

TECHNOLOGY BRIEF: TECHNOLOGY BRIEF: TECHNOLOGY BRIEF: TECHNOLOGY BRIEF: COLLECTING BASELINES – FINDING OUT WHICH METRICS MATTER

Collecting Baselines for APM
– Finding Out Which Metrics
Matter

Michael Sydor
SERVICE ASSURANCE - APM

Table of Contents

Executive Summary

SECTION 1: CHALLENGE 4

Which Metrics Matter?Which Metrics Matter?Which Metrics Matter?Which Metrics Matter? 4444

Finding a normal periodFinding a normal periodFinding a normal periodFinding a normal period 5555

Key MetricsKey MetricsKey MetricsKey Metrics 6666

Building Metric GroupsBuilding Metric GroupsBuilding Metric GroupsBuilding Metric Groups 8888

Applying ThresholdsApplying ThresholdsApplying ThresholdsApplying Thresholds 9999

Building the ReportBuilding the ReportBuilding the ReportBuilding the Report 11111111

Building the DashboardBuilding the DashboardBuilding the DashboardBuilding the Dashboard 12121212

SECTION 2: OPPORTUNITY 13

When Do You Collect Baselines?When Do You Collect Baselines?When Do You Collect Baselines?When Do You Collect Baselines? 13131313

SECTION 3: BENEFITS 14

Effective Use of the APM WorkstationEffective Use of the APM WorkstationEffective Use of the APM WorkstationEffective Use of the APM Workstation 14141414

Understanding the key components of your applicationUnderstanding the key components of your applicationUnderstanding the key components of your applicationUnderstanding the key components of your application 14141414

More efficient triage of performance problemsMore efficient triage of performance problemsMore efficient triage of performance problemsMore efficient triage of performance problems 14141414

Better collaboration with your stakeholders.Better collaboration with your stakeholders.Better collaboration with your stakeholders.Better collaboration with your stakeholders. 14141414

SECTION 4: CONCLUSIONS 14

SECTION 5: REFERENCES 15

SECTION 6: ABOUT THE AUTHOR 15

Copyright ©2010 CA. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. This document is for

your informational purposes only. CA assumes no responsibility for the accuracy or completeness of the information. To the extent permitted by applicable law, CA provides

this document “as is” without warranty of any kind, including, without limitation, any implied warranties of merchantability, fitness for a particular purpose, or

noninfringement. In no event will CA be liable for any loss or damage, direct or indirect, from the use of this document, including, without limitation, lost profits, business

interruption, goodwill, or lost data, even if CA is expressly advised in advance of the possibility of such damages.

Page 3

Page 4

Executive Summary

Challenge

Successful use of APM technology requires effective skills and processes. This series of tech notes

explores a number of topics that you should consider, when using APM.

Whenever you encounter a performance problem, the first question you ask yourself is “what

changed”? To appreciate what has changed requires that you know what is normal, for your

application. You define normal by collecting characteristics into a simple report called a baseline.

Baselines are the foundation for constructing effective dashboards based on thresholds and alerts,

as well as tracking the quality of your software over the application life cycle.

Opportunity

Collecting baselines exercises core techniques for using the APM workstation to quickly identify the

significant components of your application, defining metric groupings and assembling a report and

dashboard. Generating these baselines, as part of the application lifecycle, means that you will

always have a definition of normal, for your application. This will also help you to design and

construct effective dashboards so that casual users will have the benefit of what you have learned

about the application, and without having to repeat your work.

Benefits

Collecting baselines gives you the following benefits:

� Effective use of the APM workstation

� Understanding the key components of your application

� More efficient triage of performance problems

� Better collaboration with your stakeholders.

SECTION 1: CHALLENGE

Which Metrics Matter?

Applications are always undergoing some kind of change. It may be a new code release. It may be a refresh

of the network or hardware. When something changes your application performance may be at risk.

Baselines are the process to help you manage that change by helping you detect what components in your

application are affected. Until you know exactly what is being affected you do not know where to make the

adjustments that will bring your application back to the performance level you want.

