

Broadcom CA Test Data Manager

and

Snowflake Data Cloud

Continuous Testing Solution Engineering Team

DRAFT version 0.5

June, 2021

TDM and Snowflake

Page 2 June 2021

Table of Contents
Introduction 3

TDM Architecture Diagram 3

Broadcom CA Test Data Manager and Snowflake Demo Overview 4

Setup 5

Summary 6

Synthetic Data Generation 6

Masking 7

Detail 8

Data Generation Detailed Steps: 8

Creating the .bat file for the Post-Publish Action: 14

Masking Detailed Steps: 16

Automating the masking process: 20

TDM and Snowflake

Page 3 June 2021

Introduction
The purpose of this document is to provide information about configuring Broadcom Test Data Manager

with the Snowflake database - a cloud-based data warehouse/data lake solution. The steps described

below are for a PROOF OF CONCEPT implementation.

Note:

● Snowflake db is not formally supported by Broadcom for all TDM functions.

TDM Architecture Diagram
The below diagram shows a basic TDM – Snowflake deployment architecture.

TBD

TDM and Snowflake

Page 4 June 2021

Broadcom CA Test Data Manager and Snowflake Demo Overview

For Test Data purposes, we’ll use the supported “SnowSQL” CLI client to assist with TDM operations.

SnowSQL documentation is located here: https://docs.snowflake.net/manuals/user-guide/snowsql.html

There are 2 primary Use Cases where TDM & SnowSQL are suited:

Synthetic Data Generation:

(1) Generate data to a .csv representation

(2) Snowflake bulk load utility - https://docs.snowflake.com/en/user-guide-data-load.html

a. Snowflake – Stage Data Files from a Local File System

b. Snowflake – Copying Data from an Internal Stage

Masking:

(1) Snowflake unload utility - https://docs.snowflake.com/en/user-guide/data-unload-

overview.html

(2) In-place masking by Fast Data Masker

(3) Snowflake put - https://docs.snowflake.com/en/sql-reference/sql/put.html

(4) Snowflake merge - https://docs.snowflake.com/en/sql-reference/sql/merge.html

https://docs.snowflake.net/manuals/user-guide/snowsql.html
https://docs.snowflake.com/en/user-guide-data-load.html
https://docs.snowflake.com/en/user-guide/data-load-local-file-system-stage.html
https://docs.snowflake.com/en/user-guide/data-load-local-file-system-copy.html
https://docs.snowflake.com/en/user-guide/data-unload-overview.html
https://docs.snowflake.com/en/user-guide/data-unload-overview.html
https://docs.snowflake.com/en/sql-reference/sql/put.html
https://docs.snowflake.com/en/sql-reference/sql/merge.html

TDM and Snowflake

Page 5 June 2021

Setup

Pre-requisites:

Snowflake ID, Snowflake database available

Install & Configure:

On your Windows TDM Server, download and install the SnowSQL client.

Setup the Default Connection if you wish to simplify this exercise, otherwise perform whatever options

are required for your organization & cloud standards for OAuth, OKTA, 2MFA, etc.

On your Windows TDM Server, download and install the 32-bit Snowflake ODBC driver. Configure your

connection to the Snowflake DB server using ODBC Data Sources (32-bit).

https://docs.snowflake.com/en/user-guide/snowsql-install-config.html#installing-snowsql-on-microsoft-windows-using-the-installer
https://docs.snowflake.com/en/user-guide/conns-drivers.html
https://docs.snowflake.com/en/user-guide/odbc-windows.html

TDM and Snowflake

Page 6 June 2021

Summary

Synthetic Data Generation

Initial setup:

In order to initialize the TDM Generator, we’ll need to register the data structures.

Datamaker can connect via 32-bit ODBC connection to the Snowflake DB. It appears you can directly

interrogate the data catalog and register tables using Datamaker.

Configuring the generator:

As a Test Data Engineer (TDE) you are responsible for:

- documenting table relationships and ensuring that the generated data is referentially intact as

you specify the formulas for each field

- identify any business rules that constrain the values

- identify field formats so the generated results are compatible once uploaded

Publishing the data:

The Publish should be generated to File, File Type=.csv for upload into Snowflake using the SnowSQL

client. See Internal Named Stages for details on how to configure a target when uploading data

destined for multiple tables.

Configuring the Upload Using simple batch scripts

As the SnowSQL client can be executed as a Batch Script, you can:

a) Configure the connection information in variables

b) Execute the Batch script / command line as a Post-Publish action

https://docs.snowflake.com/en/user-guide/data-load-local-file-system-create-stage.html
https://docs.snowflake.com/en/user-guide/snowsql-use.html#running-batch-scripts

TDM and Snowflake

Page 7 June 2021

Masking

Initial setup:

In order to initialize Fast Data Masker, we’ll need to have a .csv representation of each table that we

wish to mask so we can connect with the data structures.

