

COOL:Gen
®

Windowed Environments IT User’s Guide
6.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by the
copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2001 Computer Associates International, Inc. (CA)

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1: Implementation Toolset
Build Tool... 1-1
Application Install ... 1-1
GUI Runtime with Diagram Trace... 1-2
Block Mode Runtime with Diagram Trace.. 1-2
Required and Optional Tasks ... 1-3

Installing the Build Tool .. 1-3
Managing the Target System for Windows NT.. 1-4

Specifying Bitmap Locations for GUI Applications .. 1-4
Building an Application .. 1-5
Testing an Application (optional).. 1-5

Implementing a Target System .. 1-5
Target Specifics .. 1-7

Chapter 2: Using the Build Tool
Build Tool Window .. 2-1

Search Directory Field .. 2-2
Search all Subdirectories Check Box ... 2-2
Modules List Box .. 2-3
Message Area.. 2-5
Build Tool Task Buttons .. 2-5
File Menu Options ... 2-7

Processing Local or Remote Files ... 2-13
Testing an Application .. 2-14

Appendix A: Customizing Scripts
Locating Scripts ...A-2

Script Naming Convention..A-2

Contents iii

Token Categories.. A-3
Environment Parameter Tokens... A-4
GML Tokens .. A-4
Location Tokens... A-5
Token Delimiters ... A-10

Customizing Scripts .. A-10
Script Delimiters ... A-11
Script Directives.. A-11

Appendix B: Working with User Exits
User Exits Provided by COOL:Gen...B-2
User Exits (GUI)..B-2

Preconnection User Exit (WRPRECONNECT) ...B-3
Postconnection User Exit (WRPOSTCONNECT)...B-3
Predisconnection User Exit (WRPREDISC) ..B-3
Century Default Exit (WRDEFAULTYEAR) ...B-4
Postdisconnection User Exit (WRPOSTDISC)..B-4
Default Retry Limit Exit (WRDRTL) ..B-4
Ultimate Retry Limit Exit (WRURTL)...B-5
Globalization Exit (WRGLB)...B-5
System ID Exit (WRSYSID) ..B-5
User ID Exit (WRUSRID) ..B-6
Terminal ID Exit (WRTERMID) ..B-6
Uppercase Translation Exit (WRUPPR) ...B-6
Client Security Token User Exit (WRSECTOKEN) ...B-6
Client/Server Encryption Exit (WRSECENCRYPT) ..B-7
Client/Server Decryption Exit (WRSECDECRYPT) ..B-8
Decryption User Exit Errors ..B-10
Client/Server Flow Failure Exit (WRSRVRERROR) ...B-10
Client/Server Asynchronous Flow Server Failure Exit (WRASYNCSRVERROR)...............B-11

User Exits (Block Mode) ...B-11
Decrypt Exit (TIRDCRYP) ..B-12
User Dialect Exit (TIRDLCT)..B-12
Default Retry Limit Exit (TIRDRTL) ...B-12
Server Error Logging Exit (TIRELOG) ...B-13
Help Interface Exit (TIRHELP)..B-14
(TIRUPDB) ...B-14
(TIRSERRX)...B-14
Message Table Exit (TIRMTQB)...B-15
Encrypt Exit (TIRNCRYP) ..B-16

iv Windowed Environments IT User’s Guide

Customize DBMS Connection (TIROCONN.PC, TIRCS95.SQC, TIRCODBC.C, TIRDCONN.SQC,
TIRSCONN.CP, TIRXCONN.EC)... B-17
Security Interface Exit (TIRSECR)... B-17
Security Validation Exit (TIRSECV) ... B-17
System ID Exit (TIRSYSID)... B-18
User Termination Exit (TIRTERMA) .. B-19
Uppercase Translation Exit (TIRUPPR).. B-19
Ultimate Retry Limit (TIRURTL) ... B-19
User ID Exit (TIRUSRID) .. B-20
National Language Translation Exit (TIRXLAT).. B-20
Process 2-Digit Date and Set Century (TIRYYX) .. B-20

Appendix C: Troubleshooting
Problems and Resolutions .. C-1

Stream of Warnings .. C-1
Error - L1093: ... object not found .. C-2
Failed Build that Seemed Successful ... C-2
Compile Step Failed #1 ... C-3
Models Will Not Build.. C-3
Load Module Failed to Generate... C-3
Compile Step Failed #2 ... C-4
Consistency Check Failed... C-4
Error - Can’t Find MSVCRT40.DLL .. C-4

Index

Contents v

Chapter

1 Implementation Toolset

The Implementation Toolset is a collection of tools which resides on the
workstation and allows COOL:Gen-generated applications to be installed and
run on a target system. The Implementation Toolset (IT) is comprised of the
following parts:

■ Build Tool

■ Application Install
(required for GUI Runtime application builds)

■ Runtime with Diagram Trace
(GUI or Block Mode, depending on which was purchased for your system)

Build Tool
Use the Build Tool to build, compile, and link COOL:Gen-generated applications
from the Construction Toolset development platform in the form of local (*.ICM)
or remote (*.RMT) files. You can also use the Build Tool to set up and maintain
the test target system. You can invoke it directly or from the Construction
Toolset as a local application Build Tool. The Build Tool has a GUI front end but
can build COOL:Gen applications targeting GUI or Block Mode screens.

Note: For additional information about invoking the Build Tool directly from the
Construction Workstation, see the COOL:Gen Workstation Construction User
Guide.

Application Install
The Application Install is a set of support files that are required to build
GUI-based COOL:Gen-generated applications. These support files include
COOL:Gen-specific C header files, libraries, and icons. Block Mode support files
are already included in the Block Mode Runtime component.

Implementation Toolset 1–1

GUI Runtime with Diagram Trace

GUI Runtime with Diagram Trace
The GUI Runtime is a separate, reusable code module and dynamically linked
library set that is used to perform low-level functions such as screen formatting
and message switching. As the name implies, the GUI (graphical user interface)
lets users control the operation of the application through a system of windows,
icons, and dialog boxes.

Diagram Trace is used to test the COOL:Gen application by letting you
interactively step through action diagrams. This feature lets you view the
process and procedure logic used in the diagrams to help in debugging a failed
application. Diagram Trace also lets you interactively inspect and modify data
views.

Block Mode Runtime with Diagram Trace
The Block Mode Runtime, like GUI Runtime, is a separate, reusable code
package with a dynamically linked library set for Win32 that interfaces between
the COOL:Gen-generated application and the operating system of the test target
system. Unlike GUI Runtime, you control the application through a set of
keystrokes, which are then interpreted by a p3270key mapping file as function
definitions. These definitions associate a character string received from the
keyboard with a particular 3270 control or function key that determines the
character string to be output to the terminal to execute a particular screen
function.

Diagram Trace is used to test a COOL:Gen-generated block mode application.
This feature lets you view the process and procedure logic used in the diagrams
to help in debugging a failed application. If the trace function is being used, then
several trace panels display (in addition to the application screens) to let you
view the sequence of action block calls. If the trace function is not being used,
then the application’s screens display exactly as they would appear in a
production environment. This feature also lets you step through the execution of
an application and view the action diagram statements. And Diagram Trace lets
you inspect and modify the data in views.

1–2 Windowed Environments IT User’s Guide

Required and Optional Tasks

Required and Optional Tasks
The following illustration shows the required and optional tasks associated with
the Build Tool and the order in which they should be performed.

Install the Build Tool

Manage the Target System

Invoke the Build Tool

Install the Application

Test the Application
(optional)

One time
set up

Installing the Build Tool

Before building an application, ensure that you have the Build Tool installed and
configured on your target system. For more information, see the Installing
COOL:Gen guide.

Implementation Toolset 1–3

Managing the Target System for Windows NT

Managing the Target System for Windows NT
During installation, the registry of the target system is modified to provide the
proper operating environment for the IT. To verify that the correct system
configuration exists for the current logon session, check that:

■ This path statement references the COOL\GEN directory. The following
illustrates an effective path statement:
PATH=...;C:\DEVSTUDIO\COMMON\TOOLS\WINNT;
C:\DEVSTUDIO\COMMON\MSDEV98\BIN;C\DEVSTUDIO\COMMON\TOOLS;
C:\DEVSTUDIO\VC98;C:\COOL\GEN;

■ The following user environment variables are properly set:
LIB=.;C:\DEVSTUDIO\VC98\MFC\LIB;
C:\DEVSTUDIO\VC98\LIB;
C:\COOL\GEN;

INCLUDE=.;C:\DEVSTUDIO\VC98\ALT\INCLUDE;
C:\DEVSTUDIO\VC98\MFC\INCLUDE;
D:\DEVSTUDIO\VC98\INCULDE;
C:\COOL\GEN;

IEF=C:\COOL\GEN\

Note: The terminating backslash (\) is required.
AEHOME=C:\COOL\GEN

See the Setup section in this guide for information about how to complete the
installation.

Specifying Bitmap Locations for GUI Applications

If a GUI application includes bitmaps, the Build Tool searches for a BITMAP
subdirectory in the parent of the directory where your models are stored. For
example, if your models are in:
\MODELS\PROD.IEF\C

then the Build Tool searches for bitmaps in:
\MODELS\PROD.IEF\BITMAP

If the directory does not exist, the Build Tool searches for the files in the current
working directory:
\MODELS\PROD.IEF\C

1–4 Windowed Environments IT User’s Guide

Implementing a Target System

If you want to specify a directory for bitmaps for all COOL:Gen-generated
applications on the system, do one of the following:

■ To specify a directory for bitmaps which can be changed without rebooting
the system, use the Setup button to set the OPT.IEF_BITMAP token to
indicate the directory.

■ To specify a directory for bitmaps which cannot be changed without
rebooting the system (for Win32 only), add the following statement to your
AUTOEXEC.BAT file:
SET IEF_BITMAP=<bitmap directory>

The environment variable setting takes precedence over the Setup token
IEF_BITMAP.

Building an Application

After the Build Tool has been installed and invoked, you can build your
applications. See the “Using the Build Tool” chapter in this guide for more
information.

Testing an Application (optional)

Applications that have been built can be moved into production or tested. One
method of testing an application is to use the Diagram Trace facility that is
provided as part of the Implementation Toolset runtime. See the “Using the
Build Tool” chapter in this guide for information required to place an application
into production and use the Diagram Trace facility.

Implementing a Target System
To better understand the Build Tool and the principles on which it functions, a
short discussion of the concept of target system implementation is provided in
the following paragraphs.

Implementation Toolset 1–5

Implementing a Target System

Target system implementation is the process by which an application can be
developed on one platform using a particular operating system for subsequent
execution on another platform using the same or a different operating system.
With this process, a single model can be implemented on many different
platforms.

Win32

X Windows/Motif

COOL:Gen Workstation Target System

TandemWin32

Win32

VMS
UNIX

Tandem

MVS

VM

Win32

X Windows/Motif

Win32

X Windows/Motif

COOL:Gen Workstation Target SystemCOOL:Gen Workstation Target System

TandemWin32

Win32

VMS
UNIX

Tandem

MVS

VM

TandemWin32

Win32

VMS
UNIX

Tandem

MVS

VM

Applications are developed as models on a COOL:Gen workstation using the
COOL:Gen toolset. Once constructed, the models are transferred to a target
system for execution. During target system implementation, a model is
generated on the development platform and processed into special files called
local (*.ICM) or remote (*.RMT) files. These files contain source code, data
definition language (DDL), and special control information that together allow
the model to be installed on the target system within a COOL:Gen environment
as a complete executable application. When the Construction Workstation is also
the Target System, the component source files are generated along with an Install
Control Module (ICM) file for local build. A local installation of an application
automatically invokes the Build Tool, which was set up during workstation
installation, whereas a remote installation packages the components as remote
files for later builds, usually for a remote site.

These components define the organization and contents of the application and
make it possible for COOL:Gen to identify and process the application on the
target system. The application can then be tested and run on the execution
platform. Most applications are comprised of three file types: one for the
database information, one for the Referential Integrity (RI) triggers, and one or
more executable load modules.

1–6 Windowed Environments IT User’s Guide

Implementing a Target System

When an application needs to be modified, changes are made to the original
model on the development platform. The changes are then regenerated into local
or remote files and moved back to the target system. In this manner,
enhancements and modifications are made to implemented systems without
having to work directly with the generated code.

