
Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

CA Gen Integration

Consuming REST Services

 – Java Edition

Christian Kersters

Broadcom Limited

Web: www.broadcom.com

Corporate Headquarters: San Jose, CA

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

1

Revision History

Revision Date Change Description

v1.0 2020/12/18 Initial version

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

2

References

CA Gen Integration Solutions, Christian Kersters, Broadcom, August 2017

https://community.broadcom.com/HigherLogic/System/DownloadDocumentFile.ashx?Docum

entFileKey=4a401797-4dfe-4230-a031-273b908e57d3&forceDialog=0

Richardson Maturity Model

https://restfulapi.net/richardson-maturity-model/

https://community.broadcom.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=4a401797-4dfe-4230-a031-273b908e57d3&forceDialog=0
https://community.broadcom.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=4a401797-4dfe-4230-a031-273b908e57d3&forceDialog=0
https://restfulapi.net/richardson-maturity-model/

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

3

Contents

Revision History .. 1

References ... 2

Contents ... 3

1 Introduction .. 5

1.1 Richardson Maturity Model ... 6

1.2 Specification of REST services and data in Level 2-3 APIs 6

1.2.1 REST service identification .. 6

1.2.1.1 HTTP verb .. 6

1.2.1.2 MIME type .. 7

1.2.1.3 URL .. 7

1.2.2 Exchanging data with Level 2-3 APIs ... 8

1.2.2.1 Sending data .. 8

1.2.2.2 Receiving data .. 8

1.3 Level 3 Web APIs and HATEOAS ... 8

2 API specifications... 9

2.1 OpenAPI specification ... 9

2.1.1 Data model .. 9

2.1.2 Services ... 10

2.2 WADL ... 11

2.2.1 Data Model .. 11

2.2.2 Services ... 12

3 CA Gen integration .. 13

3.1 Component-Based Development .. 13

3.1.1 Data Model Specification ... 13

3.1.2 Functionality Specification.. 14

3.1.3 Typical definition of a REST operation ... 14

4 Using Apache CXF to consume REST Services .. 16

4.1 Creation of the Apache CXF Java artifacts.. 16

4.1.1 WADL processing .. 16

4.1.2 @XmlRootElement annotation ... 17

4.1.3 Alternative to @XmlRootElement annotation ... 18

4.1.4 API-specific documentation .. 18

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

4

4.1.4.1 Javadoc-generated documentation ... 18

4.1.4.1.1 Data Model documentation .. 18

4.1.4.1.2 Services documentation .. 20

4.2 External Action Block design ... 21

4.3 Apache CXF Helper classes ... 21

4.3.1 RESTHelper .. 21

4.3.1.1 Basic authenticiation ... 22

4.3.2 RESTAuthenticator .. 22

4.4 Build / runtime configuration .. 22

5 Conclusion ... 23

Appendix A. Examples ... 24

CXF Helper class .. 24

REST Service invocation ... 25

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

5

1 Introduction

Over the last decade, REST has gained much momentum, compared to the older SOAP

protocol, as a solution to exchange messages and integrate workflows among different,

independent parties across the Internet.

Reasons for that enthusiasm for REST are multiple, the most important being:

 Extensive use of the HTTP protocol, fostering reuse of hardware and software

assets across human-based and machine-based consumption (caching,

authentication and authorization, …), and making it lightweight

 Support for multiple data formats, with most, if not all REST server frameworks

supporting both XML and the less verbose JSON formats

 Flexibility, simplicity and extensibility of APIs, easing exchange of structured

data and code reuse

 Statelessness, making it easy, among others, to develop test harness suites.

Due to this success, many solutions have been developed to assist with REST services

publication or consumption, or to extend SOAP-based frameworks to also support REST.

Thanks to their reliance on the HTTP protocol, REST services are very easy to consume,

even without such specialized framework. Many options are available, in your preferred

language, to send HTTP GET, POST, … requests. Also, certainly when the structure of the

messages you exchange remains simple, they can easily be created or decoded using a

small set of string manipulation and domain conversion functions. When it’s not the case,

and the structure requires more work, complexity of the task will be significantly reduced by

relying on XML or JSON libraries, many of which available from the Jakarta Java EE

platform or as Open Source. If the services you want to consume are quite independent, in

their function or interface1, this is probably the best approach.

If, on the contrary, the services you want to consume provide a consistent Web API, the

REST consumption frameworks provide better alternatives. In addition to give the functions

to support all necessary HTTP features, those solutions, typically, recreate the API data

model, based on its formal documentation. This data model is then populated / queried

by your specific consumption logic, using generated functions and fields, and automatically

serialized to / de-serialized from the selected message format (typically XML or JSON).