You would execute a series of SELECT TOP 1 FROM queries, with output to .csv for each table. Once

completed,

Configuring FDM generator:

Launch FDM and specify FILE as the masking type. Specify the directory where the .csv files have been

downloaded. You’ll need to create a File Definition for each .csv file. You can do this one-by-one from

the FDM dialog, or manually via a text editor.

After connecting, use FDM to configure the masking rules for each field.

As a Test Data Engineer (TDE) you are responsible to:

- identify any business rules that constrain the masked values

- identify field formats so the generated results are compatible once uploaded

Masking the data:

The masking will generate .csv.scramble files for upload/merge into Snowflake using the SnowSQL client.

Configuring the process Using Javelin.

Once the steps have been vetted, you can utilize Javelin to automate the Unload, Mask, Put, and Merge

steps within a flow.

TDM and Snowflake

Page 8 June 2021

Detail

Data Generation Detailed Steps:

Pre-requisites:

- You’ve completed the Snowflake in 20 Minutes tutorial up thru Step 5 or use your own data

- IMPORTANT NOTE: If you use the tutorial data, FDM will not tolerate the special characters in

the City names – replace the “e” & “o” with a double-dot and “i” with an accent character for

the following Cities prior to import in the tutorial: Semënovskoye, Kardítsa, Norrköping

- You’ve setup a config file for connection to the Snowflake database “example” as seen below

- You’ve created a TDM Project & Version

Datamaker and ODBC

Prerequisite: Snowflake 32-bit ODBC drivers are installed.

Use the “ODBC Data Sources (32-bit)” windows application to define the connection to the Snowflake

DB:

https://docs.snowflake.com/en/user-guide/getting-started-tutorial.html

TDM and Snowflake

Page 9 June 2021

Launch Datamaker.

Create a new Database Connection:

TDM and Snowflake

Page 10 June 2021

Test the connection, then save.

In Datamaker, set the Project and Version to the values created above.

Expand the Project folder structure on the left until you see the top-level folder. Right mouse on the

folder and select Register

TDM and Snowflake

Page 11 June 2021

Select Database Table and click the green arrow

When Prompted, set the Database Connection to the Snowflake connection you configured above.

You’ll get this warning, click ok.

Select the Table(s) and Register.

TDM and Snowflake

Page 12 June 2021

Now that the object has been registered, in the TDM Portal, navigate to the Project/Version, select the

Generators tab on the left, then click the Create Generator button

Name the Generator “Generate New Employees”, open it, and open the emp_basic table.

Click the +r on the right side to add a row to the table. Enter formulas into the fields. Some samples:

FIRST_NAME @randlov(0,@seedlist(FirstName)@)@

LAST_NAME @randlov(0,@seedlist(LastName)@)@

EMAIL ^FIRST_NAME^.@collapse(^LAST_NAME^)@@atsign(1)@snowflakedemo.com

STREETADDRESS

@randrange(1,9999)@ @percval(10%N.,5%North,10%E.,5%East,10%S.,5%South,10%W.,5%West,40%)@

@percval(10%Second St.,10%Main St.,10%Park Ave.,10%Oak St.,10%Pine St.,10%Maple

Ln.,10%Washington St.,10%Lake Dr.,10%Hill Ave.,10%Ninth St.)@

CITY @randlov(0,@seedlist(US Zip-Codes)@,3)@

Publish one record to type File, format CSV.

Once the publish is complete, download the zip file and extract the emp_basic.csv file. For example:

Launch the SNOWSQL client, and use the PUT command to upload the contents to the Snowflake staging

table (substitute your UserID & jobID as highlighted):

put file:// C:/Users/Administrator/Downloads/85/emp_basic.csv @sf_tuts.public.%emp_basic;

NOTE: In the example above, we are using a Table Stage “%emp_basic”. This is only valid when

working with a single table. Otherwise, we need to use an Internal Named Stage.

https://docs.snowflake.com/en/user-guide/data-load-local-file-system-create-stage.html

TDM and Snowflake

Page 13 June 2021

Then use the COPY INTO command to migrate the data from Staging to the Snowflake table, telling it to

ignore the 1st line as it includes the headers.

copy into emp_basic from @%emp_basic file_format = (type = csv field_optionally_enclosed_by='"' skip_header = 1);

The result is that the newly generated Synthetic Data has been inserted into the table.

So you’ve mastered the basics of TDM Data Generation and insertion into Snowflake. The next step is

to automate the insertion via a “Post-Publish Action” in TDM.

TDM and Snowflake

Page 14 June 2021

Creating the .bat file for the Post-Publish Action:

Ensure that you have setup Snowflake variables for the output path of the generated files and the

PUBJOBID variable that will be pulled from TDM at generation time.

