
White Paper

Automation
Security V12.1

http://automic.com

White Paper

Follow us2

TABLE OF CONTENTS
Introduction 4
Product Architecture 4

Multi-Tenancy 4

System Design 5

Centralized Architecture 5

Automation Engine 6

Network 6

Development and Quality Assurance 7
Development Process 7

Quality Assurance 7

Security 8

Education and Security Training 8

Maintenance 8

Security Concept and Authorization 8
Users, Groups and Roles 8

Permissions and Privileges 9

Authorization and Access 10

Agents 11

Separation of Concern 11

Example for Authentication, Authorization and Auditing 12

Logins to Hosts, Databases and Applications 12

Sarbanes-Oxley Act 12

Password Management 12

Enhanced Security Concept for Release Automation 13

Create Type Permission 13

Folder Permission 13

Approvals 14

Network Communication 15
Confidentiality and Encryption 15

Authentication Methods 15

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us3

TABLE OF CONTENTS
Type of Keys 16

Key exchange and Communication 16

File Transfers 19

Connection Establishment 20

Transmission Security 21

Frontend Communication and APIs 21

Integrity 21

Availability 21

Authenticity 21

Man-in-the-Middle Attacks 21

Unauthorized Access to the Automation Engine by Compromising an Agent 22

Audit and Compliance 22
Job Execution 22

Task Starts and Restarts 23

Creating and Renaming Objects 24

Imported and Transported Objects 24

Deleted or Restored Objects 25

Object Modifications 25

Accesses of Any Kind 25

Release Automation 26

Summary 27

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us4

Introduction
With the increasing importance of IT systems and electronically stored information, security issues are now
a vital concern for IT managers, and application security is one of the top priorities at Automic.

The automation engine controls key data processing across all platforms within an enterprise. As the
automation engine is a key application, effective security is an essential component of the product.

This document discusses this topic, covering all major issues concerning security, the automation engine
and our offerings.

Product Architecture
Multi-Tenancy
Automic is a native multi-tenant architecture and one single installation can support the whole enterprise.
Multi-tenant architecture is an approach in which a single instance of the software centrally serves multiple
client enterprises (tenants), highly segregated within a single instance for security and compliance.
Because IT today is generally viewed as a service, being able to logically segregate client enterprises is
necessary. Simplifying the reporting and charge-back of delivered services to the appropriate department
value is realized by consolidating enterprises onto one centralized product. Such separation also enhances
security. Many products on the market do not support multi-tenancy, resulting in increased costs to:

• Purchase additional hardware and software for each end customer

• Purchase additional hardware to separate development, quality assurance and production
environments

• Maintain and administer the additional hardware, databases and scheduling systems

Therefore, there is no need to implement as many Automic Systems as the company has environments.
One unique Automic infrastructure will manage environments (called clients in Automic) such as QA/
DEV/PROD (up to 9999) and/or business units in a secure way (every environment has its own security,
resources and scheduling design).

Lifecycle management is made easier with the help of embedded tools enabling the import of new
scheduling object/design from QA to PROD for instance. This unique concept is a fantastic added-value
for growing companies who have to integrate new IT environments through acquisitions in a normalized
way.

With its multi-tenant architecture, the automation engine partitions each tenant data and configuration,
so that each enterprise works with a customized segregated instance of the application. It simplifies and
reduces administration costs and increases flexibility in management and performance.

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us5

Figure 1: High-level view of the multi-tenant concept

System Design
Our system design provides the basis for its excellent security. From the very beginning, the Automic
platform has been designed with a security focus. Secure systems are quality systems, because when
designed for security, systems automatically become very robust.

Our architects designed the platform as a collection of self-contained objects. Small self-contained software
units with limited functionality are the basis for large and complex systems. Such small units are simple in
design, development and maintenance, thus reducing the number of possible errors.

Centralized Architecture
The platform has been designed according to the latest developments in software technology. Based on
the advantages of the centralized architecture it has been extended with some essential features.

For data storage a centralized relational database management system is used. A clear separation of
management and data storage provides full database independence. Unlike similar applications the
automation engine does not store any job scheduling information in flat files, thus avoiding the security
risks most other job schedulers have.