Database Management System

Languages

Build Tool

Remote Files
Transfer the

Remote Files
to the
Target
System

COOL:Gen
Toolsets

Source Code

COOL:Gen Workstation Target System

Remote
Files

Target
Configuration

Target
Configuration

Database Management System

Languages

Build Tool

Remote Files
Transfer the

Remote Files
to the
Target
System

COOL:Gen
Toolsets

Source Code

COOL:Gen Workstation Target System

Remote
Files

Target
Configuration

Target
Configuration

Target Specifics

So far, we have assumed that to implement a target system, the development
platform and execution platform are two separate and distinct machines.
However, in Win32 environments, they can also be the same platform. With this
arrangement, the step of transferring files from one platform to another is
eliminated. This step is also eliminated if shared local area network (LAN)
services are used.

Another scenario is the Client/Server Encyclopedia, which can also generate
remote files. These remote files must then be built on the target platform into a
working application.

Note: See the COOL:Gen Workstation Construction User Guide for information
about generating and using External Action Block Stubs.

Implementation Toolset 1–7

Chapter

2 Using the Build Tool

The central component of the Implementation Toolset is the Build Tool. Use it to
compile, link, and test COOL:Gen-generated applications.

Build Tool Window
When you invoke the Build Tool, the Build Tool window appears. This menu is
used to execute each of the Implementation Toolset tasks.

The following describe each of the window’s fields.

Note: A sample remote file is included with the Build Tool to let you test the
configuration of the workstation and to let you familiarize yourself with the user
interface.

Using the Build Tool 2–1

Build Tool Window

Search Directory Field

The Search Directory field lets you find and identify local or remote files in a
specified drive and directory. This field contains the name of the directory to be
searched when locating the file types defined by the File Search field.

Although the Search Directory field defaults to the name of the current working
directory when the Build Tool is invoked, it can be changed to search any valid
path. There is a practical limit of 150 modules, so it is best to reference specific
model directories when possible.

Use the following procedures to change the default directory:

Establishing the Default Search Directory for Win32 Systems

1. Open the COOL:Gen icon properties.

2. At the end of the Command Line field of the Program Item Properties
window, enter a space and then add the path to the Search directory you
want. For example:

 C:\COOL\GEN\WINIT.EXE C:\COOL\GEN\REMOTE

3. Click OK.

Two warnings display if you entered the name of an invalid or non-existent
directory. The first warning tells you that the directory does not exist and the
second tells you to correct the search input. Click OK to close the warning dialog
boxes and correct the entry field.

If the default directory entry in the Search Directory field is the directory where
the files are located, then you do not have to make changes to this field.

If a directory other than the one shown in the Search Directory field contains the
files, then enter the name of the directory into the field.

Search all Subdirectories Check Box

The Search All Subdirectories check box determines whether all the
subdirectories of the path defined by the Search Directory field are searched. The
default status for this check box is active (checked). Click once on the check box
to change its status to inactive (unchecked).

2–2 Windowed Environments IT User’s Guide

Build Tool Window

Modules List Box

The Modules list box displays the list of local or remote files and their
corresponding modules that have been retrieved as a result of the search.

Each non-indented text line in the Modules List Box is the Model Header and
contains the 32-character model name, the database name, and the directory in
which the files reside.

The indented text lines immediately following the model header each represent a
separate module that is associated with the parent model. These descriptions
begin with the module’s 8-character name, followed by its 2-character install
control module (ICM) type designation. Next is the module’s database
management system (DBMS), generator language, and the targeted transaction
processing monitor (TP Monitor). The final entry on the line is an informational
message describing the status of that particular module. Summaries for some of
the modules which could be found in the list are defined in the following table.

Category Item Designation Description

Module The 8-character name of the
module as it appears in the ICM.

Details ICM Type DB The DBMS-specific Database
Definition Language (DDL) ICM.
This module is not generator
language or TP Monitor-specific
and is typically processed first.

 RI This is the Cascade (Referential
Integrity) Library ICM. This
module type is not TP
Monitor-specific but is typically
dependent on a DB module. This
module is processed after its DB
module is installed.

 LM This is the Load Module
(COOL:Gen-packaged executable)
with one or more transaction
codes. This module contains
specific references to all four
details and depends on both DB
and RI module types.

Using the Build Tool 2–3

Build Tool Window

Category Item Designation Description

 DBMS IFX

ODB

ORA

SYB

MSS

Informix

ODBC Database

Oracle

Sybase

Microsoft SQL

 Generator
Language

C

COB

C

Cobol

 TP Monitor WIN

AEF

Windows GUI

Block Mode

Summary The information displayed in this
area is used to convey the status
of a module to help cue the user
for a particular operation. This
information changes dynamically,
depending on the process being
currently performed on the
module.

2–4 Windowed Environments IT User’s Guide

Build Tool Window

Double-clicking on a single load module description line opens the Module
Details window. A sample Load Module Details window is shown following.
This window summarizes various information about the selected load module.
After inspecting the details text, you can proceed to build the module by clicking
Build or you can close the window by clicking Cancel.

B uild Cancel

Directory: C:\COOL\WMODELS
Filename: YEAR.RMT

Module name: YEAR-LONG CALENDAR
Database name: COOLDB
Module:

Name: YEAR
Type: LM
Status: Load Module ready for Test.

Target
Operating System: DOS
DBMS: ORACLE
Language: ‘C’
TP Monitor: WINDOWS
Codepage: 437

B uild Cancel

Directory: C:\COOL\WMODELS
Filename: YEAR.RMT

Module name: YEAR-LONG CALENDAR
Database name: COOLDB
Module:

Name: YEAR
Type: LM
Status: Load Module ready for Test.

Target
Operating System: DOS
DBMS: ORACLE
Language: ‘C’
TP Monitor: WINDOWS
Codepage: 437

Each line in the Modules list box can be individually selected or unselected for
building or testing. However, if you single-click on a model header, all of the
modules associated with that header are automatically selected (highlighted).
Similarly, if you single-click the model header again (while all the modules are
highlighted), each of the corresponding load modules are automatically
unselected (unhighlighted). If all modules are selected, the Build Tool
automatically builds them in the correct order, DB, followed by RI, then LM.

Message Area

Various informational and instructional messages display in this area,
depending on the tasks being performed with the Build Tool. The purpose of
these messages is to aid you in the execution of these tasks and to direct you to
additional options (that is, Online Help).

Build Tool Task Buttons

You use five buttons to execute Build Tool tasks. When you invoke the Build
Tool and the Build Tool window appears, each of the buttons appears in an
active or inactive (grayed out) state. The state of these buttons changes to reflect
their current availability after the validation of an operation, depending on the
selections you made in the Modules list box.

Using the Build Tool 2–5

Build Tool Window

Search Button

This button initiates a search for local or remote files to add to the Modules list
box. The criteria used to search for local and remote files is determined by the
entries made in both the Search Directory and File Search fields. See the Build
Tool Window section in this guide for more information about these fields.

A certification of the candidate modules will also prevent modules not intended
for the Build Tool’s operating system from displaying in the Modules list box.

Build Button

This button builds the modules that are highlighted in the Modules list box; their
files are split, their scripts interpreted, and a separate session is launched for
each module to complete the build. This button is active only when one or more
modules are highlighted in the Modules list box.

Review Button

This button launches the default text editor to display a text file summary of the
build for the highlighted module. The results of the compile, precompile, and
link steps can be viewed in the scrollable text window. If multiple modules were
selected for review, then a separate default text editor session is launched for
each module. For Win32, these files can be edited and saved for future reference.

If a module that has not yet been built is highlighted in the Modules list box,
then clicking this button returns the message:
Module to Review has not been built.

Text editor sessions remain open until they are minimized or closed.

This button is active only when one or more load modules are highlighted in the
Modules list box.

2–6 Windowed Environments IT User’s Guide

Build Tool Window

Test Button

This button opens the Load Module Test window. This window contains a
Trancode (Transaction Code) list box, Trace Option selections, and a Clear Screen
Input entry field.

This button can only be used when a load module is highlighted in the Modules
list box.

Trancode List Box—The Trancode list box contains the module’s list of all
available trancodes, although only one can be selected at a time.

Trace Option—Selecting Enabled lets you trace the logic of an application while
it is being tested. The default state for this option is Disabled. This option is
available only if the generator option enabling Trace was set.

Clear Screen Input—This field is used to enter COOL:Gen Clear Screen Input
options such as RESTART or RESET.

Remove Button

This button removes the highlighted modules from the list without actually
deleting the physical files from the system disk. You can choose to Remove files
to shorten a long display or to dispense with files that are no longer needed for
build, review, or test. This button is activated only when one or more load
modules are highlighted in the Modules list box.

To redisplay removed files, define the search parameters for the removed files in
the Search Directory and File Search fields and click Search. The Modules list
box will be refreshed and all modules removed during this Build Tool session
are redisplayed.

File Menu Options

The File menu contains two options: Setup and Exit.

Setup Option

Setup opens a default text editor window, from which you can review the
contents of the WIN32ITM.TGT (Win32) file to ensure that your system is
correctly set up.

Read through the appropriate file for your system and verify that your system
reflects what is actually shown in the file.

Using the Build Tool 2–7

Build Tool Window

The following is a sample WIN32ITM.TGT file:
; Windows NT/Windows 9X Build Tool - Default target file: WIN32ITM.TGT
; Last Revised: MM/DD/YY ver. X.X
; © Computer Associates International
; This Build Tool setup file provides settings to tailor application
; builds to your specifications in the form of “tokens”.
;
; Any defined “token” record (eg: OPT.DSUSER) can be edited to use
; a customer-supplied “value” (eg: USERID) by editing the value at the end.
; To uncomment a token, delete the ; character preceding a “token” record.
; (Note: For your reference, the first “token” record below is OPT.DSUSER).
;**************[REQUIRED USER-SPECIFIC IMPLEMENTATION TOKENS]**************
; ===============(DBMS-dependent DDL/Bindfile Generation)==================
;--
; Environment variables DSUSER and DSPSWD override the following token pair.
; DBMS username and password are configurable per Database.
;
; Oracle Example:
; Replace the values to match a user/password which has been DBA granted
; (eg: DBA commands: GRANT CONNECT,RESOURCE TO user IDENTIFIED BY password;
; GRANT CREATE TABLESPACE TO user;
; GRANT DROP TABLESPACE TO user;
;--
; OPT.DSUSER USERID
; OPT.DSPSWD PASSWORD
;--
; Use the native DBMS utilities to create a server, database, or alias.
; Enter the name in the OPT.DBCONNECT token. If DBCONNECT is not entered
; or is left commented out, the database name stored in the model will
; be used instead.
; Optionally, if DBCONNECT is set to LOCAL, no database name will be used.
; In this case, it is expected that the users local environment is set up
; with a default location to connect to. The method of indicating a
; default location varies by DBMS.
;--
; OPT.DBCONNECT LOCAL
;*********************[OPTIONAL ADVANCED SETTINGS]*************************
;**
;**
;**
;** Most setups will not require modification of Advanced Settings.
;** Standard defaults will be overridden when tokens in this category are
;** changed. Caution is advised to prevent any unexpected side-effects.
;**
;** The following list summarizes the Advanced Settings available:
;** - External library: specify a fully-qualified external library filename
;** - Oracle: enable full syntax checking during precompile
;** - MS SQL Server database: create an access module (stored procedure)
;** GUI Application settings
;** - Bitmaps: specify the directory for application *.BMP file resources
;** - rebuild DBMS stub: DBMS version upgrade of libs may require new stub
;** - DLL: build application DLL so action blocks are in a separate DLL
;**
;**

