of the target. The target can be set to a

static name, but also to any valid Perl eval()
expression that refers to the Perl variable $resource
and/or the Perl special variables $1, $2 etc. For
example if the target should be set to the resource
name you use
target = $resource

If the target should be set to the Perl special variable
$1 you use:
target = $1

If the target should be set to the concatenation of the
Perl special variables $1 and $2 you use:
target = $1 .'_' . $2
If you do not specify the CI type, the CI
name and a metric ID (see below) there is
quite some freedom in choosing the source
and target. Let's take data collected from
stores as an example. You can use say
QOS_STORE_METRIC as the qos_definition,
the name of the store as the source and
total revenue, web store revenue etc. as
the targets, but you could also use total
revenue, web store revenue as the source
and the name of the stores as the targets.
However, if you want to specify a CI type,
a CI name and a metric ID for the QoS the
source HAS to be an IP-addressable device
(the robot or a discovered network
device), so using the name of the store as
the source will not work. You have to
define QOS_TOTAL_REVENUE,
QOS_WEB_STORE_REVENUE as the
qos_definitions, use
$ENV{'NIM_ROBOT_NAME'} as the source and
the name of the stores as the targets in
that case.

NOTE THAT THE ALIAS-NAME WILL BE
SUBSTITUTED FOR $resource IN THESE
EXPRESSIONS IF YOU SPECIFIED AN ALIAS.

alarm_eval Optional. The default
is undefined.

A comma-separated list of any valid Perl eval()
expression that refers to the Perl variable $v to
determine if an alarm has to be sent. The Perl
variable $v will be set to the samplevalue.
Optionally the expression can be prefixed by the
alert level using any of the keywords INFO:,
WARNING:, MINOR:, MAJOR: or CRITICAL: For
example if you want a warning alarm to be sent if
the samplevalue is between 1 and 2 and a critical
alarm if the value is greater than 3 you use
alarm_eval = WARNING:($v > 1) and ($v <
2),CRITICAL:($v > 3)

8

cmd 2.00

Name Optional or required Description
alarm_description Optional. The default

is the target followed
by the
alarm_expression
where $v has been set
to the samplevalue.

Any valid Perl eval() expression that refers to the
Perl variable $resource and/or the Perl special
variables $1, $2 If defined the alarm will
consist of the alarm_description followed
by the alarm_eval expression where the

and/or the Perl variable $v. The Perl variable $v will
have been replacedset byto the actual samplevalue.
The source of the alarm will be the resource-name.
Note that the alias-name will be used for the source
of the alarm if you specified an alias.

suppression_key Optional. The default
is a combination of
the command, the
regular expression,
the match group and
the alarm expression.

Any valid Perl eval() expression that refers to the
Perl variable $resource and/or the Perl special
variables $1, $2 etc. The evaluated expression will
be used as the suppression key for the alarm.

ci_type Optional. A CI type specified as a sequence of numbers
separated by dots as found in the
cm_configuration_item_definition table. You can
check the contents of this table using a SQL editor
or the supplied
cm_configuration_item_definition.csv file for some
inspiration. If you cannot find a suitable ci_type you
can add your own by extending the private CI
section starting with the number '9' using a SQL
editor.. The following screenshot shows the addition
of the 9.3 Private.Store entry:

ci_name Optional. The name of the CI. It can be set to a static value,
but also to any valid Perl eval() expression that
refers to the Perl variable $resource and/or the Perl
special variables $1, $2 etc. For example if the
ci_name should be set to the resource name you use
ci_name = $resource.

9

cmd 2.00

Name Optional or required Description
met_id Optional. A metric ID specified as the number behind the

colon of the met_type as found in the the
cm_configuration_item_metric_definition table. You
can check the contents of this table using a SQL
editor or the supplied
cm_configuration_item_metric_definition.csv file
for some inspiration. If you cannot find a suitable
met_type you can add your own by extended the
private CI section starting with the number '9' using
a SQL editor. The following screenshot shows the
addition of a Revenue entry corresponding to the
Private.Store entry:

You only have to specify the number behind the
colon, the probe will join the ci_type and the met_id
into the full met_type.

The supplied configuration file gives examples on how to monitor iostat locally, uptime for
systems in a USM group remotely, disk space for a couple of Unix systems remotely and how to
retrieve the native read- and write-latencies of Netapp volumes using the Netapp rsh interface.