All scheduling data including the JCL is always centrally available, providing a comprehensive overview
over past, present and future processing for the best possible operational safety.

Through its special server design the automation engine is available non-stop and is fully scalable without
increasing the system’s complexity.

System stability is achieved through the server layout. The centralized control unit can be distributed
across any number of CPUs and physical servers. Furthermore, third-party tools are not required and
resources are only used on dedicated servers without affecting the production systems in any way.

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us6

Automation Engine
The Automation Engine is designed as a collection of self-contained objects. Therefore, it’s not a monolithic
block of software, but consists of any number of work processes and communication processes. With their
very specific and limited functionality these modules are easy to develop and maintain, one of the reasons
for the automation engine’s stability and reliability.

Furthermore, this architecture provides fault-tolerance and scalability.

Network
Network infrastructure plays a key role for availability. The automation engine uses the TCP/IP protocol
family for data transmission. These protocols have been developed for fail-safe peripheral communication
and are therefore very well suited for safe data transfer. TCP/IP needs relatively low effort for the design of
redundant networks, thus making the design of highly available and fail-safe networks easy.

Figure 2: Network Architecture

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us7

Development and Quality Assurance
Our engineering teams work according to the highest quality and security standards. Based on thorough
design, object-oriented code is created and each encapsulated object is thoroughly reviewed and tested.
Special development training is held to increase awareness of security risks.

Development Process
In a nutshell, we have undergone a cultural and technological change in engineering. This was not easy
and has taken a good year to achieve; we have an R&D department of over 150 staff, dispersed across six
countries, working in five very different time-zones.

We operate multiple scrum teams and encourage them to use whatever open source tooling they want;
that’s the world of development, which many of you tell us you operate in. Indeed, that’s why we have
adopted this approach – to mirror your goals as closely as possible. These teams have a lot of autonomy
and work in a loosely coupled environment. We previously worked on a cycle of build, deploy, test and
release, while taking advantage of some automation to shorten timescales. However, we wanted to make a
major step-change, so we adopted new agile processes and a DevOps approach.

Figure 3: Automic Software Delivery Stages

The diagram above shows our process flow for all updates to Automic software code. Failure at any stage
in this process results in the DevOps team being alerted to errors, with corrections made. Successful
completion of this exercise results in the product feature branch updates being deployed into Automic’s
production environments.

Quality Assurance
We are building quality in and securing it thanks to embedded test experts and team members have
relevant certifications (development related or quality related). Business praised tools are used for test
management, reporting and tracking changes, with both static and dynamic code analysis tools used
daily on every feature branch. Continuous integration is implemented in order to detect code breaking
changes early during development and automated tests on different system platforms are triggered to
ensure quality. Close partnership with selected customers allows for improved production ready products .
Additionally we continuously release product updates to internal users in two-week sprints. It is vital these
new features are communicated and used immediately to get feedback as quickly as possible .

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us8

Security
We have several stages and processes in place to ensure a secure product for our customers:

• During the design process of security critical features our in-house security department is involved
as soon as possible to achieve a secure software design

• First static code analysis (SonarQube) is deployed to run on every code change and we monitor our
used library for known vulnerabilities (Nexus IQ Server)

• Every code change is implemented as a pull request, and each pull request gets reviewed by at least
one different developer using several checklists (i.e. OWASP secure coding practices checklist) and
expert knowledge

• Our developers receive various external and in-house training courses at least once a year on secure
coding practices and security testing, which helps during development and testing to avoid common
mistakes that can lead to security vulnerabilities

• After each sprint all new features are tested separately by our in-house security team using manual
and automated security tests, with the centralized sprint security reviews adding an additional layer
of quality assurance to our product

• Before release we are doing external security audits on our products

Education and Security Training
We think that it is important for our engineers that they stay ahead of the latest security threats and
vulnerabilities. Therefore we offer external and in-house trainings on various security topics such as Web
Application Security (OWASP Top 10), secure coding best practices, penetration testing, security testing
tools, etc. All our engineering staff receive at least one security related training course suitable for his/her
position once a year.

Maintenance
We supply our customers with security patches according to our support policy during our maintenance
period. Updates are available as hotfixes or regular service releases.