Page 5

Finding a normal periodFinding a normal periodFinding a normal periodFinding a normal period

To get a good baseline you need to have a representative period where the activity of the application meets

your criteria for “normal”. This is almost never when you are having a performance problem. It has to be a

period before the problem occurred. Exactly how much earlier is up to you but the earlier, the better.

You will apply the same report template to the incident, as you do to the baseline. But the baseline has to

come first.

If your application is already deployed in production, then a production baseline is what you will collect. This

has some challenges, as you will so find out. The best time to collect baselines is when you are stress testing

the application in the QA environment. This also has some challenges but this environment gives us the best

chance of defining “normal” for you application.

QA BASELINEQA BASELINEQA BASELINEQA BASELINE

To collect a baseline in QA you simply need to have APM enabled on the application before you start running

your testing. A simulated load is best and you want to have a consistent period of load, called steady-state,

where you will focus your baseline efforts.

You can also collect baselines with manual load but that load activity needs to be consistent. The more

consistent the load profile (manual or automated), to more accurate the baseline will be.

To confirm that delivery of your load is consistent, or reproducible, you want to execute a single load profile

for three consecutive runs of testing. When you analyze these results, you should get the same values for

response times, number of invocations, etc.

PRODUCTION BASELINEPRODUCTION BASELINEPRODUCTION BASELINEPRODUCTION BASELINE

A production environment may also be used for collecting the baselines but it can be very challenging to find

a consistent, representative period. The following figure illustrates this challenge.:

As you can see in the two charts, the curves are roughly equivalent. These are some deviations but over the

24 hour period these two historical views have the same characteristics. That is until you look at the actual

responses per interval. When you look at the uppermost curve, in each chart, the top chart varies from

Page 6

90,000 to 110,000 responses per interval , while the lower chart varies from 40,000 to 70,000 responses

per interval. Which one in the normal level of activity? You cannot really decide until you look at more

sample periods.

Here is another example, this time showing an acceptable level of variation. This is also for a production

baseline where it was decided that the indicated 4 days would define normal. The prior week had a higher

level of interaction but the application, in this case, was changed over the weekend. So the new activity

levels now constituted “normal” for this application.

When you establish a baseline, it is not a static definition. The baseline needs to be validated with every

change in the application or its operating environment. “Normal”, for your application, is probably a moving

target. It is an exercise that can be accomplished in a few minutes. If nothing has changed in the baseline,

with respect to the components that best represent performance, then the baseline definition doesn’t need to

change. If new key components are encountered or different levels of performance expereinced, then these

changes need to be accommodated in the baseline template definition and in the alert thresholds.

When a baseline changes, it is a call to action because metric groups, thresholds, reports and dashboards

and alerts, are all dependent on the baseline information. If you want to keep all of that information correct,

the baseline is how you will know that you monitoring configuration is correct and valid.

Key MetricsKey MetricsKey MetricsKey Metrics

When you measure the performance of application components you get a number of metrics for each

component. The basic five metrics are response time, responses per interval (invocations), concurrency

(concurrent invocations), errors and stalls. Two of these are essential to start an effective baseline: response

time and invocations. The other metrics are also valuable but you should consider them once your baseline

practice is established. For now, just looking at these two metrics will get you off to a solid start with

baselines.

If you are new to APM you may have noticed that thousands of metrics are being collected for your, 24 hours

by 7 days, these metrics are being stored for you to use in addressing performance issues. It seems like a

Page 7

mountain of information but the techniques we will discuss today will get you quickly focused on the top 10

or 20 metrics that best represent your application performance.

Eventually, you will use these baselines to define threshold and alerts, and set the foundation for SLA’s and

other service management activities, as well as managing performance along you application life cycle.

RESPONSE TIME EXAMPLRESPONSE TIME EXAMPLRESPONSE TIME EXAMPLRESPONSE TIME EXAMPLEEEE

The response time metrics shows you which components are the potential bottlenecks for you application.

The activities that you spend lots of computer time on are real opportunities to make the application more

efficient. Which components and queries does your application spend the most time on?