Example
The following explains the section in the supplied configuration file that monitors disk space for a
couple of Unix systems remotely. The command we are going to use is df and we are going to use
ssh to execute it remotely. The typical output of this command is:

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sdd5 66053884 15681100 47017292 26% /
/dev/sdd6 66053884 42532012 20166380 68% /tmp2
/dev/sdd7 697102016 430678648 231012580 66% /tmp4
/dev/sdg1 1922859824 951893716 873290436 53% /tmp6

The output of df consists of five columns: the device-name, the total diskspace in 1K blocks, the
used diskspace in 1K blocks, the available diskspace in 1K blocks and the used diskspace as a
percentage. We want to use the device-name as the target of the QoS and we want to generate QoS’s
and/or alarms on the number of Used blocks, the Available diskspace as a percentage and the used
diskspace as a percentage.
First we make sure that on the system that will run the probe it is possible to execute the df
command remotely (if you don’t know how to do this Google ‘how to configure ssh to execute a
command remotely without a password’):

[root@fedora191int129 cmd]# ssh root@172.16.4.125 df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 74311880 4728916 65808144 7% /
tmpfs 961336 0 961336 0% /dev/shm
Dropbox 66053884 45887504 20166380 70% /media/sf_Dropbox

10

cmd 2.00

Next we define the remote systems and the command we want to use:

resources = root@172.16.4.125:centos64int125,freebsd90int136
cmd = ssh $resource df

The probe will substitute root@172.16.4.125 and freebsd90int136 for the Perl variable
$resource. As we do not want to use root@172.16.4.125 as the target name we use the alias
centos64int125.

We only need one watcher to extract the columns from the df output. The required Perl regular
expression is:

regexp = (\S+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)%

The probe provides a Windows tool conf_cmd.exe that you can use to validate the regular
expression. You paste the output of the command in the top Memo, you construct your Regex in the
middle Edit and press <Enter> to evalute it. The matches (if any) will be shown in the bottom
StringGrid:

11

cmd 2.00

This will extract the Filesystem-name as the Perl special variable $1, the total diskspace in 1K
blocks as the Perl special variable $2, the Used diskspace in 1K blocks as the Perl special variable
$3, the Available diskspace in 1K blocks as the Perl special variable $4 and the Use% diskspace as
the Perl special variable $5. As we want to report on the number of Used blocks, the number of
Available diskspace as a percentage and the used diskspace as a percentage we define matches sub-
sections for each of the Perl special variables $2, $3 and $4:

<2>
 target = $1
 qos_definition = DF_USED:QOS_APPLICATION:Used blocks:number:nr
 alarm_eval = WARNING:$v > 0
 alarm_description = used blocks
</2>

This sub-section will generate a QoS message for the Used diskspace in 1K blocks with the name of
the device as the target and a WARNING alarm if the number of 1K blocks is greater than 0 (clearly
a threshold value of 0 is useful for testing and demonstration purposes only).

<3>
 target = $1
 qos_definition = DF_AVAILABLE:QOS_APPLICATION:Available:Percentage:%
 samplevalue = int($4 * 100.0 / $2 + 0.5)
 alarm_eval = WARNING:$v > 0
 alarm_description = available space
</3>

This sub-section will generate a QoS message for the Available diskspace as a percentage with the
name of the device as the target and a WARNING alarm if the Available diskspace as a percentage
is greater than 0 (clearly a threshold value of 0 is useful for testing and demonstration purposes
only). As the Available diskspace as a percentage is not directly avialable in the output of the df
command we have to calculate it from the Total diskspace in 1K blocks (Perl special variable $2)
and the Available diskspace in 1K blocks (Perl special variable $4) using the following Perl
expression:

samplevalue = int($4 * 100.0 / $2 + 0.5)

The value of this expression will also be used in the alarm expression.

<4>
 target = $1
 qos_definition = DF_USE:QOS_APPLICATION:Use:Percentage:%
 alarm_eval = WARNING:$v > 0
 alarm_description = use
</4>

This sub-section will generate a QoS message for the Used diskspace as a percentage with the name
of the device as the target and a WARNING alarm if the Used diskspace as a percentage is greater
than 0 (clearly a threshold value of 0 is useful for testing and demonstration purposes only).

12

	CMD V2.00
	Release history
	Description
	Installation
	Usage
	Example