Security Concept and Authorization

Users, Groups and Roles
The powerful access control concept of the automation engine allows administrators to grant user/user
groups only access to features, objects and views that they need and/or are allowed to see. A very granular
set of authorization methods and privileges empowers the admin of each client to properly set up the
access control to the system.

View of several Automic clients (= environments), each of them covering the Job scheduling of a distinct
business unit or environment:

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us9

Figure 4: View of several Automic Clients (= environments)

Automic provides a robust internal security mechanism and users of Automic will access via a user ID
provided by the administrators, which includes a department for additional security. Automic provides for
advanced password management that includes the ability to require specific password formats such as:

• Minimum password length

• Special character requirements

• Capital letter requirements

• Numeric requirements

Automic also allows for integration with Active Directory as well as LDAP compatible user authentication.
This integration is for the sole purpose of user/password validation. Once a user is connected to Automic,
all of their activity is tracked for the purpose of audit reporting.

Permissions and Privileges
The automation engine comes with a secure setup out-of-the-box. The administrator must explicitly
enable the automation engine privileges for users and the same procedure should apply for operating
systems throughout the landscape. The automation engine requires very few privileges and all unused
rights should be turned off. It is designed for ultimate security, but nevertheless also depends on operating
system security features – we recommend using the latest versions of operating systems and database
management systems. To avoid exploits of the automation engine system, it is critical to apply security
fixes provided by the individual systems’ vendors.

Some of the privileges assigned to the Automic users and user groups

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us10

Figure 5: Overview of privileges

In addition to the privileges that give users access to functions in the Automic user interface, authorizations
for users and user groups can be defined on an object level within every environment. By doing so, users
and user groups obtain exclusive access rights to a particular object. Several levels of rights can be applied
such as read, delete, execute, cancel, access to statistics etc. and rights can be applied simultaneously to
the folder/sub folder structure. Therefore, the Automic security system is fully granular and will adapt to
security policies and organization.
Security can be as broad as administrator access to a role, or as granular as, “Read access to one unique
job in one folder during the hours of 8:00am to 4:00pm on Tuesdays.” Any runtime actions taken against
jobs or workflows are logged both in the report of the object and also within our audit report for easy
viewing and reporting.

Authorization and Access
Access to folders, statistics, reports and objects is subject to authorization. (Note that servers and agents
are also objects.) The automation engine offers a variety of access controls for the objects managed. This
involves:

• Function level authorization (the ability to grant/revoke permission for certain functions of the
platform)

• Object level authorization (the ability to create access control lists (ACLs) at the level of single
objects)

• ACL aggregation (the ability to group object level ACLs together through intelligent filter criteria in
order to reduce security management effort, e.g. by naming conventions)

• user grouping (the ability to aggregate users to groups also for the purpose of decreased management
effort)

Although folders are objects and rights can be defined for them, specifying folder rights does not prevent
access to objects stored in them. A user who is not allowed to access a particular folder could still access

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us11

an object in this folder (such as if it is used in a workflow. The command “edit” is available from almost
anywhere including workflows). Objects that should not be accessed by particular users should also be
protected.

The following example refers to the above explorer structure and shows how rights can be assigned and
explains the different effects:

Figure 6: Authorization by naming convention

• Line 1: Users can access the folder “PRODUCTION” but not its corresponding subfolders

• Line 2: Users can - regardless of other authorizations that have been granted - not access the
folder “ADMIN” which is a subfolder of “STRUCTURE”

• Line 3: Users can access the folder “STRUCTURE” including its subfolders, except for the
subfolder defined in line 2

• Line 4: Users have access rights to the folder “VARA” but not to its subfolders or to the folder
“TEST”

Agents
For security reasons, a newly installed agent does not have any rights. Furthermore, it cannot execute
tasks, nor can it be selected in the objects of a client of the automation engine system.

The agent logs on to the automation engine system with an agent object created in the folder HOST of the
system client 0000. In each agent you can define the clients that should be given access rights.

The access rights read, write and execute are available:
• “Read” - The agent can send files (file transfer).

• “Write” - The agent can receive files (file transfer).

• “Execute” - The agent can execute jobs.