The following figure shows the explorer view of the APM workstation, with the Search Tab selected.

Where are the potential Bottlenecks?

On the left hand side an agent has been selected. Underneath that agent are all of the components

reporting. Some of these components are expanded to review the individual metrics underneath each unique

component. Navigation among these metrics is tedious when you don’t know what you are looking for. Using

the search tab eliminates the need for any navigation.

There is a search field into which you type the word “Average” (no quotes). When you hit return, the APM

workstation will then show all of the metrics containing the word “Average”, for the current data or historical

range. You then click on the “Value” header to cause the results to be sorted, from greatest to least. If you

click on any of the metric rows, you will get a graph below, for the range you are looking at. You can also

<shift>><click> to add multiple metrics to the same graph.

You might also notice that the query match both response times and query times. You can keep these metric

names separate but it doesn’t matter at this point. Whatever shows up here is simply the biggest of response

times.

The next step is to define a metric group and add the top 10 or twenty metrics. The name of this metric group

should be PERFORMANCE – that’s just what it means. That name will make it easy to find later when you are

defining alerts, reports and dashboards.

Page 8

INVOCATIONS EXAMPLEINVOCATIONS EXAMPLEINVOCATIONS EXAMPLEINVOCATIONS EXAMPLE

The invocations metrics (Response per Interval) lets you know where your application is the most active. This

provides a precise mechanism to measure and track capacity. When the application is saturated, where it

can no longer scale, the invocations tell you exactly how many key interactions are being performed.

Where am I working the most?

The sequence of operations is exactly the same as before, with the exception of the Search field, which is now

equal to “Responses”. After sorting the Value column, verify your top 10 or 20 metrics, create a new metric

group called CAPACITY, and drag the metrics into that new metric group.

Building Metric Groups

To be efficient, you want to drag-n-drop metrics, instead of typing them. This requires that you have to APM

workstation windows open: an Explorer and Management Module Editor. You create the management

module, or navigate to it if it is already existing and then drag metrics from the Explorer window and drop into

the fields of the metric grouping.

The following figure is an example, this time with Enterprise Manager metrics. You don’t have to wait for a

complex application to try out your workstation skills. You always have the Enterprise Manager metrics

around for practice.

Page 9

The left pane lists the current metric groupings. The right pane, with the graph and parameter entry fields,

holds the current members of the collection. While drag-n-drop is the easiest to start with you may also use a

regular expression to define the metrics you are interested in, for the metric grouping.

Once a metric group is established, you are now ready to define thresholds, and build dashboards and

reports.

Applying Thresholds

To define a threshold, simply select a metric group and right-click to create a new alert via the pop-up menu.

There are a lot of options available for configuration. What you need to focus is the threshold definition which

layered over the current values of the elements of your metric group. You cannot set thresholds reliably until

your metric group is defined and presenting data. An example result is in the following figure:

Page 10

RED zone

GREEN zone

YELLOW zone

APP 1

APP 2

APP 2

The graph is of the metric count and thresholds have been defined so that the various regions will be reflected

in an alert lamp. A sample dashboard is directly below the graph for added emphasis of this relationship.

The alert definition does not build this dashboard – you need to complete it.

For the metric count thresholds, when the application server starts, it will progress up to a certain point and

then it is ready for load. Prior to that point it is “unavailable”. It is a feature of Java that the application

components are not loaded until users start exercising the application. So if the app server is restarted at

4am but no users arrive until 8am, the app server is actually is an “unproven” state. Since some application

servers can hang at startup, this is a useful state to reveal. And the “yellow” means exactly that – “caution –

this server has not fully initialized”! When even a single user exercises the application, the remaining Java

components get invoked, and the server is now fully initialized – we are in the green state.

Using the metric count is practically airtight, in terms of getting some experience with thresholding and

learning a small tidbit about the nuances of your application startup. Everything you do to get this alert

established is exactly the same process for the PERFORMANCE and CAPACITY metric groupings - only the

level of effort changes.