For the Java language, this is the case with the Apache CXF Services framework. Apache

CXF makes consumption of REST services easy in CA Gen applications implemented in

Java, even without in-depth knowledge of the language and the HTTP protocol, and it’s the

objective of this document to guide and help you to do this.

At Broadcom Mainframe Services for CA Gen, we’ve extensively used Apache CXF to

consume REST services from CA Gen C external action blocks. Our best practices will be

presented here.

1 Like SOAP web services converted to REST

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

6

1.1 Richardson Maturity Model

Leonard Richardson analyzed a hundred

different web service designs and divided

them into four categories based on how much

they are REST compliant.

In the rest of this document, Levels 0-1 types

of REST services will be called Ad-Hoc

Services2, where levels 2-3, thanks to their

consistency, truly are Web APIs3.

While the technical part of this document can

apply equally well to levels 1-3, the

methodological view of our best practices are

much more applicable when consuming Web APIs.

1.2 Specification of REST services and data in Level 2-3 APIs

1.2.1 REST service identification

In Web APIs, target REST services are identified by the following 3 components:

HTTP Verb – URL – MIME Type

1.2.1.1 HTTP verb

The standard HTTP verbs are normally used to specify the type of action the Service

provides:

Verb Meaning

GET Read

POST Create

PUT Update

DELETE [Logical] Delete

2 Level 0 should really be considered as “XML/JSON Services”, rather than REST, as it’s only the
content of the message that drives the process
3 For information, Broadcom Mainframe Services’ Web API Designer Field-Supported Solution can
generate Level 1 Ad-hoc Services and Level 2 (and Level 3, using Jboss RESTEasy REST
framework) Web APIs

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

7

HTTP considerations can however influence this clear setup. The most important

consideration is that GET requests don’t support any message payload (nor should the

DELETE ones).

(At Broadcom Mainframe Services for CA Gen, we avoid as much as possible designs

where Read requests require significant / structured input. However, when the impact of this

constraint would be too high – like performances or workload – we use POSTs instead, and

clearly document the case).

1.2.1.2 MIME type

There are 2 optional MIME types associated with a request, which are specified in header

parameters

 Content-Type, which describes the format of the body that is sent to the service

 Accept, which describes the format of body the consumer expects in the response.

For REST, wherever relevant, both contain xml or json, and are most generally

application/xml or application/json.

As such, they don’t influence the service that is invoked by the HTTP verb and the URL.

Some REST server frameworks, however, make it possible to invoke different services,

based on the MIME type. This possibility could be used for service versioning. Such custom

MIME types should normally start with “vnd.” (for vendor-specific). For instance,

vnd.com.broadcom.mf.gen.cse.v01+xml as Content-Type would mean that we want to

access version 1 of a service with a request payload in XML.

1.2.1.3 URL

In Web APIs, URLs always start with the same base content:

http[s]://<host>[:<port>]/<base url>

Next part is definition of the target resource4, with optional id and action:

 {/<resource>[/id]}[/action]

If no id is specified, the action (or default HTTP verb behavior) applies to the type of

resource (like listing for GET or creation for POST), and it applies to the specific resource if

the id has been specified (normally defaulting to read for GET, update for PUT or delete for

DELETE, as mentioned before).

Based on the identified resource (between <id> and <action>), sub-resources can be

accessed, at arbitrary depth (as represented by the “{}”), as long as previous resources have

been identified (accompanied by one id).

4 A resource is similar to an object, containing fields and accessed through a number of methods
(which are its REST services)

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

8

1.2.2 Exchanging data with Level 2-3 APIs

1.2.2.1 Sending data

In addition to resource identifiers specified in the URL (path parameters), consumers of APIs

can also send:

 Query parameters (?parm1=xxx&parm2=yyy)

 Header fields (Authorization, custom fields)

 Request payload (except for GET/DELETE requests, as mentioned before).

1.2.2.2 Receiving data

REST services will also (normally) send information back to the consumer, as:

 HTTP Status code

 Custom Header fields

 Response Payload.

1.3 Level 3 Web APIs and HATEOAS

HATEOAS stands for Hypertext As The Engine Of Application State. This means that the

REST service will send back hyperlinks to the resources it specifies in its response, to ease

navigation through the API. Such information makes it very easy for consumers to fetch

resource details or related information, based on an initial request.