Separation of Concern
Finally, in order to allow for a role model implementation supporting typical IT organization structures,
the need for separating execution from design and implementation is a given. Object usage must not
automatically imply permission for object definition (e.g. a login object for a target system gets defined by
a person knowing the password but can be used by a lot of different automation specialists implementing

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us12

workflows and thereby using the respective login object). The authorization of the automation engine
supports the separation of design and implementation (e.g. developers can use the logins without knowing
the passwords, adding an additional layer of security).

Example for Authentication, Authorization and Auditing
Customers can decide on which options they want to use and implement.

Security within the solution is preferably role-driven, and in order to keep maintenance of security rules
manageable, role assignment is driven through group membership. As such, we can grant or revoke access
in the solution by simply making the necessary changes to group membership. Membership of a user
in multiple groups (and the underlying role assignment) should be supported and the access controls
sufficiently flexible. It must be possible to grant a user full workload execution rights on one server, read-
only rights on another and make sure this user has no access whatsoever towards definitions not on these
servers. It is preferred that users can also be assigned a subset of capabilities on a resource. For instance,
the ability to run workload as non-root on some systems, or only trigger workload execution with a certain
priority. Permissions and access controls should be enforceable immediately (and not as part of internal
batch runs that are only scheduled daily, or caches that expire after a day).

Logins to Hosts, Databases and Applications
Furthermore, host, database and application logins are objects in the automation engine. Login objects
usually are defined by DBAs and system personnel. Passwords for the logins are encrypted and never
displayed in clear type. Developers can use the logins without knowing the passwords, adding an additional
layer of security.

Sarbanes-Oxley Act
For many years, global businesses have been using the automation engine to achieve the kind of IQ levels
required by SOX. While the automation engine is not a SOX specific solution, its functionality is perfectly
aligned to the requirements of achieving SOX compliance. It ensures the secure creation, automation and
control of all business process cycles, as well as the safe and reliable transfer of data between diverse
applications, both within the enterprise and with external parties. The system also offers automated control
of all reporting processes. As standard components of the automation engine’s proven functionality, these
features help companies to meet SOX-related challenges. In the context of critical business applications
such as SAP/mySAP, the automation engine can automate, control and securely manage all the SAP
financial reporting processes.

Password Management
Managing enterprise wide passwords is a great challenge for IT managers. As such, Automic provides
comprehensive support for the secure central storage of enterprise passwords.

The Automic platform manages user IDs and the passwords of host systems by means of login objects.
Login objects store the information about now to access host systems. They can be used for activating
executable objects on host systems.

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us13

The automation engine’s object oriented design allows for flexible and granular access privileges to login
objects. The use of login objects can be limited to individual users or user groups, while read, write and
execute rights for login objects can be defined separately. System programmers, for example may create
jobs that use a certain login object, but have no access to the actual login details and password. Once a
password is stored in a login object it is not displayed to the user at any time.

Login objects are – like all information – stored in the database. To prevent unauthorized access to
critical login information outside of the automation engine’s authorization regime all stored passwords are
encrypted.

Figure 7: Sample Login object

Enhanced Security Concept for Release Automation
The security concept of ARA is based on the concept of folder permissions, create type permissions,
approvals and login objects.

Create Type Permission
The create type permissions controls the creation of new entities that are a certain type, for instance, a
Production Environment. However, even if you do not have the create permissions, you may still have the
permission to work with the type’s entities.

Folder Permission
The folder permissions controls what you are allowed to do with entities in a folder. Whenever you create
a new entity, you store it in a folder (e.g. RELEASES). Depending on the folder’s permission, you can do
different things with entities in that folder. There are five different permissions which can be set per folder
and user/group by an administrator:

• read: You can access the folder and view all entities within it

• use: You are allowed to reference entities in this folder from other entities

• (Example: If you want to assign an environment to a deployment profile, you require use permissions
on the folder in which the environment is stored)

• write: You are allowed to change entities in this folder

• (Example: When you want to assign an environment to a deployment profile, you require write
permissions on the folder in which the deployment profile is stored)

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us14

• delete: You are allowed to delete entities in this folder

• execute: You are allowed to use the entity when executing a workflow

The following entities are stored in dedicated folders: Activity, Activity Template, Application, Component,
Deployment Profile, Deployment Target, Environment, Environment Reservation, Login, Package, Queue,
Release, Workflow (Application and General).