2–8 Windowed Environments IT User’s Guide

Build Tool Window

;--
; The following option specifies the fully qualified external library.
; Remove the comment below to specify the external library if appropriate.
;--
; LOC.EXTERNAL_LIB C:\USER\EXTRNC.LIB
; ===============(GUI Applications Advanced Settings)======================
;--
; An IEF_BITMAP environment variable will provide the bitmap directory.
; If there is no IEF_BITMAP environment variable, the following token,
; OPT.IEF_BITMAP, is used. If OPT.IEF_BITMAP is not enabled (by default),
; then ..\BITMAP subdirectory existence is checked for use as the IEF_BITMAP
; environment variable; otherwise, the module's source directory is used.
;
; Remove the comment from an example below to enable OPT.IEF_BITMAP directory
; Below, in Ex. one, all bitmaps are found in a user-specified directory
; (eg: this may be desirable if bitmaps are shared across network drives).
; In Ex. 2, all local and remote bitmaps are defined to always be processed
; in the source directory (where the module's ICM or RMT file(s) resides.
;--
; OPT.IEF_BITMAP z:\model\win\bitmaps
; OPT.IEF_BITMAP .
;--
; NOTE: GUI applications require DBMS specific startup files (stubs).
; The following begin token definitions for each target DBMS specific
; stub as well as token definitions for how the stub is handled
; during the build process.
; Below is the token definition for building any stub. If OPT.BUILD_SRC is
; set to YES, the build process will copy the DBMS specific stub source to the
; build directory and precompile, compile, and link the stub during the build
; process. Otherwise, the DBMS specific stub executable will be copied into
; the build directory and renamed to {Loadmodule}.EXE. If this option is set
; to yes, the generated window manager resource file is also bound with the
; {Loadmodule}.EXE to provide the executable with the application icons.
; Valid values are [YES | NO].
;--
; OPT.BUILD_SRC NO
;--
; Below is the token definition for build separate Action Block DLLs. If
; OPT.BUILD_AB is set to YES, the build process will separate all action blocks
; from the {LoadModule}.DLL and create a A_{LoadModule}.DLL that is linked
; to the {LoadModule}.DLL. If size of a DLL is at issue, this option can be
; set to YES to reduce the size of the Load Module. Valid values [YES | NO]
;--
; OPT.BUILD_AB NO
;--
; Below is the token definition for building help project files for the
; application's help. If OPT.HELPCOMPILER is set to HCRTF, then the MSDEV 6.x
; help compiler is selected. If OPT.HELPCOMPILER is set to HCW, then MSDEV 4.x
; help compiler is selected. If OPT.HELPCOMPILER is set to HC31 then MSVC 1.5
; help compiler is selected. If the MSVC 1.5 product is not installed copy
; hc31.exe from the MSVC 1.5 cd-rom, directory msvc/bin to a directory in your
; path. The MSDEV 4.x help compiler will fail to compile generated help for
; some GUI applications; the MSVC 1.5 help compiler successfully compiles these
; files. If this token is commented out, then there will be no help compilation.-
; Valid values [HCRTF | HCW | HC31]
;--
; MSVC 6.0
; OPT.HELPCOMPILER HCRTF
; MSVC 4.0
; OPT.HELPCOMPILER HCW
; or
; OPT.HELPCOMPILER HC31
; ===============(DBMS-dependent DDL/Bindfile Generation)==================

Using the Build Tool 2–9

Build Tool Window

;--
; Oracle supports full syntax checking during the precompile cycle. This
; requires DDL to be generated against the DBMS prior to the build cycle and
; connection to the DBMS be available during the build cycle. If full syntax
; checking is desired, the OPT.SQLACCESS token definition should be set to
; YES, the OPT.DBCONNECT token definition above should describe the correct
; connect string, and the OPT.DSUSER and OPT.DSPSWD token definitions above
; should be set to the correct userid/password needs to syntax check against
; the DBMS. If full syntax checking is not desired (Default) then the
; OPT.SQLACCESS token definition should be set to NO.
; Valid values are [YES | NO]
;--
; OPT.SQLACCESS NO
;--
; To create an access module (stored procedure) on a MS SQL Server database,
; uncomment the OPT.SQLACCESS option line above. To specify a non-local
; server, set the OPT.DBCONNECT option line to a server name.
; In addition, to create a bind file, uncomment the OPT.BIND option line.
;--
; OPT.BIND Y
;--
; To force the Build Tool to build GUI applications as if it contains
; embedded SQL even tough the generated code does not, uncomment this token
; and set the value to YES. Valid values are [YES | NO]
;--
; OPT.HAS_SQL NO
;***********[DEFAULT MIDDLEWARE-DEPENDENT IMPLEMENTATION TOKENS]***********
;
;-=-=-=-=-=-=-=-=- MQSeries target Middleware -==--=--=-=-=-=-=-=-=-=-=-=-=-=
;--
; default LIB path for linking
;--
; LOC.MQSLIB C:\MQM\TOOLS\LIB
;-=-=-=-=-=-=-=-=- DCE target Middleware -==--=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-
;--
; Default DCE implementation
; Supported values are IBM and GRADIENT
;--
; LOC.DCEPROD GRADIENT
;***************[DEFAULT DBMS-DEPENDENT IMPLEMENTATION TOKENS]*************
; ==========================(DBMS Settings)================================
; NOTE: Each DBMS has specific token definitions. If a particular DBMS is
; not used, the token definitions for that DBMS do not need to be set
; or removed. For example, if Oracle is the only target DBMS that will
; be used for generation, there is no reason to set token definitions
; for any other DBMS; removal of these unused tokens is not necessary.
;=-=-=-=-=-=-=-=-=-=-=-=- MS SQL Server target DBMS -=-=-=-=-==--=--=-=-=-=-=
;--
; libraries used in the link process
;--
; LOC.NTS95DBLIB SQLAKW32.LIB
; LOC.NTS95SQLLIB CAW32.LIB
;--
; precompiler program
;--
; LOC.NTS95PCC NSQLPREP.EXE
;=-=-=-=-=-=-=-=-=-=-=-=-=-=- Oracle target DBMS -=-=-=-=-=-==--=--=-=-=-=-=-
;--
; Oracle version control for WIN95/98
; Oracle 8.1.5 is assumed for COOL:Gen 6.0.
; Oracle 8.0.X is assumed for COOL:Gen 5.1.

2–10 Windowed Environments IT User’s Guide

Build Tool Window

;--
; libraries used in the link process
;--
; LOC.NTORADBLIB ORASQL8.LIB
; LOC.NTORADBLIB SQLLIB80.LIB ; Oracle 8
; LOC.NTORASQLLIB
;--
; precompiler program
;--
; LOC.NTORAPCC PROC.EXE
; LOC.NTORAPCC PROC80.EXE ; Oracle 8
;--
; default INCLUDE path for compiling
;--
; LOC.NTORAINCLUDE C:\ORACLE\ORA81\PRECOMP\PUBLIC
; LOC.NTORAINCLUDE C:\ORANT\PRO80\C ; Oracle 8
;--
; default LIB path for linking
;--
; LOC.NTORALIB C:\ORACLE\ORA81\PRECOMP\LIB\MSVC
; LOC.NTORALIB C:\ORANT\PRO80\LIB\MSVC ; Oracle 8
;--
; IRECLEN and ORECLEN options for precompiling
;--
; OPT.IRECLEN 255
; OPT.ORECLEN 255
;=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- XDB target DBMS -=-=-=-=-=-==--=--=-=-=-=-=
;--
; libraries used in the link process
;--
; LOC.NTXDBDBLIB PREC32N.LIB
; LOC.NTXDBSQLLIB
;--
; precompiler name
;--
; LOC.NTXDBPCC PRECOMP.EXE
;
;=-=-=-=-=-=-=-=-=-=-=-=-=-=- INFORMIX target DBMS -=-=-=-=-=-==--=--=-=-=-=-
;--
; libraries used in the link process
;--
; LOC.NTINFDBLIB ISQLT09A.LIB
; LOC.NTINFSQLLIB
;--
; precompiler name
;--
; LOC.NTINFPCC ESQL.EXE
;=-=-=-=-=-=-=-=-=-=-=-=- SYBASE target DBMS -=-=-=-==--=--=-=-=-=-=-=-=-=-=-
;--
; libraries used in the link process
;--
; LOC.NTSYBDBLIB LIBCT.LIB
; LOC.NTSYBSQLLIB LIBCS.LIB
;--
; precompiler program
;--
; LOC.NTSYBPCC CPRE.EXE
;--
; default INCLUDE path for compiling
;--
; LOC.NTSYBINCLUDE C:\SYBASE\OCS-12_0\INCLUDE
;--
; default LIB path for linking
;--
; LOC.NTSYBLIB C:\SYBASE\OCS0-12_0\LIB

Using the Build Tool 2–11

Build Tool Window

;=-=-=-=-=-=-=-=-=-=-=-=- DB2/2 target DBMS -=-=-=-==--=--=-=-=-=-=-=-=-=-=-=
;--
; libraries used in the link process
;--
; LOC.NTDB2DBLIB DB2API.LIB
; LOC.NTDB2SQLLIB
;--
; precompiler program
;--
; LOC.NTDB2PCC TIDB2PRP.EXE
;--
; default INCLUDE path for compiling
;--
; LOC.NTDB2INCLUDE C:\SQLLIB\INCLUDE
;--
; default LIB path for linking
;--
; LOC.NTDB2LIB C:\SQLLIB\LIB
;=-=-=-=-=-=-=-=-=-=-=-=- ODBC target DBMS -=-=-=-==--=--=-=-=-=-=-=-=-=-=-=-
;--
; libraries used in the link process
;--
; LOC.NTODBCDBLIB ODBC32.LIB
; LOC.NTODBCSQLLIB TIODBC.LIB
;--
; default INCLUDE path for compiling
;--
; LOC.NTODBCINCLUDE
;--
; default LIB path for linking
;--
; LOC.NTODBCLIB
;--
; Block mode load modules running in aefad/aefcn
; To build a block mode load module in a format which
; allows it to be invoked via aefad/aefcn, uncomment
; the OPT.TE token set to AEFAD.
;--
; OPT.TE AEFAD
;*****************************[CBD OPTIONS]********************************
;--
; For component consumption, uncomment the following
; token and set it to the name of a text file
; which lists component LIBS to use at link time.
;--
; OPT.CBDLIST
;*****************************[PROXY OPTIONS]******************************
;=-=-=-=-=-=-=-=-=-=-=-=- Java Proxy -=-=-=-==--=--=-=-=-=-=-=-=-=-=-=-=-=-=-
;--
; Normally, the generated jar files for the Java proxy contain
; the COOL:Gen runtime within them. To have the jar files
; built with only the generated code, uncomment the following
; token and set its value to NO. Valid values are [YES | NO]
;--
; OPT.JARRUNTIME YES
;--
; By default, COOL:Gen will build the appropriate jar files
; for the Abean and Applet/Servlet combinations. To only build
; a specific one, uncomment out the undesired one and set its
; value to NO. Valid values are [YES | NO]

2–12 Windowed Environments IT User’s Guide

Processing Local or Remote Files

;--
; OPT.BUILDABEAN YES
; OPT.BUILDSERVLET YES
;--
; When building the Applet/Servlet combination of the Java
; proxy, the location of the javax.servlet.* classes must be
; specified. The actual classes may be provided from a variety
; 3rd party vendors. You may specify a directory or a jar file
; where the classes are located. Uncomment the following
; token and set its value to the location of the class files.
;--
; LOC.SERVLETCLASSES
;--
; When building an eBusiness application, you can set the following
; LOC tokens to indicate the location where you want
; particular files to be copied when a successful build has
; occurred.
;--
; Local web server directory to which the DLL will be copied.
; This directory is from the perspective of the web server machine.
; LOC.LOCAL_DLLDIR
;
; Web server directory to which the DLL will be copied.
; This directory is from the perspective of the build machine.
; LOC.DLLDIR
;
; Web server directory to which the contents of the html directory will be
; copied.
; This directory is from the perspective of the build machine.
; LOC.WEBSRVRDOC
;
; Web server directory to which the generated .class files will be copied.
; This directory is from the perspective of the build machine.
; LOC.SERVLETDIR
;
; END OF WIN32ITM.TGT

Exit Option

This option is used to exit the Build Tool.

If you select Exit while a module is being built, the build is allowed to complete,
though the Build Tool is immediately exited.

Processing Local or Remote Files
To create an executable application from the local or remote files transferred
from the development platform, use the following procedure:

1. Invoke the Build Tool.

2. If necessary, change the Search path and type of file to find (.ICM or .RMT)
then click the Search button to display the modules you want to process.

Using the Build Tool 2–13

Testing an Application

3. Select the Model Header in the Modules List Box that represents the
application you want to build.

 All the load modules corresponding to the selected model are highlighted.

Note: If there are any graphics files that accompany the application, move
them with the .RMT files.

4. Click Build. The modules are built sequentially.

 A session with the title “Application Install” is automatically launched to
provide a dynamic display of the build process. Check the session display
for possible errors before closing the session.

 The Summary section of the load module description in the Modules List
Box changes to Review results when Build is done.

5. Click Review after the build process is completed.

 A separate text editor session is launched that corresponds to each module
that has been built. These windows contain text files that represent the
detailed results of the various build steps (compile, precompile, and link)
that have been performed on the load modules. Review each file to discern
the success or failure of a particular build.