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

9

2 API specifications

As opposed to SOAP, with its unique WSDL specification format, REST supports multiple

formal representations, among others:

 Swagger, or its descendant, OpenAPI (aka Swagger 3) (the most widespread),

available in JSON or YAML format

 RAML, YAML-based

 WADL, XML-based, REST equivalent to the WSDL for SOAP, with focus on machine

readability.

2.1 OpenAPI specification

Here are some examples of an OpenAPI specification of a REST API, in native format

(JSON in this case) or human representation.

2.1.1 Data model

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

10

2.1.2 Services

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

11

2.2 WADL

The fact that the WADL for a REST API has been designed, from the beginning, to be

unambiguously processed by machines and its syntax, based on similar conventions as

WSDLs, has made it the preferred Web API representation for a number of REST

consuming frameworks (and certainly those also supporting SOAP), among which Apache

CXF.

Fortunately, if the REST API you want to consume provides a formal specification in some

other representation, you can rely on a number of different services5 (like APIMATIC -

https://www.apimatic.io/transformer/) to convert it to WADL.

There are 2 main possibilities for the design of WADL specifications:

 Put the whole specification into one file

 Separate the grammar of the data model from the rest, in the form of a reference to

the xsd of the grammar in the main WADL file.

The second option will be used in this document, as it’s easy to map to a data model-based

approach to REST API consumption.

2.2.1 Data Model

(Note that, in the specific extract of a WADL data model specification above, the xs:ID type

identifies a [partial6] identifier for your specification type. It’s not necessarily present in all

data model specs).

5 Broadcom Mainframe Services for CA Gen has also developed a converter from Swagger 2 to
WADL, for batch processing
6 As REST provides support for sub-resources, this id should be combined with the ones of parent
resources, if any

https://www.apimatic.io/transformer/

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

12

2.2.2 Services

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

13

3 CA Gen integration

We must here distinguish between the kind of REST Services we want to consume. Are

these ad-hoc REST services or do we want to consume a well-designed REST API?

In the first case, easiest is probably to directly rely on views of existing entities and perform

the ad-hoc mapping in an external action block.

In the second case, a much more structured approach will be welcome. As a consequence,

this will be the sole focus7 of this section.

3.1 Component-Based Development

From its specification and our consumer point of view, whatever implementation is behind it,

a REST API can be considered as an API to a Microservice. As described in the CA Gen

Integration Solutions White Paper I wrote a few years ago, Microservices map very well to

the much older, visionary, concept of Component-Based Development (CBD).

From our perspective, there are 2 major differences with our traditional CBD-based

approach:

1. As there is no CA Gen-based component, we must build our specification model from

scratch, rather than reusing /adapting pieces of implementation definitions

2. The usual trick CBD practicers use, which links specification definitions with

implementation artifacts at runtime, must be replaced by a layer of External Action

Blocks (EABs) that will perform data mapping and REST service invocations.

3.1.1 Data Model Specification

From the formal specification of the

REST API, a specification data

model is first constructed. This is a

manual operation8, but the mapping

is quite straightforward, from any of

the API formal type of

representation (refer to the

OpenAPI or WADL examples for a

confirmation).

As usual for CBD, the owner subject area is of specification type, and the entity types are

transient entity, specification or interface type.

7 Although nothing prevents any of these guidelines to be used in other conditions as well
8 Although some automation, at least partial, using one of the CA Gen APIs, could easily be
developed

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

14

3.1.2 Functionality Specification

To mimic what happens with CBD,

we take the following approach:

1. Group all the EABs that invoke

services of the Web API in their own

Business System

2. As an option, create an

Operations Library grouping those

action blocks.

With this setup, if consumption if the Web API is needed in multiple models, it’s easy and

quick to migrate the Operations Library and start consuming its REST services

Advantage

With this solution, as mentioned above, the whole set of EABs that consume the API will be

managed together.

Caveat

In Java, such Operations Library would be defined for documentation only. As there is no

distinction between static and dynamic libraries (jar files) in Java, and as all the effective

action blocks in the Operations Library are external, the jar file defined with your Java IDE is

directly used at runtime.

If this solution is selected, of course, the name of the Operations Library must be given to

the Jar file containing the compiled EABs.

3.1.3 Typical definition of a REST operation

As can be seen from the example

on the left:

 The EAB, which invokes a

service of a REST resource has

been declared as operation of

the specification type that

defines the resource in the CA

Gen model,

 It receives as imports:

o The base URL for the Web

API

o The information the

service needs as path or

query parameter or as

payload

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

15

 It returns as exports:

o The information returned by the service as payload, header parameters, …

o Some execution status information9

9 In this example, the structure for logging-type of payload, returned by some services, has been
reused

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

16

4 Using Apache CXF to consume REST Services

As said in the introduction, there are several ways of consuming REST Services and there is

no doubt that Apache CXF can be used differently, using features that are provided either in

the base product or through complementary libraries.