This little dashboard snippet should be interesting for you are well. This is the first dashboard you should

attempt because it is heavy on the metric groupings and easy to validate. Sure, everybody wants to build a

GIS1 application for their first dashboard but you really need to “keep it simple”. There is nothing worse than

a dashboard that looks pretty – but doesn’t represent reality.

1 Global Information System http://en.wikipedia.org/wiki/GIS

Page 11

Building the Report

The other immediate application of a metric group is to define a report template.

the definition of a baseline report for the Enterprise Manager. As before, if you do not alrea

application to practice on, the EM is always there for you.

can incrementally test the template to make sure you are getting what you want. The metric group and type of

report element are als

It will take a couple of minutes to finish the report template definition. And then a couple of test runs to

make sure it is ready. But once it is

collaboration

To turn back to the performance baseline for your application, after you have mastered the first two key

metrics, you can move on and define the remainder. In the next f

report:

Building the Report

The other immediate application of a metric group is to define a report template.

the definition of a baseline report for the Enterprise Manager. As before, if you do not alrea

application to practice on, the EM is always there for you. And like the definition of the metric grouping, you

can incrementally test the template to make sure you are getting what you want. The metric group and type of

report element are also highlighted.

It will take a couple of minutes to finish the report template definition. And then a couple of test runs to

make sure it is ready. But once it is – it is ready for everybody and you have established the first element of

collaboration – a consistent presentation of performance information to share with you stakeholders.

To turn back to the performance baseline for your application, after you have mastered the first two key

metrics, you can move on and define the remainder. In the next figure is the cover sheet for the full baseline

The other immediate application of a metric group is to define a report template. The following figure shows

the definition of a baseline report for the Enterprise Manager. As before, if you do not already have an

And like the definition of the metric grouping, you

can incrementally test the template to make sure you are getting what you want. The metric group and type of

It will take a couple of minutes to finish the report template definition. And then a couple of test runs to

it is ready for everybody and you have established the first element of

a consistent presentation of performance information to share with you stakeholders.

To turn back to the performance baseline for your application, after you have mastered the first two key

igure is the cover sheet for the full baseline

Page 12

The immediate benefit of doing baselines via report is that you don’t need any time at the APM workstation,

going through all of those manual operations. You could even

Building the Dashboard

After the baseline

that is easiest to understand, by a wide variety of stakeholders, is the

below:

The first two thresholds, CONNECTIVITY and AVAILABILITY are the easiest to define. There is a single agent

connection metric and metric count, per agent. So these are a metric group of 1 member, unless the

application has multiple instances and you could collect all of the instances together in the metric grouping.

The PERFORMANCE and CAPACITY thresholds can have any number of members in their representative

metric groupings. These will take more time to confir

thresholds are correct. But this dashboard, simple as it it, is your first test. You need to be able to reliable

assemble this dashboard before you can go onto something more interesting.

This next sample dashboard is very popular. You simple draw or import an appropriate solution architecture

diagram, and then create summary alerts for each of the systems you are monitoring. A summary alert takes

an arbitrary collection of alerts and displays the

The immediate benefit of doing baselines via report is that you don’t need any time at the APM workstation,

going through all of those manual operations. You could even reduce the report generation to a simple script.

Building the Dashboard

baseline report is established, it is time to turn more attention to the dashboard. The dashboards

easiest to understand, by a wide variety of stakeholders, is the

The first two thresholds, CONNECTIVITY and AVAILABILITY are the easiest to define. There is a single agent

connection metric and metric count, per agent. So these are a metric group of 1 member, unless the

cation has multiple instances and you could collect all of the instances together in the metric grouping.