Snowflake config file example:

[variables]

PUBJOBOUTPATH="C:/ProgramData/CA/CA Test Data Manager Portal/Jobs/Job_"

PUBJOBID=1

Create a new “snowput.bat” file containing the following line:

snowsql -c example -d SF_TUTS -s public –D PUBJOBID=%1 -f C:\TDM\SnowflakeDemo\datagen\put-copy-into-emp-basic.sql

Create the “put-copy-into-emp-basic.sql” file with the following contents:

USE DATABASE SF_TUTS

;

USE SCHEMA PUBLIC

;

put 'file://&{PUBJOBOUTPATH}&{PUBJOBID}/emp_basic.csv' @sf_tuts.public.%emp_basic overwrite=true

;

copy into SF_TUTS.PUBLIC.EMP_BASIC from @sf_tuts.public.%emp_basic file_format = (type = csv
field_optionally_enclosed_by='"' skip_header = 1)

;

https://docs.snowflake.com/en/user-guide/snowsql-config.html

TDM and Snowflake

Page 15 June 2021

Return to the TDM Generator defined before and click on the ACTIONS button. Define a new ACTION. Specify
the full path to the .bat file you created above, followed by a space, followed by the TDM Variable ~PUBJOBID~
which will be passed as the first and only parameter (and referenced as %1 on the above snowsql command).

If the HOST actions are not configured for this TDM Portal, update the portal’s application.properties file:

tdmweb.enableHostActions=true

and restart the TDM Portal so it can pickup the configuration change.

IMPORTANT NOTE: Because SnowSQL can only pickup the Password from the ~/.snowsql/config file for basic
authentication, your Portal MUST be configured to run under a User Account with this file in the %USERPROFILE%
path and not “Local System Account” as the .bat file will be executed under that user.

Execute a Publish and confirm that the new job’s data is inserted into the Snowflake table via the Post-Publish

Action automation.

TDM and Snowflake

Page 16 June 2021

Masking Detailed Steps:

Pre-requisites:

- Connection setup for SnowSQL

- Table/Columns to mask are known

- Mask types identified per column

Create a .bat file to export the table contents to a .csv file:

export-from-snowflake.bat

snowsql -c example -d sf_tuts -s public -q "select * from emp_basic" -o output_format=csv -o

header=true -o timing=false -o friendly=false > C:\TDM\SnowflakeDemo\masking\emp_basic.csv

NOTE: In this simple example, we are exporting all columns in the table. In general, you should not do

this! You will only need to download:

(1) The column that can unique identify this record (EMAIL in our case)

(2) The column(s) to be masked (START_DATE in our case)

Limiting the amount of data crossing between the FDM/TDM server and the Snowflake interface will

minimize the data transfer time.

Execute the .bat file to create the .csv to allow FDM to interrogate the data structure.

TDM and Snowflake

Page 17 June 2021

Launch Fast Data Masker, change to FILE mask type, and use the “Create Definition File” button to Parse

the File to Mask as shown below. Add the Date Format (and tab out of that field) to tell FDM how to

interpret the date.

TDM and Snowflake

Page 18 June 2021

Choose the field(s) in Fast Data Masker to mask. START_DATE is used in this example.

Add any options such as AUDIT file and Save & Run the Masking job.

A .scramble file will be produced. You can inspect this and the audit file to verify the dates have

changed plus or minus 5 days as specified.

TDM and Snowflake

Page 19 June 2021

Now we need to build the upload and merge scripts.

Using snowsql, create an internal stage to receive the PUT (mandatory to support the merge):

create stage EMPTMP FILE_FORMAT=(TYPE=CSV,field_optionally_enclosed_by='"');

Create a .bat file for the snowsql execution, containing the following line:

snowsql -c example -d SF_TUTS -s public -f C:\TDM\SnowflakeDemo\masking\put-merge-emp-basic.sql

Create the .sql file containing the PUT and merge commands

put-merge-emp-basic.sql

USE DATABASE SF_TUTS

;

USE SCHEMA PUBLIC

;

put 'file://C:/TDM/SnowflakeDemo/masking/emp_basic.csv.scramble' @EMPTMP overwrite=true;

;

MERGE INTO SF_TUTS.PUBLIC.EMP_BASIC

USING

 (

 SELECT

 $3 EMAIL

 , $6 START_DATE

 FROM @SF_TUTS.PUBLIC.EMPTMP/emp_basic.csv.scramble.gz

) EMP_TMP_DESC

ON

 EMP_BASIC.EMAIL=EMP_TMP_DESC.EMAIL

WHEN MATCHED THEN

 UPDATE SET

 EMP_BASIC.START_DATE = EMP_TMP_DESC.START_DATE

;

NOTE: The $3 and $6 notations mean that these are the 3rd and 6th columns in the file. If you only

exported the “id” (EMAIL) and the column to mask (“START_DATE”), they will be $1 and $2.

TDM and Snowflake

Page 20 June 2021

Execute the scripts.

Review the masked results using Datamaker, your SNOWSQL client or Snowflake Web Client.

Automating the masking process:

Use Javelin or a top-level .bat file to create a “round-trip” export-mask-import process. You’ll need to

ensure that the mask step completes (and you’ll need to wait some seconds after that for FDM to flush

the file to disk) before invoking the last script to perform the import (put-merge).