 If any errors are detected during build, they are described in these files.
Error statements are preceded by multiple asterisks (***).

6. Close each text editor or Browse session after reviewing it for possible errors.

7. Test the application.

Testing an Application
To test a successfully built application, use the following procedure.

1. Unselect all highlighted modules.

2. Highlight a single load module to be tested.

3. Click Test. The Load Module Test window is displayed.

4. Enter any Clear Screen inputs required for your application.

5. Highlight a single trancode and click OK.

2–14 Windowed Environments IT User’s Guide

Appendix

A Customizing Scripts

Scripts are tokenized command procedures that contain all the specific
commands necessary to perform the compile and link steps for a module.

Note: Editing scripts is not generally recommended. COOL:Gen-provided
scripts are tested for supported targets and should be sufficient for general use.
However, we recognize that specific user needs can vary and newer target
versions might require that existing scripts be modified. In this case, any changes
to a script should be made only by a system administrator who is familiar with
any possible downstream effects which might occur as a result of making the
changes.

During the build of a module, the Build Tool interprets the script and replaces
the tokens with information about the local or remote file from the setup
information and produces a complete command procedure. The Build Tool then
submits the command procedure for execution.

Tokens are generic placeholders that are used for substitution in a script. When a
script is being interpreted, each token is resolved to its representative value so
that the resulting command procedure is specific to a module and its set-up
environment.

The information that appears as tokens in a script include:

■ Information about the elements of the module itself. This information is
taken from the Install Control Module (ICM) portion of the file.

■ Locations and target configuration information defined previously using the
Build Tool.

■ Environment (ENV) and Option (OPT) tokens. Environment tokens come
from the script definition. Option tokens are user-defined in the
WIN32ITM.TGT (Windows NT) or in the build startup command file
WIN32BLD.BAT (Windows NT).

When the script is processed, unresolved tokens are resolved as a NULL value.

Note: Structures of tokens within tokens are not supported.

Customizing Scripts A–1

Locating Scripts

Locating Scripts
The Build Tool contains a set of valid basic scripts for a specific operating
environment. You can load them as they are or customize them for a particular
application.

Script Naming Convention

COOL:Gen script files are specific to the target system hardware, operating
system, DBMS, and computer language being used. The hardware, operating
system, DBMS, language, and type of each script file is coded into the name of
the scripts according to the following convention:

Example of Script Naming

Consider the following as a sample script name: intdbltt

intdb—Identifies scripts for Windows NT environments.

l—Identifies the language. The following languages are available:

■ c—C language

■ j—Java language

tt—Identifies the type of script. The following script types are available:

■ jp—Java Proxy

■ db—Database DDL

■ lm—Load Module

■ ri—Referential Integrity Triggers

■ cp—Com Proxy

Script File Name (.SCR) Language Type

intdbccp C Com Proxy

intdbcdb C Database DDL

intdbcjp C Java Proxy

intdbclm C Load Module

intdbcri C RI Triggers

intdbjlm Java Load Module

intdbjri Java RI Triggers

A–2 Windowed Environments IT User’s Guide

Token Categories

Token Categories
There are three categories of information that can appear as tokens in a script.
These are shown in the following table.

Category Type of Information Prefix

Environment Parameter
Tokens

This is information that
defines the specific
compile and build
options for a specific
Target Configuration.

ENV or OPT

GML Tokens This is information about
elements of the file itself.
This is taken from the
ICM portion of the file.

LMD or LMM

Location Tokens These are the directory
locations that have been
defined previously using
the Build Tool, and other
configuration definition
information (database
name, etc.).

BUS MOD, LIB TAR,
or LOC

The following list describes the contents of each token prefix type, with token
category descriptions being presented in the sections following the table.

BUS—These are BusSys tokens. The values for these tokens are set in the ICM.

ENV—These are environment definition tokens. These tokens describe
characteristics of a specific Target Configuration. They are created from
information shown in the WIN32ITM.TGT file.

LMD—These are load module definition tokens. These tokens describe
characteristics of the contents of a load module. They come from the ICM of a
file.

LMM—These are load module member tokens. These tokens describe
characteristics of one portion of a load module (such as a procedure step or an
action block). They come from the ICM of a file.

LOC—These are location tokens. The values for these tokens are user-defined in
the WIN32ITM.TGT file, or in the build startup command WIN32BLD.BAT.

MOD—These are model tokens. The values are set in the ICM.

Customizing Scripts A–3

Token Categories

OPT—These are option tokens. The values are user-defined in the
WIN32ITM.TGT file, or in the build startup command file, WIN32BLD.BAT.

TAR—These are Target Configuration tokens. The values for these tokens are set
in the ICM.

When the script is processed, unresolved tokens are resolved as a NULL value.
Structures of tokens within tokens are not supported.

Environment Parameter Tokens

The two categories of environment parameter tokens are:

■ Environment Tokens

■ Option Tokens

Environment Tokens

Environment tokens identify the variable components of a Target Configuration
definition. These elements include the DBMS, code generation language,
teleprocessing monitor, and screen format used in one Target Configuration.
Environment tokens are identified by an ENV prefix. Environment tokens are
not used in the default scripts provided for the PC environment.

Option Tokens

Option tokens are user-defined tokens that can be used to define additional
types of locations, specify options when invoking compilers or other programs,
or provide other capabilities. Option tokens are identified by the OPT prefix.
Option tokens can be assigned specific values for a Target Configuration.

GML Tokens

Generalized Markup Language (GML) is the language used in the ICM of each
COOL:Gen-generated local or remote file. The information in the ICM defines
the contents of the database, RI trigger set, or load module local or remote file.
For database and RI trigger local or remote files, all of the components specified
in the ICM are found in the file. For a load module local or remote file, the
complete load module is defined in the ICM, regardless of the number of
components included in the file. (This is done for maintenance purposes. It lets
you change and regenerate portions of a load module without changing its
definition.)

Note: An incomplete load module ICM can result if the subset used to generate
the file does not contain all the elements for the load module.

A–4 Windowed Environments IT User’s Guide

Token Categories

Tokens in GML are represented as equate statements, which have an identifier to
the left of the equal sign and the variable data to the right of the equal sign. Not
all of the equate statements shown in an ICM are used as tokens by the script.

When the equate statements are processed into tokens, they are assigned to one
of the GML token types. The GML token types generated by COOL:Gen are:

■ BUS

■ LMD

■ LMM

■ MOD

Location Tokens

When a build command procedure is created as a part of a local or remote file
build, the location tokens are replaced with the actual locations where
COOL:Gen-generated components should be stored when the file is built.

Location tokens are typically identified by the prefix, LOC.

The default hierarchy logic in the Build Tool searches for a location at the lowest
(most specific) level first, then moves up one level at a time to more general
levels until it finds a location specification. The following is the search order for
the directory hierarchy:

1. Business System level specific category locations

2. Business System level default location

3. Model-level specific category locations

4. Model-level default location

5. Target-level specific category locations

6. Target-level default location.

This search order is transparent when you are viewing a script. It might be
necessary to use a specific location rather than resolving a token through the
location hierarchy. Special tokens are available to reference the default locations,
external action block libraries, and code libraries. These tokens are provided in
addition to the LOC tokens. There names are:

■ BUS.DEFAULT

■ BUS.EXTERNAL_LIB

■ MOD.DEFAULT

■ MOD.EXTERNAL_LIB

Customizing Scripts A–5

Token Categories

■ TAR.DEFAULT

■ TAR.EXTERNAL_LIB

All tokens are listed in the following table.

Type Name Description

BUS DEFAULT The default location that contains all components for which no
other location is specified.

BUS EXTERNAL_LIB The name of the external action block library.

BUS SOURCE The source directory on the development workstation. This value is
found in the :systems section of the ICM of each file associated with
this BusSys as source=.

BUS TECHSYS The name of the BusSys. This value is found in the :systems section
of the ICM of each file associated with this BusSys as techsys=.

LMD DATE The date when the code was generated. This value is found in the
:execdef section of the ICM of each file as date=.

LMD DATEUP The date when the Model was uploaded to the COOL:Gen central
encyclopedia. This value is found in the :source section of the ICM
of each file as dateup=.

LMD DBMS This is the DBMS this file was created for. This value is found in the
:execunit section of the ICM of each file as dbms=.

LMD DBNAME The name of the database associated with this file. This value is
assigned during code generation and is found in the :execunit
section of the ICM of each file as dbname=.

LMD EXECENV This is the execution environment (teleprocessing monitor) for this
file. This value is found in the :execunit section of the ICM of each
load module file as execenv=.

LMD FORMAT The screen format for this file. This value is found in the :execunit
section of the ICM of each load module file as format=. If the screen
format is an IBM 3270 emulator (as for the AEF), the value in this
field is BYPASS. If the screen format is a forms package native to
the target system, the value in this field is MAPPED.

LMD GEN_OS The operating system where the file was generated. The value for
this token is found in the :execdef section of the ICM of each file as
os=.

LMD LANGUAGE The compiler language used for this file. This value is found in the
:execunit section of the ICM of each file as language=.

A–6 Windowed Environments IT User’s Guide

Token Categories

Type Name Description

LMD LEVEL The levelset of the COOL:Gen Code Generation Tool used to create
the file. This value is found in the :source section of the ICM of each
file as level=.

LMD MEMBER The member name (load module name). This value is found in the
:execunit section of the ICM of each load module file as member=.

LMD MODEL The model used to create this file. This value is found in the :source
section of the ICM of each file as model=.

LMD OS The operating system for which the file was created. This value is
found in the :execunit section of the ICM of each file as os=.

LMD PROFILE The user’s profile type. This value is found in the :execunit section
of the ICM of each file as profile=.

LMD SAVED This value is found in the :source section of the ICM of each file as
saved=.

LMD SCHEMA The COOL:Gen schema level. This value is found in the :source
section of the ICM of each file as schema=.

LMD SOURCE The source directory for the components used to create the file on
the development workstation. This value is found in the :systems
section of the ICM of each file as source=.

LMD SUBSET The model subset used to create this file. This value is found in the
:source section of the ICM of each file as subset=.

LMD USER The user who created the file. The value for this token is found in
the :execdef section of the ICM of each file as user=.

LMD TECHSYS The BusSys that owns the load module. This value is found in the
first :pstep section of the ICM of each load module file as techsys=.

LMD TIME The time when the file was created. The value for this token is
found in the :execdef section of the ICM of each file as time=.

LMD TIMEUP The time when the model was uploaded to the COOL:Gen central
encyclopedia. This value is found in the :source section of the ICM
of each file as timeup=.

LMM ABTYPE The action block type. Appears only if the load module member is
an action block.

LMM CLRTRAN The clear screen transaction code. Appears only if the load module
member is a procedure step. The value for this token is found in the
:pstep definitions in the ICM as clrtran=.

Customizing Scripts A–7

Token Categories

Type Name Description

LMM CREATE Indicates whether this member can perform an SQL CREATE
statement. The value for this token is found in the :pstep, :acblk,
:entity, and :relation definitions in the ICM of load module and RI
files as create=.

LMM DELETE Indicates whether this member can perform an SQL DELETE
statement. The value for this token is found in the :pstep, :acblk,
:entity, and :relation definitions in the ICM of load module and RI
files as delete=.

LMM DLGTRAN The dialog flow transaction code. Appears only if the load module
member is a procedure step. The value for this token is found in the
:pstep definitions in the ICM as dlgtran=.

LMM MEMBER The member name (file name) for this procedure, screen, or action
block. The value for this token is found in the :pstep, :screen, :acblk,
:entity, and :relation definitions in the ICM of load module and RI
files as member=.

LMM NAME The name of the procedure, screen, or action block. The value for
this token is found in the :pstep, :screen, and :acblk definitions in
the ICM as name=.

LMM SQL Indicates whether this member has embedded SQL. The value for
this token is found in the :pstep, :acblk, :entity, and :relation
definitions in the ICM of load module and RI files as sql=.

LMM TECHSYS The BusSys where this load module member belongs. The value for
this token is found in the :pstep definitions, :screen definitions, and
:acblk definitions in the ICM as techsys=.

LMM TEST Indicates whether this procedure step or action block was created
with the diagram test capabilities. The value for this token is found
in the :pstep and :acblk definitions in the ICM as test=.