Approvals
Approvals add another security layer to workflow executions and activities. An administrator can configure
via approval rules, who needs to approve a workflow execution based on the context of the execution (e.g.
to which environment a package gets deployed). Workflows will only start if all approvers give their ok.

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us15

Network Communication
No external encryption solutions are required within an Automic environment. All necessary encryption is
done natively via an AES key level of your choice (128, 192 or 256). This encryption is used for communication
between the automation engines and agents, including API calls.

In addition to the core components of the automation engine all user-facing components and APIs support
TLS v1.2:

• Automic Web Interface (AWI)

• Release Manager UI

• API Endpoints (JCP, ARA REST/SOAP API, Analytics REST API)

• Proxy Client / Server

• Analytics Backend (Kafka, Zookeeper, Rule Engine)

Confidentiality and Encryption
All network communication is per default encrypted using AES-256. For authentication of two connection
partners a pre-shared key is used. The key exchange can happen in various ways depending on the
configured authentication level.

Authentication Methods
The automation engine supports different authentication methods, which define how the communication
key is initially distributed. Each authentication method offers various advantages and disadvantages
depending on the required security level. As default the easiest authentication mode (“None”) is used,
because it offers a simple and automatic setup of new agents.

Authentication method Description
None An agent that starts for the first time can immediately log on to the automation

engine system. The “company key” (a term used in each automation engine
system) is automatically derived from the automation engine system’s name.
It prevents an agent from logging on to an automation engine system with a
different company key afterwards.

Server The company key must be determined during the automation engine
installation. Subsequently, it can be exported to a file and used during agent
installation. The agents can log on to the automation engine system when they
start the first time but they cannot automatically be used. The administrator
must release them in the system overview of client 0000. By doing so, the
automation engine automatically transfers the authentication package via
the line to the relevant agent. Only then is the agent authenticated and ready
to use.

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us16

Authentication method Description
Server and Agent The company key must be determined during the automation engine

installation. Some preparatory work is required to make sure that the agents
can log on to the automation engine system. Create an agent object for
each agent in system client 0000. Subsequently, export an authentication
package and store it on the agent’s computer for the installation. Now the
agent is ready to use.
In order guarantee a top secure installation, Automic recommends
transferring the authentication package to the agent either manually or via a
secure line. Doing so ensures that potential hackers never obtain access to
the authentication package via the network.

It is also possible to withdraw an authentication of an agent by highlighting the relevant agent in the
system overview of client 0000 and selecting the corresponding context menu command. This prevents
the agent from being used until it has been re-authenticated.

Type of Keys
The automation engine uses three different types of keys:

• Company key (the system’s public key)

• Transfer key (shared secret between two communication partners)

• Session key (AES key used for encryption of data of a connection)

The company key is the systems’ public key and is defined once on installation of the system. It is used
to encrypt the transfer keys. If the company key gets changed or deleted all other keys will also become
invalid.

In addition to the company key, there are transfer and session keys. The transfer key is the shared secret
of two connection partners (e.g. automation engine and agent). It applies for a connection and is defined
before or on first connection (depending on the chosen authentication mode). It is used for authentication
and to derive the session key.

The session key is used for data encryption and applies for a communication session. After reconnect a
new session key is used.

Key exchange and Communication
Depending on the chosen authentication method a new agent can receive a transfer key on various ways.
The default authentication is “none”. During the first setup the agent connects to the automation engine
without verifying the identity of the automation engine using the company key (gray). Afterwards a Diffie-
Hellman protocol is used to exchange the transfer key (yellow) between the new agent and the automation
engine. During communication a session key (green) is generated and used for the communication. The
transfer key is not transmitted over the wire any more.

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us17

Figure 8: Initial key exchange during first connection (authentication method: None)

A regular start is using basically the same mechanism without exchanging the keys (because both parties
already know the transfer key). Again a session key is used for communication. The transfer keys are stored
in the database on the automation engine side and in the key store on agent side.