The PERFORMANCE and CAPACITY thresholds can have any number of members in their representative

metric groupings. These will take more time to confirm that you have the key metrics and to validate that the

thresholds are correct. But this dashboard, simple as it it, is your first test. You need to be able to reliable

assemble this dashboard before you can go onto something more interesting.

sample dashboard is very popular. You simple draw or import an appropriate solution architecture

diagram, and then create summary alerts for each of the systems you are monitoring. A summary alert takes

an arbitrary collection of alerts and displays the most urgent state. Thus, for the previous figure, App1 would

The immediate benefit of doing baselines via report is that you don’t need any time at the APM workstation,

reduce the report generation to a simple script.

time to turn more attention to the dashboard. The dashboards

easiest to understand, by a wide variety of stakeholders, is the alert-centric dashboard indicated

The first two thresholds, CONNECTIVITY and AVAILABILITY are the easiest to define. There is a single agent

connection metric and metric count, per agent. So these are a metric group of 1 member, unless the

cation has multiple instances and you could collect all of the instances together in the metric grouping.

The PERFORMANCE and CAPACITY thresholds can have any number of members in their representative

m that you have the key metrics and to validate that the

thresholds are correct. But this dashboard, simple as it it, is your first test. You need to be able to reliable

assemble this dashboard before you can go onto something more interesting.

sample dashboard is very popular. You simple draw or import an appropriate solution architecture

diagram, and then create summary alerts for each of the systems you are monitoring. A summary alert takes

most urgent state. Thus, for the previous figure, App1 would

Page 13

show green (4/4), App2 would show red (1/4), App3 would show green (4/4), for a Summary Alert. You

don’t have to use all four alerts but why not? These four alerts cover everything possible

application: disconnected, connect, app server hung, app server active, performance problem, capacity

problem, etc. With summary alerts, and the appropriate system architecture diagram, anyone can observe

which systems are having problems

Building dashboards is easy, provided that you have done a correct job defining your metric groups. All the

work is really in defining which metrics to focus on, how to organize them for applying thresholds, and then to

assign the threshold definition. You only need to follow the right sequence of activities. And it all begins with

the baseline.

SECTION 2: OPPORTUNI

When Do You Collect Baselines?

Your first exercise of the application, while in a testing environment, is t

baselines. Everything you will want to do with APM: alerting, dashboards, reports and triage

depend on effective baselines.

Taking the time to establish a valid baseline means that n

If you have not yet started with baselines but the application is being monitored, then you need only use the

historical view to begin identifying the components that will constitute the baseline. You will need to allow

about 30 minutes to complete this task. Of course, when an urgent problem urgent problem has been

detected it may seem like a luxury to complete this task. But it is essential because if you had the baseline

defined, collecting a new baseline will only take

change, in order to confirm that the problem has been addressed.

show green (4/4), App2 would show red (1/4), App3 would show green (4/4), for a Summary Alert. You

don’t have to use all four alerts but why not? These four alerts cover everything possible

application: disconnected, connect, app server hung, app server active, performance problem, capacity

problem, etc. With summary alerts, and the appropriate system architecture diagram, anyone can observe

which systems are having problems and which experts to involve.

Building dashboards is easy, provided that you have done a correct job defining your metric groups. All the

work is really in defining which metrics to focus on, how to organize them for applying thresholds, and then to

gn the threshold definition. You only need to follow the right sequence of activities. And it all begins with

the baseline.

SECTION 2: OPPORTUNITY

When Do You Collect Baselines?

Your first exercise of the application, while in a testing environment, is t

baselines. Everything you will want to do with APM: alerting, dashboards, reports and triage

depend on effective baselines.

Taking the time to establish a valid baseline means that no one else has to repeat that work.

If you have not yet started with baselines but the application is being monitored, then you need only use the

historical view to begin identifying the components that will constitute the baseline. You will need to allow

t 30 minutes to complete this task. Of course, when an urgent problem urgent problem has been

detected it may seem like a luxury to complete this task. But it is essential because if you had the baseline

defined, collecting a new baseline will only take a few minutes. This is obligatory, after a fix or configuration

change, in order to confirm that the problem has been addressed.

show green (4/4), App2 would show red (1/4), App3 would show green (4/4), for a Summary Alert. You

don’t have to use all four alerts but why not? These four alerts cover everything possible state of your

application: disconnected, connect, app server hung, app server active, performance problem, capacity

problem, etc. With summary alerts, and the appropriate system architecture diagram, anyone can observe

Building dashboards is easy, provided that you have done a correct job defining your metric groups. All the

work is really in defining which metrics to focus on, how to organize them for applying thresholds, and then to

gn the threshold definition. You only need to follow the right sequence of activities. And it all begins with

Your first exercise of the application, while in a testing environment, is the best place to start collecting

baselines. Everything you will want to do with APM: alerting, dashboards, reports and triage – these all

else has to repeat that work.