LMM TYPE Indicates the load module member’s type. The value for this token
is determined by the name of the section in the ICM. Examples of
types are :pstep, :screen, and :acblk.

LMM UPDATE Indicates whether this member can perform an SQL UPDATE
statement. The value for this token is found in the :pstep, :acblk,
:entity, and :relation definitions in the ICM of load module and RI
files as update=.

LOC CODE_EXE Identifies the location where the load modules were originally
created. This token is used only during the build process and is not
intended for use during test and execution.

A–8 Windowed Environments IT User’s Guide

Token Categories

Type Name Description

LOC CODE_LIB Identifies the location for object code for individual components in
library form. This token can occur at the Target Configuration,
Model, and BusSys levels.

LOC CODE_LIS Identifies the location for listings produced during the compile and
link process. This token can occur at the Target Configuration,
Model, and BusSys levels.

LOC CODE_OBJ Identifies the location for object code for individual components.
This token can occur at the Target Configuration, Model, and
BusSys levels.

LOC CODE_SRC Identifies the location for source code for individual components.
This token can occur at the Target Configuration, Model, and
BusSys levels.

LOC DDL Identifies the location for the DDL used to create the database. This
token can occur at the Target Configuration and Model levels.

LOC DEFAULT Identifies the default location that contains all components for
which no other location is specified. This mandatory token occurs at
the Target Configuration, Model, and BusSys levels.

LOC ICM Identifies the location for the ICM files for installed files. This token
can occur at the Target Configuration, Model, and BusSys levels.

LOC MAKE_OUTPUT Identifies the location for the output file produced when the
command procedure is run for a file. This token can occur at the
Target Configuration, Model, and BusSys levels.

LOC MAKE_PROC Identifies the location for the command procedures produced by
interpreting the script for each file that is installed. This token can
occur at the Target Configuration, Model, and BusSys levels.

LOC MAKE_STATUS Identifies the location for the status file produced when the
command procedure is run for a file. This token can occur at the
Target Configuration, Model, and BusSys levels.

LOC RI_TRIG_LIB Identifies the location for the RI trigger routines in library form.
This token can occur at the Target Configuration and Model levels.

LOC RI_TRIG_LIS Identifies the location for compiler listings produced when
installing RI trigger routines. This token can occur at the Target
Configuration and Model levels.

LOC RI_TRIG_OBJ Identifies the location for RI trigger routines in object form. This
token can occur at the Target Configuration and Model levels.

LOC RI_TRIG_SRC Identifies the location for RI trigger routines in source form. This
token can occur at the Target Configuration and Model levels.

Customizing Scripts A–9

Customizing Scripts

Type Name Description

MOD DBNAME For Oracle, this token contains the authorization ID used to create
the database. For Ingres, this is the name of the database to create.

MOD DEFAULT Identifies the default location that contains all components for
which no other location is specified.

MOD EXTERNAL_LIB The fully-qualified name of the archive library of external action
blocks.

TAR DBNAME For Oracle, this token contains the authorization ID used to create
the database. For Ingres, this is the name of the database to create.

TAR DEFAULT Identifies the default location that contains all components for
which no other location is specified. At the Target Configuration
level, this location token is mandatory.

TAR EXTERNAL_LIB The fully-qualified name of the archive library of external action
blocks.

Token Delimiters

Token delimiters are detailed in the following table. Note that an additional
category of tokens can be added to scripts to provide additional capabilities not
available using standard tokens.

Description Start End

Script Token Delimiter { }

Script Comment Delimiter {* *}

Script Directive Delimiter {[

Script Carriage Return Suppression {-}]}

Customizing Scripts
COOL:Gen scripts can be modified using any standard ascii text editor to fulfill
the requirements of a particular target system. Modifications can include
changes to directory locations, such as those used by the DBMS precompiler and
the addition of new option tokens.

A–10 Windowed Environments IT User’s Guide

Customizing Scripts

Note: Editing scripts is not generally recommended. COOL:Gen-provided
scripts are tested for supported targets and should be sufficient for general use.
However, specific user needs can vary or newer target versions can require that
existing scripts be modified. In this case, any changes to a script should only be
made by a system administrator who is familiar with any possible downstream
effects that might occur as a result of making the changes.

Script Delimiters

You can specify the delimiters to be used for each type of delimited string that
appears in a script. This must be done before the first OPENFILE script directive.
Delimiters are specified when a script is loaded and are shown on the screen
when the script displays. The default values for the token delimiters are shown
in the Default Script Delimiters table. Use the extra space in the table to record
the delimiters for your target system if they differ from those shown by the table.

Script Directives
A number of different script directives are used to control the activity within a
script. Some allow use of a looping structure to perform an action on every
occurrence of a specified type while others let you create a module token or
control the flow of logic from a compare operation. The following script
directives are supported in this release:
■ DEFINE ■ ELSE_IF

■ ENDIF ■ FOREACH...ENDFOR

■ IF_EITHER_EXISTS ■ IF_EQUAL

■ IF_EXISTS ■ IF_NOT_EQUAL

■ INCLUDE ■ OPENFILE...CLOSEFILE

Note: It is important to make sure that the script will still work properly if the
option token values are not found and tokens are resolved to nulls.

Customizing Scripts A–11

Appendix

B Working with User Exits

Note: The Implementation Toolset must be installed on your target system
before User Exits can be modified. The installation process copies the User Exits
onto your target system and stores them in the COOL\GEN directory. For
information about installation, see the Installing COOL:Gen guide. Modifying
User Exits is an optional task.

COOL:Gen supports certain system functions, such as retrieving a user ID,
which can vary in implementation from target system to target system because
of the combination of hardware and software being used in the configuration of
that target system.

User exits are standard routines which allow all COOL:Gen-generated
applications to access these system features. User exit routines reside on the
target system and can thus be accessed by each COOL:Gen application without
actually being coded as part of it. These routines can be used as they are to
supply basic functionality, or they can be customized to the needs of your
particular target system.

All User Exits are provided in both source and object format and loaded onto the
target system when the Implementation Toolset is installed. The object-format
User Exits are ready to be linked into applications as they are compiled and can
be used without change. The source code is provided in all supported languages,
depending on your target environment, so you can modify User Exits to meet
your site’s requirements. When the modifications are completed, compile the
modified exit, make a backup copy of the existing exit library, then overwrite the
existing version with your new one. All applications that use the recompiled exit
will have to be relinked before the change becomes effective.

There are two sets of User Exits: those for GUI applications and those for Block
Mode applications. The GUI User Exits are provided as part of the GUI runtime
installation, while the Block Mode User Exits are provided as part of the
Implementation Toolset installation. The source code for all of the GUI User
Exits can be found in wrexitn.c, while the Block Mode User Exits can be found in
individual tir*.c source files. Batch files are provided to assist in building the
User Exit DLL for each particular runtime environment which are discussed in
the following sections.

Working with User Exits B–1

User Exits Provided by COOL:Gen

User Exits Provided by COOL:Gen
COOL:Gen supplies the user exits in both source and object form. They are
written in C.

The exits are located in the same directory as the COOL:Gen software.

You can use the exits as-is for default processing, or modify them to meet site-
specific requirements.

Read the comment sections in any exit before modifying the exit. The comment
sections provide specific information about each exit.

When the modifications are complete, compile the modified exit and install the
new version. The process removes the existing version before replacing it with
the newly built version, so save a backup copy of the existing version if you need
it.

User exits also exist on MVS as part of Host Construction and on COOL:Gen
Target systems. User exits are installed when Host Construction, Workstation
Construction, or the Implementation Toolset components are installed. Although
the default user exits work in a similar manner on most platforms, user exit
processing can be customized so that it is specific to the computer on which it
runs. User exits therefore belong to a specific computer and are not uploaded or
moved to a target system with the load modules that use them. Specific
processing might be limited by the constraints of the target operating system, the
configuration of the compiler on which it runs, or the procedures of the site.

User Exits (GUI)
The following table summarizes the functions available through the User Exits
for generated GUI applications.

User Exit Description Name

Default Retry Limit Exit WRDRTL

Ultimate Retry Limit Exit WRURTL

Globalization Exit WRGLB

System ID Exit WRSYSID

User ID Exit WRUSRID

Terminal ID Exit WRTERMID

B–2 Windowed Environments IT User’s Guide

User Exits (GUI)

User Exit Description Name

Uppercase Translation Exit WRUPPR

Client Security Token User Exit WRSECTOKEN

Client/Server Encryption Exit WRSECENCRYPT

Client/Server Decryption Exit WRSECDECRYPT

Client/Server Flow Failure Exit WRSRVERROR

Preconnection User Exit WRPRECONNECT

Postconnection User Exit WRPOSTCONNECT

Predisconnection User Exit WRPREDISC

Postdisconnection User Exit WRPOSTDISC

Century Default Exit WRDEFAULTYEAR

Client/Server Asynchronous Flow
Server Failure Exit

WRASYNCSRVRERROR

GUI User Exits are rebuilt into the DLL WREvvvN.DLL using the command
procedure MKEXITSN.BAT. vvv refers to the version number. For example, 600
for release 6.00.

Preconnection User Exit (WRPRECONNECT)

Called prior to any connection to a database, typically to retrieve connection info
from a custom interface, or to perform its own connection. This function can
return values to suppress the default dialog that prompts for connection data
and/or the COOL:Gen-provided connection to a database.

Postconnection User Exit (WRPOSTCONNECT)

Called after the connection to a database. Returns no values. Use this exit to
invoke any external processes you want to perform at this time.

Predisconnection User Exit (WRPREDISC)

Called prior to any disconnect from a database, typically to perform its own
disconnect. This function can return a value to suppress the COOL:Gen provided
disconnect to a database.

Working with User Exits B–3

User Exits (GUI)

Century Default Exit (WRDEFAULTYEAR)

WRDEFAULTYEAR() is invoked when a date or timestamp field receives input
and the field's edit pattern specifies a 2-character year value. The current year
and the input year are passed to WRDEFAULTYEAR(). By default, the current
hundred year value is added to the 2-character year value and returned.

Postdisconnection User Exit (WRPOSTDISC)

Called after the disconnect from a database. Returns no values. Use this exit to
invoke any external processes you want to perform at this time.

Default Retry Limit Exit (WRDRTL)

WRDRTL is the Default Retry Limit Exit. It allows the user to override the
COOL:Gen-defined default value for the TRANSACTION RETRY LIMIT system
attribute. TRANSACTION RETRY LIMIT is initialized to this value at the
beginning of each new transaction. This value might subsequently be modified
by a SET TRANSACTION RETRY LIMIT statement in an action diagram.

TRANSACTION RETRY LIMIT is used to specify the maximum number of times
a transaction is to be retried when one of the following events occurs:

■ A RETRY TRANSACTION action diagram statement executes.

■ A deadlock or timeout occurs trying to access a database, and no WHEN
DATABASE DEADLOCK OR TIMEOUT statement was provided for that
entity action statement.

In these cases, any uncommitted database updates are rolled back, and an
attempt will then be made to execute the application again. Once the number of
retries, as indicated by the TRANSACTION RETRY COUNT system attribute,
reaches TRANSACTION RETRY LIMIT or the value specified by the Ultimate
Retry Limit Exit (see next section), no more retries can occur, and the application
fails with a runtime error if the last retry attempt was unsuccessful.

If the Default Retry Limit Exit is not used, TRANSACTION RETRY LIMIT will be
initialized to 10. If the Default Retry Limit Exit is used, it must not return a value
greater than that specified in the Ultimate Retry Limit Exit. See the following
section, Ultimate Retry Limit Exit (WRURTL) for more information.

B–4 Windowed Environments IT User’s Guide

User Exits (GUI)

Ultimate Retry Limit Exit (WRURTL)

WRURTL is the Ultimate Retry Limit Exit. It allows the user to specify a
maximum value for the TRANSACTION RETRY LIMIT system attribute. This
value can never be exceeded, either by a SET TRANSACTION RETRY LIMIT
statement in an action diagram or by the Default Retry Limit Exit.

See the preceding section, Default Retry Limit Exit (WRDRTL), for an
explanation of when and how the TRANSACTION RETRY LIMIT system
attribute is used.

Once the number of retries, as indicated by the TRANSACTION RETRY COUNT
system attribute, reaches TRANSACTION RETRY LIMIT or the value specified
by the Ultimate Retry Limit Exit, no more retries can occur, and the application
will fail with a runtime error if the last retry attempt was unsuccessful.