Figure 9: Regular connection initialization after initial setup

Using the authentication mode “agent only” the agent verifies the identity of the CP by using the company
key. Therefore the installation of agents requires the user to extract the company key from client 0 and to
manually transfer it to the agent. When first starting, the agent imports this company key, connects and
verifies the identity of the CP by using the supplied company key. Afterwards the same mechanism as
before is used to exchange the transfer key using Diffie-Hellman.

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us18

Advantages
• Quick and easy setup

• Transfer key gets distributed automatically using a secure key exchange protocol

• Does not involve any manual steps

• New agents get registered to the system automatically

Disadvantages
• Key gets somehow transferred over the wire (even using an additional secured connection)

• No authentication of the two connection partners is done

Figure 11: Initial key exchange during first connection (authentication method: Server)

The most secure authentication mode is to use “agent and server”. In this case the installation of agents
requires the user to manually create an agent object. Afterwards he has to extract the authentication
package from client 0 for that particular agent object in the system overview and manually transfer it to the
agent (e.g. using a second secure channel like an USB stick). On first start, the agent imports the company
key and the transfer key. In this case, the transfer key is not transmitted over the wire at any time.

Advantages
• Semi-automatic setup of new agents

• Authenticity of the automation engine is ensured on agent side

• New agents have to be authenticated manually by an administrator

Disadvantages
• Involves manual distribution of the company key

• Transfer key transferred over the wire (using a secured connection)

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us19

Figure 12: Initial key exchange during first connection (authentication method: Agent and Server)

After keys have been exchanged, a regular start is the same for all three methods. All messages send over
the wire are encrypted using the established session key.

The authentication of the transfer partners is done by the transfer keys. Both know a common secret and
therefore both know the identity of the other one.

Advantages
• Authenticity of both connection partners is ensured

• It is not able for unauthorized agents to connect to the automation engine

• No key is transferred over the wire at any time

Disadvantages
• cv

File Transfers
The automation engine provides an optimized and improved file transfer procedure. It sends the complete
file transfer request (including wildcard specifications in partially qualified file transfers) to the source
agent. The sending agent is responsible for resolving the request (determining the files). In order to ensure
a secure connection the agent receives a session key from the automation engine. This mechanism ensures
that nobody can start a file transfer without prior authorization from the automation engine.

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us20

Figure 13: File Transfer Workflow

Connection Establishment
The sending agent tries to establish a connection to the receiving agent. If this attempt fails (for example,
because of the firewall settings), it notifies the automation engine. The file transfer request is then sent
to the receiver, which now tries to establish a connection to the sender. After the connection has been
established, the receiving agent transfers the file transfer request to the sender.

Figure 14: Connection establishment of a file transfer

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us21

Transmission Security
The accuracy of transferred data is verified with a checksum that is embedded in the data stream.

Frontend Communication and APIs
All our web frontends, (i.e. Automic Web Interface and Release Manager), and SOAP/REST-APIs support
HTTPS including TLS 1.2. After installation, all communications are unencrypted over HTTP. We offer
comprehensive guides on how to setup HTTPS in our documentation. It is recommended to run our web
applications and APIs in a HTTPS-only mode, as this ensures the validation of the two connection partners,
i.e. it protects against man-in-the-middle attacks by using valid and signed certificates. Furthermore, it
encrypts the communication from prying eyes.

Integrity
Due to our key distribution every agent possesses different transfer keys, thus the automation engine can
verify the identity of the connection partner. Furthermore, it is not possible for an attacker to alter the
message without knowing the transfer key. This will ensure the integrity of the message. In addition, every
messages contains a checksum, which ensures that no byte was altered during the network transfer.

Availability
A thorough discussion of security issues must include availability of all systems and components.
Careful design, continuous object-oriented development and a well-structured quality assurance process
ensure best possible functionality of all Automic components.
Realistically software cannot be 100 percent failure proof. Additionally, the operating system or hardware
can fail. Therefore several concepts provide the high availability of the Automic platform (See Section 1.2).

Authenticity
Securing the identity of a communication partner is an important requirement for secure network
communication. An attack may try to intercept the connection between different components (man-in-
the-middle attack) in order to penetrate the system or break confidentiality (eavesdropping). Therefore, it
is important to ensure that the communication partner is who they claim to be.