The approach taken at Broadcom Mainframe Services for CA Gen has been to create an

API data model on the consumer (Apache CXF) side, then to use that data model to interact

with CXF and the target REST Service.

Also, as our infrastructure is not sensitive to the message format, we’ve decided to rely on

the default XML serialization, rather than use the less immediate JSON format.

4.1 Creation of the Apache CXF Java artifacts

As briefly told before, this step consists in taking a formal representation of the API (which

should normally be provided by its publisher), and processing it using Apache CXF tools.

4.1.1 WADL processing

Processing of WADL files by Apache CXF wadl2java utility is done like this:

The first command statements are used to clean up the current generation environment, to

avoid any obsolete code, from a prior implementation.

Let’s look in details at the wadl2java command:

In this command, we specify, in this order:

 Package name for the generated Java classes (Web API-specific)

 Root directory for the generated Java classes

 Verbose console logging (optional)

 WADL file to be processed is application.wadl10

 -javaDocs is an option that can also be added, to incorporate documentation present

in the WADL into javadoc of the generated Java code.

This command generates a consistent set of Java classes that represent the data model

specified by the WADL.

10 The data model xsd specification (ns0.xsd) will automatically be included, and must be placed in
the same folder as application.wadl

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

17

(Note that WADL2JAVA also generates interfaces for services that could be used on REST

server side. We’ll come back to those later).

Below an example of generated class for a resource specified in the WADL:

From the example above we see:

 JAXB annotations are used to manage serialization / deserialization between XML

message and Java object fields

 JAXB doesn’t mandate an XmlRootElement in all cases, which specifies the XML

name of the element corresponding to the class11, and Apache CXF has decided not

to generate the corresponding annotation, but rely on an ObjectFactory class instead.

4.1.2 @XmlRootElement annotation

Rather than complexify the processing without any advantage for us, Broadcom Mainframe

Services has decided to alter the generated classes and add the @XmlRootElement

annotation in all classes where it makes sense.

This is done by the rest of our generateClient.cmd command:

11 This allows for cases where the same class is associated with multiple XML tags

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

18

This is very easily done with the

gawk12 script on the left.

This script says that:

 If the string “XmlType:” is found,

we need to add the

XmlRootElement annotation

 The name of the root element is the 3rd word of the line containing the class

declaration, and we have to write the annotation before that declaration

 Except for this insertion, all file lines are written unchanged.

4.1.3 Alternative to @XmlRootElement annotation

Instead of altering the generated code like before, the generated ObjectFactory class can

be used to work with the data model.

It’s then the responsibility of that class to trigger serialization / deserialization between XML

and data model elements.

4.1.4 API-specific documentation

4.1.4.1 Javadoc-generated documentation

4.1.4.1.1 Data Model documentation

Apache CXF WADL2JAVA utility generates Javadoc comments to document the generated

data model, in terms of

- XML element structure

- Getters and setters for Java object fields

12 gawk is a Linux open source tool, which has been ported to many other platforms, like Unix or
WIndows

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

19

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

20

4.1.4.1.2 Services documentation

Apache CXF WADL2JAVA utility also generates Javadoc comments to document the REST

services, in the corresponding <Service>Resource interfaces, which are even completed

with documentation in the WADL specification, if the –javaDocs option has been specified

for the WADL2JAVA command.

Here is an example of the documentation of a service to create an aggregate set in our CSE:

In this example, we see:

1. The path to access the service

2. The documentation of the service

3. The method we need to use to invoke it

4. The message formats supported by the service

5. Path parameters (if any)

6. Query parameters (if any)

7. The structure returned by the service (if any, here, there is no payload returned by

the service).

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

21

4.2 External Action Block design

To increase reusability, we, at Broadcom Mainframe Services, don’t split/reproduce common

logic across multiple EABs. The way we proceed is to write “Helper” class(es), and only

leave the specifics of filling in the Java data model instances with information (mainly) from

our import views and fetching the results in our data model instances into our export views.

As a consequence, content of EABs is very specific and won’t be further described here.