If the Ultimate Retry Limit Exit is not used, the maximum value of
TRANSACTION RETRY LIMIT will be 99. The Ultimate Retry Limit Exit can be
modified to return a value of zero to suppress all retry attempts for that
environment.

Globalization Exit (WRGLB)

WRGLB is the globalization exit. It supplies to the GUI runtime information such
as the numeric thousands separator character, the numeric decimal point
character, the currency symbol, the date separator character, and the date order.

The numeric characters are used when editing numeric fields for output. The
characters should correspond to the edit pattern in the model. For example, if the
edit pattern in “@ZZZ.ZZZ,99”, the WRGLB exit should specify “@” as the
currency symbol, “.” as the thousands separator, and “,” as the decimal point.

Date and time information is used only for date and time fields where the model
does not specify the edit pattern. In these cases, the GUI runtime uses this
information to build a default edit pattern using the information provided by the
WRGLB exit. For example, if the WRGLB exit specifies the date separator as “-”
(a dash) and the date order is yymmdd, then the default date edit pattern is
yy-mm-dd.

System ID Exit (WRSYSID)

WRSYSID is the COOL:Gen System ID Exit. It supplies the value for the
LOCAL_SYSTEM_ID attribute. LOCAL_SYSTEM_ID can be placed on a window
during window design. The value can be up to 8 characters in length. The
default value supplied by the default version of WRSYSID is “WIN32.”

Working with User Exits B–5

User Exits (GUI)

User ID Exit (WRUSRID)

WRUSRID is the COOL:Gen User ID Exit. It supplies the value for the USER_ID
attribute. USER_ID can be placed on a window during window design, and
referenced by statements in a PrAD. The value can be up to 8 characters in
length. The default value supplied by the default version of WRUSRID is
“<NONE>.”

Terminal ID Exit (WRTERMID)

WRTERMID is the COOL:Gen Terminal ID exit. It supplies the value for the
TERMINAL_ID attribute. TERMINAL_ID can be placed on a window during
window design, and referenced by statements in a PrAD. The value can be up to
8 characters in length. The default value supplied by the default version of
WRTERMID is “<NONE>.”

Uppercase Translation Exit (WRUPPR)

WRUPPR is the COOL:Gen Uppercase Translation Exit. This exit is called any
time the runtime needs to use uppercase in a string. The default for Windows is
to call the Windows function “AnsiUpper,” which handles uppercase characters.

Client Security Token User Exit (WRSECTOKEN)

WRSECTOKEN is provided for COOL:Gen-generated client (DPC) applications.

WRSECTOKEN is called by the GUI Runtime component after a CCB is
constructed to allow the DPC to select its security method. The Security Token
returns to the DPC one of the following codes:

■ SecurityUsed

■ SecurityNotUsed

■ SecurityError

SecurityUsed

If the Security Token return code is SecurityUsed, the GUI Runtime formats a
security offset section made up of the Client User ID and Password system
attributes, and the Security Token returned from the user exit.

The SecurityUsed flag (when parsed from the header) tells the Client Manager
and Communications Bridge applications whether to retrieve the security data
from the CCB security offset section.

B–6 Windowed Environments IT User’s Guide

User Exits (GUI)

SecurityNotUsed

If the Security Token return code is SecurityNotUsed, the security offset section
is not added to the CCB and the security offset is set to zero. The UseSecurity
field of the CCB is set to indicate the Client Manager or Communications Bridge
should not retrieve security data from the CCB.

SecurityError

If the Security Token return code is SecurityError, it is returned to the Client and
all cooperative processing is stopped.

Client/Server Encryption Exit (WRSECENCRYPT)

WRSECENCRYPT is the encryption user exit. It is provided for use with
COOL:Gen-generated client (DPC) and COOL:Gen-generated server (DPS)
applications.

The encryption user exit is called by the GUI Runtime when implemented in a
DPC application, and by the Server Manager when implemented in a DPS
application. The encryption user exit returns one of the following return codes:

■ EncryptionUsed

■ EncryptionNotUsed

■ EncryptionFailure

Encryption User Exit Client Processing

If the Security Token user exit does not return an Error, the GUI Runtime calls
the Encryption user exit. The Encryption user exit receives a pointer to the
portion of the CCB containing the view data section and the security offset
section. The Encryption user exit takes action based on the return code from the
Security Token user exit.

Note: The user must supply compatible encryption and decryption routines for
use with COOL:Gen Encryption and Decryption user exits.

Working with User Exits B–7

User Exits (GUI)

SecurityUsed Return Code

If the Security Token user exit returned a SecurityUsed return code, and the user
has implemented an encryption routine, the Encryption user exit encrypts the
sensitive data in place, replacing the plain text data in the CCB with encrypted
data. The Encryption user exit returns an EncryptionUsed return code and the
GUI Runtime sets the EncryptedFlag in the CCB header to indicate the data is
encrypted.

Encryption User Exit DPS Processing

The Server Manager calls the Encryption user exit before sending a fully
formatted CCB to a DPC or to another DPS. The Encryption user exit takes action
based on the return code from the Security Validation user exit.

SecurityNotUsed Return Code

If the Security Validation user exit returned a SecurityNotUsed return code, no
encryption takes place and the Encryption user exit returns an
EncryptionNotUsed return code. The CCB is not modified.

Security_Application_Error

If the Encryption user exit returns an error, it returns an Error Message and
default return code, EncryptionNotUsed.

Client/Server Decryption Exit (WRSECDECRYPT)

WRSECDECRYPT is the decryption user exit. It is provided for use with
COOL:Gen-generated client (DPC) and COOL:Gen-generated server (DPS)
applications. It is also supplied with default implementation in the Client
Manager and Communications Bridge applications.

The decryption user exit is called by the GUI Runtime when implemented in a
DPC application and by the Server Manager when implemented in a DPS
application. The DPC sends a fully formatted CCB to the Client Manager (CM)
and returns one of the following return codes:

■ DecryptionUsed

■ DecryptionNotUsed

■ DecryptionFailure

B–8 Windowed Environments IT User’s Guide

User Exits (GUI)

Decryption User Exit DPC Processing

The CM receives its input from a DPC through the CCB header and security
offset section. The CCB header contains a UseSecurity Flag and an Encryption
Flag. The security offset section contains the User ID and Password if provided
by the DPC. The CM determines the need for security login data by parsing out
the UseSecurity and EncryptionUsed flags from the CCB header.

UseSecurity Flag

The DPC has the option of telling the CM to use the User ID and Password
stored in the security offset section of the CCB instead of using the configured or
runtime server security parameters through the UseSecurity flag. The
UseSecurity flag is returned from the Security Token user exit in the DPC and
stored in the CCB header indicating CCB security should be used.

Encryption Flag

The DPC tells the CM that sensitive portions of the CCB header are encrypted
using the encryption flag. This flag is returned from the Encryption user exit in
the DPC and stored in the CCB header.

CM Processing

When the CM determines a user ID and password are required to service a
cooperative request, it retrieves the UseSecurity and Encryption flags from the
CCB header. If the DPC has set the UseSecurity flag to TRUE, the CM parses the
user ID and password from the CCB security offset section.

If the Encryption flag is set to TRUE, the CM calls the Decryption Exit to decrypt
the encrypted portions of the CCB. The CM then uses the user ID and password
from the decrypted portions of the CCB to perform target-server login.

UseSecurity Decryption Then

True True Call Decryption User Exit before parsing
security offset section for User ID and
Password.

True False Parse security offset section for User ID and
Password and log onto server.

False Do Not Care Get User ID and Password from Dialog

Working with User Exits B–9

User Exits (GUI)

Decryption User Exit Errors

Any errors returned from the Decryption user exit or encountered while
processing the user exit are returned to the DPC and the cooperative flow is
aborted.

Note: The user must supply compatible encryption and decryption routines for
use with COOL:Gen Encryption and Decryption user exits.

Decryption User Exit DPS Processing

When the DPS receives a CCB from a DPC, the DPS runtime parses out the CCB
header EncryptedFlag which is saved in the UA area as the encrypted flag. This
flag tells the DPS server manager that the sensitive data is encrypted.

The Server Manager calls the decryption user exit to decrypt the views of the
data and the security information in the CCB. The decryption user exit returns a
pointer to the decrypted data area, a long integer indicating the size of the
decrypted area in bytes, a failure message, and one of the following return
codes:

■ DecryptionUsed

■ DecryptionSizeExceeded
(error code)

■ DecryptionNotUsed
(error code)

A server runtime error is sent to the DPC if the decryption user exit return code
is not DecryptionUsed. DecryptionSizeExceeded and DecryptionNotUsed are
error codes.

Default Decryption User Exit Stub

If no decryption routine is implemented by the user, the default user exit stub
sets the return code to DecryptionNotUsed.

Client/Server Flow Failure Exit (WRSRVRERROR)

WRSRVRERROR is invoked when an error is detected during the processing of a
synchronous client/server dialog flow initiated through the USE statement. This
user exit allows the client to detect the error, analyze the problem and recover.
The exit can override the standard error dialog, suppress it completely, and
restart the client flow procedure. It is possible to customize the user exit to
contain specific processing rules and conditions.

B–10 Windowed Environments IT User’s Guide

User Exits (Block Mode)

Client/Server Asynchronous Flow Server Failure Exit (WRASYNCSRVERROR)

WRASYNCSRVERROR is invoked when an error is detected during the
processing of an asynchronous client/server flow. Behavior is similar to that of
WRSRVRERROR

User Exits (Block Mode)
The following table summarizes the functions available through the User Exits
for generated Block Mode applications.

Description of User Exit Name

Decrypt Exit TIRDCRYP

User Dialect Exit TIRDLCT

Default Retry Limit Exit TIRDRTL

Server Error Logging Exit TIRELOG

Help Interface Exit TIRHELP

MBCS Uppercase Translation Exit TIRUPDB

Server to Server Error Exit TIRSERRX

Message Table Exit TIRMTQB

Encrypt Exit TIRNCRYP

Customize DBMS Connection TIROCONN.PC (Oracle)
TIRCS95.SQC (MS SQL)
TIRCODBC.C (ODBC)
TIRDCONN.SQC (DB2)
TIRSCONN.Q (Sybase)
TIRXCONN.EC (Informix)

Security Interface Exit TIRSECR

Security Validation Exit TIRSECV

System ID Exit TIRSYSID

User Termination Exit TIRTERMA

Uppercase Translation Exit TIRUPPR

Ultimate Retry Limit TIRURTL

User ID Exit TIRUSRID

Working with User Exits B–11

User Exits (Block Mode)

Description of User Exit Name

National Language Translation Exit TIRXLAT

Process 2-digit date and set century TIRYYX

Block Mode User Exits are rebuilt into the DLL's AECN.DLL (command line),
AECTRNN.DLL (transaction based), AEETRNN.DLL (Encina) , AEMTRNN.DLL
(MQ Series), and AEDTRNN.DLL (DCE) using the command procedures
MKEXITS.BAT, MKXITENC.BAT, MKXITMQS.BAT, and MKXITDCE.BAT
respectively.

Decrypt Exit (TIRDCRYP)

TIRDCRYP is the Decryption Exit used with COOL:Gen generated server
applications. It is called to decrypt sensitive portions of a message as it enters the
server application. Modification of TIRDCRYP allows the user to include their
decryption algorithm. If the decryption is unsuccessful, then the failure message
can be populated with an application message of choice to present to the client.
The standard return code is DECRYPTION_NOT_USED, indicating that
decryption was not performed.

User Dialect Exit (TIRDLCT)

TIRDLCT is the User Dialect exit. It supplies the current user’s dialect to the
application. It is useful only for multilingual applications. TIRDLCT returns a
dialect value of DEFAULT. For multilingual support, the user is responsible for
modifying this module to return the appropriate dialect for a user. The dialect
returned should be defined using the Design selection on the COOL:Gen action
bar. If it is not, the default dialect for the application is used.

Default Retry Limit Exit (TIRDRTL)

The Default Retry Limit Exit lets you override the COOL:Gen-defined default
value for the TRANSACTION RETRY LIMIT system attribute. TRANSACTION
RETRY LIMIT will be initialized to this value at the beginning of each new
transaction. This value can subsequently be modified by a SET TRANSACTION
RETRY LIMIT statement in an action diagram.

B–12 Windowed Environments IT User’s Guide

User Exits (Block Mode)

TRANSACTION RETRY LIMIT is used to specify the maximum number of times
a transaction is to be retried when one of the following events occurs:

■ A RETRY TRANSACTION action diagram statement executes.