Man-in-the-Middle Attacks
The architecture and the key management protects the automation engine and its communication
against man-in-the-middle attacks. After setup the connection between agent and automation engine
starts instantly without any key exchanged required. Therefore, it is not possible to capture the key during
initialization of the connection because it has not to be transferred any more. Depending on the chosen
authentication method the transfer key is never transmitted over the wire. If an attacker wants to intercept
or read a connection, he/she has to compromise an agent to be able to read the sent messages. In that
case he/she would have been able to do so anyway, because he/she already has access to the machine.
However, older messages cannot be decrypted, because of the different session key used to encrypt the
messages. Furthermore, he/she is not able to read the messages of different connections, because they
use different transfer and session keys to the compromised agent.

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us22

Unauthorized Access to the Automation Engine by Compromising an Agent
Assuming that an attacker manages to compromise an agent, the system design of the automation engine
prevents that this could lead to the compromising of other systems.

The agent connects to the automation engine from where it receives all commands. It is not possible for
the agent to send commands back to either the automation engine or other agents (except file transfers).
The only thing the agent does is connect and wait for commands.

For file transfers the agent receives a session key from the automation engine in order to connect to the
other agent. Therefore, it is not possible for the agent to start a file transfer without prior request, because
it does not know the session key from the other agent.

Assuming that an agent gets compromised, an attacker may be able to listen to the communication between
the automation engine and the compromised agent, thus it is may be possible to intercept credentials for
the compromised agent during the start of a job execution (assuming that different credentials are used
on different machines). In this scenario the attacker wouldn’t need the credentials anyway, because the
system is already compromised and he is able to execute code on the machine.

Audit and Compliance
The automation platform offers enterprise compliance support to allow logging capabilities that keep
track of any user activity within the system. Enabling such a feature must ensure tracking (logging) of all
modifications to the system’s repository, including:

• The user that made the modification

• A time and date stamp

• Before and after image copies of the changed data

Such a feature improves systems integrity and ensures compliance with various regulatory statutes.

Job Execution
All job executions are audited and held within the Automic database. For each job, the following metrics
are retained:

• Title

• Object Name

• Object Version

• Execution Queue

• Automic Run ID

• Automic User

• Passed Parameters

• Target Agent

• Target User Context

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us23

• Target Process ID

• Activation Timestamp

• Start Timestamp

• End Timestamp

• Runtime

• Return Status

• Return Code

• Processor Utilization

Figure 15: Sample revision report

Furthermore, the commands issued to and the responses returned from the target system, along with any
post-processing, are audited.

Therefore, it is possible to determine who executed each workflow and when and for each constituent tasks
the commands executed and the security context used to execute the command. The system response is
captured, plus runtime metrics such as start time, end time and return code.

Task Starts and Restarts
The start time (i.e. the activation time) is stored.

Modifications at Runtime

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us24

Modifications at runtime are logged. This includes modifications made via monitors or concerning states.
In the case of JCL modifications, the JCL is not written to the revision report. It can be viewed in the object
report.

Task Abortion
Aborted tasks are registered.

System Changes
All changes to objects are recorded (user, time, summary of change). Previous versions of objects are
also stored so that they can be reverted to in the event of an erroneous change. The retention period of
statistics and audit logs is configurable and may be exported to external systems for longer term storage.

Creating and Renaming Objects
The creation and renaming of objects are logged.

Moving Objects
Source and target folders are recorded when objects are moved.

Imported and Transported Objects
Import time and transportation time are stored. Contents of the XML and transport files are not written to
the revision report.

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us25

Deleted or Restored Objects
Deletion and restoring processes of objects are recorded.

Object Modifications
Changes of object definitions are logged (e.g. modifications of priority, start type etc.).
Exceptions:

• Modifications made using an automation engine script

• Status modifications of sync objects,

• Contents of variable objects,

• Modifications of calendar objects.

The revision report informs of changes. You can also view the new and previous values. The particular part
of the object’s XML structure which contains the modified attribute is output for this purpose.

Accesses of Any Kind
Accesses to objects and folders are recorded. This includes successful accesses and access violations
which occurred due to restricted automation engine authorizations.