4.3 Apache CXF Helper classes

4.3.1 RESTHelper

This is our main helper class. It contains the following:

 Package, imports and class declarations:

 Static declarations and load-time processing:

This initializer creates instances of:

o A CXF client, with its timeouts

o A URL root target (with base URL taken from a property file)

 The methods used to invoke the REST services, like:

The method:

o First creates the actual URL target, by cloning the root target and appending

the necessary path and query parameter components

o Fetches the request object from the target

o Serializes the request payload into an XML message within a generic entity

object

o Invokes the REST service

o Returns a RESTStatus object, containing the HTTP status and, in this case,

some specific header information.

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

22

4.3.1.1 Basic authenticiation

If the Web API requires basic authentication the RESTHelper class also contains a logon

method, which makes use of another helper class:

4.3.2 RESTAuthenticator

The RESTAuthenticator class contains basic authentication data (userid and password), and

is invoked at runtime by Apache CXF, when invoking the service.

4.4 Build / runtime configuration

The following Java archives are needed to build or run the REST clients developed using

Apache CXF (reference: Apache CXF 3.2.1):

 cxf-core-3.2.1.jar

 cxf-rt-frontend-jaxrs-3.2.1.jar

 cxf-rt-rs-client-3.2.1.jar

 cxf-rt-rs-extension-providers-3.2.1.jar

 cxf-rt-transports-http-3.2.1.jar

 javax.annotation-api-1.3.jar

 javax.ws.rs-api-2.1.jar

 stax2-api-3.1.4.jar

 woodstox-core-asl-4.4.1.jar

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

23

5 Conclusion

In this document, we’ve shown (or at least tried to show) that, even without any automation,

consuming REST services, even in large, is quite feasible in Java.

There is of course much more to the topic than this. We, at Broadcom Mainframe Services,

have many more examples, with cases that couldn’t be detailed here, and are here to help

you.

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

24

Appendix A. Examples

CXF Helper class

package com.ca.optsv.gen.cid.cse;

import java.util.*;

import javax.ws.rs.client.*;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

import com.ca.optsv.gen.cse.rest.AggSet;

public class RESTHelper {

 private static Client cseClient;

 private static WebTarget rootCseTarget;

 static {

 cseClient = ClientBuilder.newClient();

 cseClient.property("http.receive.timeout", 300000);

 cseClient.property("http.send.timeout", 300000);

 cseClient.property("http.read.timeout", 300000);

 PropertyResourceBundle bundle =

 (PropertyResourceBundle) ResourceBundle.getBundle("xcide");

 String restCseUrl = bundle.getString("CSE.URL");

 rootCseTarget = cseClient.target(restCseUrl);

 }

 public static RESTStatus createAggregateSet

 (String cseUser, Long modelId, AggSet aggSet, boolean overwrite) {

 WebTarget target = rootCseTarget.path("Models")

 .path(modelId.toString())

 .path("ContainsAggSets").queryParam("user", cseUser);

 if (overwrite)

 target = target.queryParam("overwrite", "Y");

 Invocation.Builder builder = target.request();

 Entity<AggSet> entity = Entity.entity(aggSet, "APPLICATION/XML");

 Response response = builder.post(entity);

 return new RESTStatus(response.getStatus(),

 response.getHeaderString("StatusSeverity"),

 response.getHeaderString("StatusMessage"));

 }

Consuming REST Services – Java Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

25

REST Service invocation

package com.ca.optsv.gen.cid.cse;

import com.ca.optsv.gen.cse.rest.AggSet;

import com.ca.optsv.gen.cse.rest.GenObject;

import com.ca.optsv.gen.cse.rest.GenObjectArray;

public class MigrationBaselineUpdate {

 // [...]

 private static void createSynchronizationSet(String logFileName)

 throws EncyException, ApiException, IOException, InterruptedException {

 AggSet syncSet = new AggSet();

 syncSet.setName(("$" +

 srcModel.getName() + " ")

 .substring(0, 30) + " B");

 GenObjectArray array = new GenObjectArray();

 syncSet.setContainsArray(array);

 List<GenObject> syncObjects = array.getGenObject();

 for (String sync: synchronizationArray) {

 GenObject syncObject = new GenObject();

 syncObjects.add(syncObject);

 syncObject.setId(sync.split(";")[0]);

 }

 RESTStatus status = RESTHelper.createAggregateSet

 (cseUser, model.getId(), syncSet, true);

 if (status.getHttpStatus() >= 300) {

 throw new RuntimeException

 ("Failed to send aggregate set creation, status: "

 + status.toString());

 }

 }

}

(Note that, in this example, the AggSet, GenObjectArray and GenObject classes have been

generated by the Apache CXF WADLTOJAVA utility, based on the API documentation).