■ A deadlock or timeout occurs trying to access a database, and no WHEN
DATABASE DEADLOCK OR TIMEOUT statement was provided for that
entity action statement.

In these cases, any uncommitted database updates will be rolled back, and an
attempt will then be made to execute the application again. Once the number of
retries, as indicated by the TRANSACTION RETRY COUNT system attribute,
reaches TRANSACTION RETRY LIMIT or the value specified by the Ultimate
Retry Limit Exit (see TIRURTL), no more retries can occur, and the application
will fail with a runtime error if the last retry attempt was unsuccessful.

Default Retry Limit Exit Processing

If the Default Retry Limit Exit is not used, TRANSACTION RETRY LIMIT will
be initialized to 10 for all target environments. If the Default Retry Limit Exit is
used, it must not return a value greater than that specified in the Ultimate Retry
Limit Exit (see TIRURTL).

Customizing the Default Retry Limit Exit

Copy TIRDRTL to one of your libraries or directories, and modify the copied exit
as needed.

Server Error Logging Exit (TIRELOG)

TIRELOG is the COOL:Gen Server Error Logging Exit. It is called by the server
error handling routine before the error response is returned to the client. It is
called for COOL:Gen application-level errors (e.g., common format translation
error). Modification of TIRELOG allows the user to customize server error
logging and to create error tokens. The customized error tokens are passed to the
client. The client error handling exit might be modified to customize how the
error is handled. The default processing for TIRELOG is to return without
logging or creating an error token.

Working with User Exits B–13

User Exits (Block Mode)

Help Interface Exit (TIRHELP)

TIRHELP is the Help Interface Exit. It is called when a command of HELP or
PROMPT is entered. From TIRHELP, a help system can be invoked to provide
application help information.

The user exit handles these commands as shown in the following list.

■ HELP command issued while the cursor is not on a field:
 No help available for this screen

■ HELP command issued while the cursor is on a field:
 No help available for this field

■ PROMPT command issued while the cursor is not on an enterable field:
 Prompt is valid only for enterable fields

■ PROMPT command issued while the cursor is on an enterable field:
 No Prompt data available for this field

Code to invoke the application help system provided with COOL:Gen is
included in this module as comments. The comments can be uncommented and
used as an example of how to invoke a user-supplied help system.

(TIRUPDB)

TIRUPDB is the multibyte uppercase Translation Exit. The user can modify the
mechanism used to uppercase multibyte text.

(TIRSERRX)

TIRSERRX is invoked when an error condition happens during server to server
flows. The exit can influence the default runtime error behavior. When the
NOTPROPAGATE_ERR is returned, the calling pstep continues the execution
ignoring the fact that an error has occurred in the called pstep.

B–14 Windowed Environments IT User’s Guide

User Exits (Block Mode)

Message Table Exit (TIRMTQB)

TIRMTQB is the Runtime Error Message Table. It is used at application runtime
when a failure is encountered and an error message is to be displayed.

TIRMTQB contains a table of all runtime error messages used by the runtime
routines. The messages in this table are described in the Runtime Error Table.
The user can change the wording of these messages.

Additional tables can also be defined for messages in other dialects to support
multilingual applications. The table to be used for a given dialect is specified
using the Design selection during model development.

Runtime Error Handling

Runtime errors are handled by the Dialog Manager. Runtime errors are non-fatal
(screen edit) or fatal errors.

If a non-fatal error such as invalid user input occurs, the Dialog Manager
displays an error message on the transaction screen. You can correct the error
and continue processing the transaction.

If an application fails because of a fatal error, transaction processing is
terminated, and the error processing is as follows:

■ The Dialog Manager performs all necessary rollbacks of the database(s).

■ COOL:Gen displays an error message screen that lists the appropriate
runtime error message(s).

■ Press Enter from the error message screen. COOL:Gen AE application
terminates execution. ACMS applications will return to the screen that was
displayed just before the error occurred.

Runtime Error Table

The Runtime Error Message Table includes an entry for each runtime error
message. Each table entry includes the following information:

Message Type—Appears when a message number is not found in the table, or
when you return to a transaction screen after a fatal error or a Dialog Manager
error occurs. Valid message types are shown in the following list:

Default message—Appears when a message number is not found in the table, or
when you return to a transaction screen after a fatal error or a Dialog Manager
error occurs.

Working with User Exits B–15

User Exits (Block Mode)

Dialog Manager error—Occurs when the Dialog Manager is unable to
communicate with the system. This type of error is beyond the control of
COOL:Gen and is fatal. An error in the load module packaging or in the
configuration specifications causes a Dialog Manager error. Error handling is the
same as for a fatal error.

Fatal error—A fatal error is a COOL:Gen application abnormal program ending.
If a condition occurs at runtime that the generated code cannot handle, the
system issues a fatal error. An error message screen displays the appropriate
error message(s).

Function error—A function error occurs if a COOL:Gen-supported function
receives invalid input or produces invalid output. (COOL:Gen-supplied
functions manipulate characters, numbers, dates, and times.)

Screen edit error—A screen edit error is a non-fatal error that occurs when an
input or output value for a field does not match the expected value (range, type,
or format) defined for the field during model development. This type of message
is displayed on your transaction screen. You can correct the error and continue
with the transaction.

Unformatted input error—An unformatted input error occurs if the unformatted
input contains invalid parameters, delimiters, or both. Unformatted input is a list
of parameters associated with a clear screen transaction code.

Message Number—Each message has a unique number that is permanently
assigned by COOL:Gen.

Message Text—The message text consists of the actual words that appear on the
application screen when an error occurs. Because of the length of the message
identifier, the message text is limited to 68 characters for an 80-character screen.
The message text and any variables that can be appended are truncated if they
exceed the length of the error message line defined for the application screen.

Suffix—(If applicable). The suffix contains variable values, such as return codes,
permitted values, or the values in error.

Encrypt Exit (TIRNCRYP)

TIRNCRYP is the Encryption Exit used with COOL:Gen generated server
applications. It is called to encrypt sensitive portions of a message before it
leaves the server application. The portion of the message encrypted would be
limited to the security information section and any sensitive data, for example,
view data. Modification of TIRNCRYP allows the user to include their
encryption algorithm. If the encryption is unsuccessful, then the failure message
can be populated with an application message of choice to present to the client.
The standard return code is ENCRYPTION_NOT_USED, indicating that
encryption was not performed.

B–16 Windowed Environments IT User’s Guide

User Exits (Block Mode)

Customize DBMS Connection (TIROCONN.PC, TIRCS95.SQC, TIRCODBC.C,
TIRDCONN.SQC, TIRSCONN.CP, TIRXCONN.EC)

Each module is the user exit that lets you customize the connection to the
particular database.

Security Interface Exit (TIRSECR)

TIRSECR is the Security Interface Exit. It is used to perform transaction-level
security. The default code for TIRSECR sets the return code to spaces, indicating
no security violations.

The following data is provided by the Dialog Manager for use in checking
security authorization:

■ System ID
(as provided by the System ID Exit)

■ User ID
(as provided by the User ID Exit)

■ Trancode

■ Terminal ID

■ Load module name

■ Procedure step name

If the security check passes, TIRSECR moves a value of spaces to the return code.
If the security check fails, a non-blank value is moved to the return code with a
message describing the violation.

When the Dialog Manager receives control, it proceeds with the transaction if the
return code is spaces, or issues an error if it is not.

Security Validation Exit (TIRSECV)

TIRSECV is the security validation user exit. This user exit lets you implement
external security packages in the server environment to verify the Client User ID
and Client Password parsed from the security section of the CCB.

TIRSECV is called by the server manager if the security offset section exists in
the CCB received from the DPC. TIRSECV parses the security section to get the
Client User ID, Client Password, and Security Token sent by the DPC.

Working with User Exits B–17

User Exits (Block Mode)

TIRSECV receives as input the following parameters:

ClientUserid—Pointer to Client User ID

ClientPassword—Pointer to Client Password

PSecurityToken—Pointer to Security Token

ISecurityTokenLen—Long integer indicating the length of the Security Token

Trancode—Pointer to the Trancode

TIRSECV returns:

■ Failure Message

■ Return Code indicating

– SecurityUsed

– SecurityNotUsed

– Security_Application_Error

If the ReturnCode is not SecurityUsed, then a server runtime execution type
error buffer is sent to the client. If TIRSECV is unable to translate the security
section within the CCB, a server runtime Dialog type error buffer is sent to the
DPC. TIRSECW copies the CCB Security Token to the GURB-REST temporary
buffer and sets the pointer to this address.

Note: The user must provide a security validation routine for use with the
Security Validation Exit.

Default TIRSECV User Exit Stub

If no security verification routine is implemented by the user, the default user
exit stub sets the return code to SECURITY_NOT_USED.

System ID Exit (TIRSYSID)

TIRSYSID is the System ID Exit. It supplies the system ID to the application.
TIRSYSID calls runtime routine DEFSYSID. This routine returns a default system
ID, the value of which depends on the platform on which the system is
executing. The purpose of TIRSYSID is to implement COOL:Gen logic which lets
you implement one model on multiple platforms, and perform processing
appropriate for the platform.

B–18 Windowed Environments IT User’s Guide

User Exits (Block Mode)

User Termination Exit (TIRTERMA)

TIRTERMA is the User Termination exit. It is called when an application fails.
Modification of TIRTERMA allows the user to customize the handling of
runtime errors. The default processing for TIRTERMA returns a status code of
spaces, indicating that standard error handling should be used.

Uppercase Translation Exit (TIRUPPR)

TIRUPPR is the Uppercase Translation Exit. It contains tables used to translate
input from lower to upper case. TIRUPPR contains one table named DEFAULT
for the English character set. For other languages, this table can be expanded or
new tables can be added. The table name to be used for a given dialect is
specified using the Design selection on the COOL:Gen action bar.

Ultimate Retry Limit (TIRURTL)

The Ultimate Retry Limit Exit allows your to specify a maximum value for the
TRANSACTION RETRY LIMIT system attribute. This value can never be
exceeded, by a SET TRANSACTION RETRY LIMIT statement in an action
diagram, or by the Default Retry Limit Exit.

See the Default Retry Limit Exit (WRDRTL) section in this guide for an
explanation of when and how the TRANSACTION RETRY LIMIT system
attribute is used.

Once the number of retries, as indicated by the TRANSACTION RETRY COUNT
system attribute, reaches either TRANSACTION RETRY LIMIT or the value
specified by the Ultimate Retry Limit Exit, no more retries can occur, and the
application will fail with a runtime error if the last retry attempt was
unsuccessful.

Ultimate Retry Limit Exit Processing

If the Ultimate Retry Limit Exit is not used, the maximum value of
TRANSACTION RETRY LIMIT will be 99 for all target environments. The
Ultimate Retry Limit Exit can be modified to return a value of zero to suppress
all retry attempts for that environment.

Customizing the Ultimate Retry Limit Exit

Copy TIRURTL to one of your libraries or directories and modify as necessary.

Working with User Exits B–19

User Exits (Block Mode)

User ID Exit (TIRUSRID)

TIRUSRID is the User ID exit. It is used to supply the user’s ID to the application.
TIRUSRID calls runtime routine DEFUSRID. This routine returns a default user
ID, the value of which depends on the platform on which the system is
executing.

National Language Translation Exit (TIRXLAT)

TIRXLAT allows the conversion of textual data based on from/to codepage and
operating system information. If a suitable translation table is not found, the data
will be passed back without translation. The user can replace a translation table
to customize their environment.

Process 2-Digit Date and Set Century (TIRYYX)

TIRYYX is used to process two-digit or yy-style date input and to set the century
part using any fixed-window, sliding-window or other algorithm of choice,
when using COOL:Gen in the standard map generation mode.

Internally, COOL:Gen handles 4-digit year dates correctly assuming the user
application uses a yyyy edit pattern throughout. If the user interface is designed
to accept a two-digit date entry, and defaulting to the current century is not
acceptable, use this exit to implement logic to get the desired behavior for
defaulting the century part of the date.

Default Exit Processing

The default exit does not perform any processing. COOL:Gen defaults are
returned

Customizing the Exit

Copy the default exit from the COOL:Gen sample library to a separate library.
The member name is TIRYYX.

Modify the exit to perform the specific desired functions using the instructions in
the exit source code file.