User Login/Logoff
Times of individual user logins and logoffs are also recorded.

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

White Paper

Follow us26

Release Automation
Each time entities change in ARA, log entries are written so that everything is documented. One log entry
may be related to one or more entities and also displayed in the history of several entities. Viewing the
history of any entity will therefore provide a lot of relevant information pertaining to its owner.
As an example, the following screenshot shows the history records of a deployment profile. The view
presents the following columns:

• Date: Date when the event occurred

• Time: Time when the event occurred

• Message: Describes what happened to the object

The messages are grouped by date and sorted from the newest to the latest event.

https://www.linkedin.com/company/automic-software-inc
https://twitter.com/automic
https://www.facebook.com/automicsoftware
http://automic.com

For more information or a product demonstration please visit www.automic.com

White Paper

Automic, the leader in business automation software owned by CA Technologies, helps enterprises drive

competitive advantage by automating their IT and business systems - from on-premise to the Cloud, Big Data

and the Internet of Things. With offices worldwide, Automic powers 2,700 customers across all industry verticals

including Financial Services, Manufacturing, Retail, Automotive and Telecommunications. More information

can be found at www.automic.com.

Summary
At Automic security is a very important topic. We perform external and internal security audits on a regular
basis. During the whole development lifecycle various checks are in place to ensure the best security of
our products. Secure coding guidelines following industry standards (i.e. OWASP and SEI CERT coding
standards) have been established by our application security team and are enforced throughout the
software lifecycle. Furthermore, our product supports different functionality to support a secure operation
such as:

• User, Groups and Privileges: The powerful access control concept of the automation engine allows
administrators to grant users/user groups selective access to features, objects and views that
they need and/or are allowed to see. A very granular set of authorization methods and privileges
empowers the admin of each client to set up the access control to the system properly.

• Logins to Hosts, Databases and Applications: Furthermore, host, database, and application logins are
objects in the automation engine. Login objects usually are defined by DBAs and system personnel.
Passwords for the logins are encrypted and never displayed in clear type. Developers can use the
logins without knowing the passwords, adding an additional layer of security.

• Multi-Tenancy: Automic is a native multi-tenant architecture and one single installation supports the
enterprise. Multi-tenancy refers to and approach in which a single instance of the software centrally
serves multiple client enterprises (tenants), highly segregated within a single instance for security
and compliance.

• End-To-End Transparency, Audit Trails: The automation engine has a very fine granular authorization
and permission system to allow actions just for privileged users. This ensures that the automation
engine is completely revision secure and there exists the possibility to get audit reports for all
activities within the system.

• Encryption: No external encryption solutions are required within an Automic environment. All
necessary encryption is done natively via an AES key level of your choice (128, 192 or 256). This
encryption is used for the following:

• Password Storage within the Automic database repository

• Database Password Reference within the automation engine configuration file

• Communication between the automation engines and agents

• User Interfaces and API Calls

http://automic.com
http://automic.com

	Introduction
	Product Architecture
	Multi-Tenancy
	System Design
	Centralized Architecture
	Automation Engine
	Network

	Development and Quality Assurance
	Development Process
	Quality Assurance
	Security

	Education and Security Training
	Maintenance

	Security Concept and Authorization
	Users, Groups and Roles
	Permissions and Privileges
	Authorization and Access
	Agents
	Separation of Concern
	Example for Authentication, Authorization and Auditing

	Logins to Hosts, Databases and Applications
	Sarbanes-Oxley Act
	Password Management
	Enhanced Security Concept for Release Automation
	Create Type Permission
	Folder Permission
	Approvals

	Network Communication
	Confidentiality and Encryption
	Authentication Methods
	Type of Keys
	Key exchange and Communication

	File Transfers
	Connection Establishment
	Transmission Security

	Frontend Communication and APIs
	Integrity
	Availability
	Authenticity
	Man-in-the-Middle Attacks
	Unauthorized Access to the Automation Engine by Compromising an Agent

	Audit and Compliance
	Job Execution
	Task Starts and Restarts
	Creating and Renaming Objects
	Imported and Transported Objects
	Deleted or Restored Objects
	Object Modifications
	Accesses of Any Kind

	Release Automation

	Summary