If you have not yet started with baselines but the application is being monitored, then you need only use the

historical view to begin identifying the components that will constitute the baseline. You will need to allow

t 30 minutes to complete this task. Of course, when an urgent problem urgent problem has been

detected it may seem like a luxury to complete this task. But it is essential because if you had the baseline

a few minutes. This is obligatory, after a fix or configuration

Page 14

Selecting a normal period in production, or a representative test during QA, takes some consideration to

ensure that the period for the baseline is representative. This is discussed in the previous section: “Finding a

normal period”. If you collect your baselines in advance, you simply save more time when a problem occurs.

Once the baseline is defined, it I captured in a report template. This template can then e used to generate a

baseline report periodically (daily, weekly). This way you will always have a current baseline available and you

will save additional time during an incident.

Different kinds of baselines

SECTION 3: BENEFITS

Effective Use of the APM Workstation

The workstation component of your APM solution is a very powerful tool. Collecting the baseline is not just

something fun to do – it is a basic competency in using the workstation to do something that benefits all of

your stakeholders.

Not all of your stakeholders will be able, or interested to access the APM workstation. Many will be quite

satisfied with the browser-based access – provided you give them effective dashboards. Building the

dashboards is easy. Knowing what to put on those dashboards – that is where the baseline will provide

guidance.

Understanding the key components of your application

Every application is different but what makes your application unique? That’s what a baseline process helps

you to establish. It is a mechanical process that gets you focused on the components that matter. Why they

matter – that is another discussion and one that requires a lot more expertise in application architecture and

software design. Generating the baseline and sharing it among your stakeholders is easy.

There are dozens of different components and thousands of metrics but only a few of them need to be

exposed in order to understand and manage performance. That’s what the baseline presents – just the

simple facts about what matters for your application.

More efficient triage of performance problems

When a performance problem is detected, stakeholders need facts. In a complex service implementation,

every application is suspect until you can establish that you are either part of the problem, or that you are not.

Comparing your performance during the incident, with your baseline, is how you make that conclusion. It lets

you separate out the normal activity. Anything that remains is suspect.

Better collaboration with your stakeholders.

Knowledge is your understanding of the performance aspects of the application. You need to share this

knowledge with your stakeholders for them to appreciate and value your expertise with APM.

SECTION 4: CONCLUSIONS
Baselines are the first step to understanding how to manage and communicate the performance of your

application. They exercise some basic skills with the APM workstation but when you collect effective

baselines, no one else needs to repeat that process. You improve collaboration by sharing this succinct

Page 15

information so that your stakeholders are fully informed as to what is critical about your application and

where to invest to keep performance on track.

APM is how your organization comes together to manage the delivery of services. Baselines are the language

that lets you track software quality and identify where components are underperforming.

SECTION 5: REFERENCES
The key reference for using the APM Workstation is the “Workstation User Guide”, version 9.0.

Here are the chapters and sections that will provide additional guidance for the techniques discussed in this

technical brief:

Chapter 2 – Using the Workstation Console

 Viewing Historical Data

Chapter 3 – Using the Workstation Investigator

 Tab Views in the Investigator’s Browse Tab

Chapter 6 – Introscope Reporting

Chapter 7 – Creating and using Management Modules

 Configuring Metric Groupings

Creating and Editing Dashboards

Monitoring Performance with Alerts

SECTION 6: ABOUT THE AUTHOR
Michael Sydor is an Engineering Services Architect specializing in Best Practices for APM. He advises and

leads client teams to establish their own APM disciplines to deliver effective triage and manage performance

across the application lifecycle. Michael is also the author of “Application Performance Management –

Realizing APM”, to be released later this year under the CA Press program.