When you have finished your modifications, install and test the exit.

B–20 Windowed Environments IT User’s Guide

Appendix

C Troubleshooting

Since troubleshooting information can vary based on your environment, this
appendix contains troubleshooting information for each Build Tool environment.

Problems and Resolutions
The following lists various problems that might occur when using the Build Tool
with Windows NT. Follow the recommendations provided in the resolutions
section of the table to recover normal operation.

Stream of Warnings

Problem A stream of warnings appears whenever a model is built.

Resolution Typically, only errors or lines preceded by multiple asterisks (*** ...) indicate a
valid problem when the results of a a build are reviewed. Watching the session
during a build might provide indications of any errors that are encountered.

Warning levels in the Review output file are enabled so that you can return to
the list in case any problems are seen when running the COOL:Gen application.

The following list contains typical warnings which can be expected at the onset
of Review. These warnings are not significant.
■ ...warning C4018:‘initializing’: signed/un-signed mismatch
■ ...warning C4035:‘x’:no return value
■ ...warning C4101:‘x’:unreferenced local variable
■ ...warning C4761: integral size mismatch in argument; conversion

 supplied
■ ...warning C4013:‘x’:undefined;assuming extern returning int
■ ...warning C4051: type conversion; possible loss of data

Troubleshooting C–1

Problems and Resolutions

If you prefer that the compiler not display warning messages, then make the
following modifications to the INTDBCRI.SCR and INTDBCLM.SCR scripts:

1. Make a backup copy of both scripts.

2. Edit both scripts to change “–W3” to “–W0”.

Error - L1093: ... object not found

Problem Reviewing an RI or LM module build reveals the following error:
L1093: .. object not found.

Resolution Perform the following steps:

1. Verify that the SQL precompiler has enough memory and that the referenced
object file exists.

2. Rebuild the module.

Failed Build that Seemed Successful

Problem You receive indications of a successful build when the build has obviously
failed.

Resolution The following are reasons why this might have occurred:

1. The batch file that performs the module build has no means by which it can
feed status information back to the Build Tool window. The generic message:
Review results when Build is done.

displays instead, regardless of whether the build was successful.

2. Batch files detect errors from ERRORLEVEL settings that a program may or
may not set. NT itself, when displaying an error message like:
Bad command or filename.

does not set the ERRORLEVEL to a non-zero value, so the batch file is unable
to detect system problems. Oracle utilities, compiler and linker utilities
might not set the ERRORLEVEL either, so the batch file does not know that
errors were encountered. When a module build fails, watch the session for
any telltale standard errors to more accurately determine the level of success
of the build.

3. Related to the previous explanation, NT does not provide the command line
with the ability for batch files to capture messages to STDERR; only to
STDOUT. In other words, the batch file can trap information or warning
messages and funnel them to the output review file, but error messages sent
to the STDOUT Input/Output stream are not captured. This is why
rebuilding a module and viewing the build session will normally provide
accurate clues to any errors that might be encountered.

C–2 Windowed Environments IT User's Guide

Problems and Resolutions

Compile Step Failed #1

Problem The compile step fails and yields an error such as “Bad command or filename.”

Resolution Use an NT Command Prompt and perform the following checks:

1. Enter CL at the prompt to check compiler availability.

2. Enter LINK at the prompt to check Linker availability.

3. Enter RC at the prompt to check GUI Resource Compiler availability.

Models Will Not Build

Problem Models will not build.

Resolution Perform the following steps:

1. Verify your system configuration and ensure that Microsoft Visual C++ is
the Windows NT compiler.

2. Close all other Windows applications or restart Windows to optimize
available resources for the current environment.

Note: A network connection is not required during LM and RI module builds.

Load Module Failed to Generate

Problem Load module fails to generate, displays the following message:
Precompile on P6052435.SQC failed for [model_name].

Resolution This is an indication that certain parameters for the current user might not have
been properly set.

1. Using any standard text editor, open the INTDBCLM.SCR initialization file.

2. Change the IRECLEN= and ORECLEN= of the PROC command to be large
enough for the longest input line. We recommend a value of 260.

3. Reinitialize your system for the changes to take effect.

Troubleshooting C–3

Problems and Resolutions

Compile Step Failed #2

Problem The compile step fails during the building of a module.

Resolution This is normally an indication that your workstation is not properly configured.
See the software requirements in the Technical Requirements sheet and verify that
all the necessary software components have been properly built. If it becomes
necessary to rebuild one or more of the items on the list, see the Installing
COOL:Gen guide.

Close all other Windows NT applications or restart Windows NT, then rebuild
the module.

It is likely that a support application is unavailable or not properly configured in
the PATH.

Consistency Check Failed

Problem Consistency check fails saying that functions are available only under NT, but
NT is the actual platform.

Resolution Text manipulation file functions such as CREATETEXTFILE are available only to
GUI windowed procedures. Make sure your action blocks have windows for
these functions.

Error - Can’t Find MSVCRT40.DLL

Problem You receive the following error when running a COOL:Gen application on a
production workstation:
Can’t Find MSVCRT40.DLL

Resolution When an application is constructed with any version of MSVC, the appropriate
MSVCRTxx.DLL must also be distributed as the application is distributed to
other production workstations.

C–4 Windowed Environments IT User's Guide

 Index

B

Bitmap locations, 1-4

Build Tool (Windows IT), 1-1
Installing the Build Tool, 1-3
Processing local or remote files, 2-13
Tasks, 1-3
Testing an application, 2-14
Window, 2-1

Building an application (Windows IT), 1-5

C

CM Processing, B-9

COOL:Gen User Exits, B-2

Customizing scripts, A-1
Environment tokens, A-4
Locating scripts, A-2
Option tokens, A-4
Script delimiters, A-11
Script directives, A-11
Script naming convention, A-2

D

DBMS connection, customizing, B-17

Decryption errors, B-10
Decryption User Exit DPS processing, B-10
Default decryption User Exit stub, B-10

Decryption user exit (Windows IT), B-8
Default stub, B-10
DPC processing, B-9
DPS processing, B-10

Diagram trace, 1-2

E

Encryption user exit (Windows IT)
DPC processing, B-7
DPS processing, B-8

G

GUI runtime with diagram trace, 1-2

I

Implementation Toolset (Windows IT)
Block mode runtime with diagram trace, 1-2
Building an application, 1-5
Implementing a target system, 1-5
Managing target system, 1-4
Required and optional tasks, 1-3
Target specifics, 1-7

Installing the Build Tool (Windows), 1-3

Installing Windows IT, 1-1

M

Managing target system (Windows NT), 1-4

S

Script naming convention, A-2

Specifying bitmap locations for GUI apps, 1-4

 Index–1

T

TIRDRTL
Customizing, B-13
Processing, B-13

TIRMTQB
Runtime error handling, B-15
Runtime error table, B-15

TIRURTL, B-19
Customizing, B-19
Processing, B-19

TIRUSRID, B-20

TIRXLAT, B-20

TIRYYX
Customizing, B-20
Processing, B-20

Tokens (Windows IT)
Categories, A-3
Environment parameter tokens, A-4
GML tokens, A-4
Location tokens, A-5
Token delimiters, A-10

Troubleshooting (Windows IT), C-1

U

User Exits (Block Mode), B-11
Customizing DBMS connection, B-17
TIRSECV stub, B-18
TIRUSRID, B-20
TIRXLAT, B-20

User Exits (GUI)
WRASYNCSRVERROR, B-11

User Exits, COOL:Gen, B-2

Using the Build Tool (Windows IT), 2-1

W

Windows IT
Application install, 1-1

WRSECDECRYPT, B-8
CM processing, B-9
Encryption flag, B-9
Processing, B-9
UseSecurity Flag, B-9

WRSECENCRYPT
Client processing, B-7
DPS processing, B-8
Security application error, B-8
SecurityNotUsed return code, B-8
SecurityUsed return code, B-8

WRSECTOKEN
SecurityError, B-7
SecurityNotUsed, B-7
SecurityUsed, B-6

Index–2 Windowed Environments IT User's Guide

	Windowed Environments IT User’s Guide
	Contents
	Chapter 1: Implementation Toolset
	Build Tool
	Application Install
	GUI Runtime with Diagram Trace
	Block Mode Runtime with Diagram Trace
	Required and Optional Tasks
	Installing the Build Tool

	Managing the Target System for Windows NT
	Specifying Bitmap Locations for GUI Applications
	Building an Application
	Testing an Application (optional)

	Implementing a Target System
	Target Specifics

	Chapter 2: Using the Build Tool
	Build Tool Window
	Search Directory Field
	Establishing the Default Search Directory for Win32 Systems

	Search all Subdirectories Check Box
	Modules List Box
	Message Area
	Build Tool Task Buttons
	Search Button
	Build Button
	Review Button
	Test Button
	Remove Button

	File Menu Options
	Setup Option
	Exit Option

	Processing Local or Remote Files
	Testing an Application

	Appendix A: Customizing Scripts
	Locating Scripts
	Script Naming Convention
	Example of Script Naming

	Token Categories
	Environment Parameter Tokens
	Environment Tokens
	Option Tokens

	GML Tokens
	Location Tokens
	Token Delimiters

	Customizing Scripts
	Script Delimiters
	Script Directives

	Appendix B: Working with User Exits
	User Exits Provided by COOL:Gen
	User Exits (GUI)
	Preconnection User Exit (WRPRECONNECT)
	Postconnection User Exit (WRPOSTCONNECT)
	Predisconnection User Exit (WRPREDISC)
	Century Default Exit (WRDEFAULTYEAR)
	Postdisconnection User Exit (WRPOSTDISC)
	Default Retry Limit Exit (WRDRTL)
	Ultimate Retry Limit Exit (WRURTL)
	Globalization Exit (WRGLB)
	System ID Exit (WRSYSID)
	User ID Exit (WRUSRID)
	Terminal ID Exit (WRTERMID)
	Uppercase Translation Exit (WRUPPR)
	Client Security Token User Exit (WRSECTOKEN)
	SecurityUsed
	SecurityNotUsed
	SecurityError

	Client/Server Encryption Exit (WRSECENCRYPT)
	Encryption User Exit Client Processing
	SecurityUsed Return Code
	Encryption User Exit DPS Processing
	SecurityNotUsed Return Code
	Security_Application_Error

	Client/Server Decryption Exit (WRSECDECRYPT)
	Decryption User Exit DPC Processing
	UseSecurity Flag
	Encryption Flag
	CM Processing

	Decryption User Exit Errors
	Decryption User Exit DPS Processing
	Default Decryption User Exit Stub

	Client/Server Flow Failure Exit (WRSRVRERROR)
	Client/Server Asynchronous Flow Server Failure Exit (WRASYNCSRVERROR)

	User Exits (Block Mode)
	Decrypt Exit (TIRDCRYP)
	User Dialect Exit (TIRDLCT)
	Default Retry Limit Exit (TIRDRTL)
	Default Retry Limit Exit Processing
	Customizing the Default Retry Limit Exit

	Server Error Logging Exit (TIRELOG)
	Help Interface Exit (TIRHELP)
	(TIRUPDB)
	(TIRSERRX)
	Message Table Exit (TIRMTQB)
	Runtime Error Handling
	Runtime Error Table

	Encrypt Exit (TIRNCRYP)
	Customize DBMS Connection (TIROCONN.PC, TIRCS95.SQC, TIRCODBC.C, TIRDCONN.SQC, TIRSCONN.CP, TIRXCONN.EC)
	Security Interface Exit (TIRSECR)
	Security Validation Exit (TIRSECV)
	Default TIRSECV User Exit Stub

	System ID Exit (TIRSYSID)
	User Termination Exit (TIRTERMA)
	Uppercase Translation Exit (TIRUPPR)
	Ultimate Retry Limit (TIRURTL)
	Ultimate Retry Limit Exit Processing
	Customizing the Ultimate Retry Limit Exit

	User ID Exit (TIRUSRID)
	National Language Translation Exit (TIRXLAT)
	Process 2-Digit Date and Set Century (TIRYYX)
	Default Exit Processing
	Customizing the Exit

	Appendix C: Troubleshooting
	Problems and Resolutions
	Stream of Warnings
	Error - L1093: ... object not found
	Failed Build that Seemed Successful
	Compile Step Failed #1
	Models Will Not Build
	Load Module Failed to Generate
	Compile Step Failed #2
	Consistency Check Failed
	Error - Can’t Find MSVCRT40.DLL

	Index

