
CA Workload Automation DE–
JavaScripting
David A. Leigh – Principal Consultant - Automation

Terms of This Presentation
This presentation was based on current information and resource allocations as of October

2009 and is subject to change or withdrawal by CA at any time without notice.

Notwithstanding anything in this presentation to the contrary, this presentation shall not serve

to (i) affect the rights and/or obligations of CA or its licensees under any existing or future

written license agreement or services agreement relating to any CA software product; or (ii)

amend any product documentation or specifications for any CA software product. The

development, release and timing of any features or functionality described in this presentation

remain at CA‘s sole discretion. Notwithstanding anything in this presentation to the contrary,

upon the general availability of any future CA product release referenced in this presentation,

CA will make such release available (i) for sale to new licensees of such product; and (ii) to

existing licensees of such product on a when and if-available basis as part of CA maintenance

and support, and in the form of a regularly scheduled major product release. Such releases

may be made available to current licensees of such product who are current subscribers to CA

maintenance and support on a when and if-available basis. In the event of a conflict between

the terms of this paragraph and any other information contained in this presentation, the

terms of this paragraph shall govern.

2

For Informational Purposes Only

Certain information in this presentation may outline CA‘s general product direction. All

information in this presentation is for your informational purposes only and may not be

incorporated into any contract. CA assumes no responsibility for the accuracy or completeness

of the information. To the extent permitted by applicable law, CA provides this document ―as

is‖ without warranty of any kind, including without limitation, any implied warranties or

merchantability, fitness for a particular purpose, or non-infringement. In no event will CA be

liable for any loss or damage, direct or indirect, from the use of this document, including,

without limitation, lost profits, lost investment, business interruption, goodwill, or lost data,

even if CA is expressly advised of the possibility of such damages.

3 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Agenda

> JavaScript – What is it & Why does DE use it.

> Product Specific JavaScript Functions

> Variables Review

> Troubleshooting & Logging

> Q & A

4 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

JavaScript – What is it & Why does DE use
it?

> JavaScript is a scripting language commonly used to create dynamic HTML
pages that process user input.

> With CA Workload Automation DE, JavaScript supports many functions
that are unavailable from the CA Workload Automation DE Desktop Client
interface.

> By using JavaScript scripts within your Applications, you can take
advantage of the server's advanced scheduling features.

> You can use JavaScript scripts to:

 Create and manipulate symbolic variables.

 Use CA WA built-in functions.

 Perform comparison, arithmetic, and logical operations.

 Prepare program input and parameters.

 Build decisions into schedules.

> The CA Workload Automation DE Server uses JavaScript release 1.5 as its
internal scripting language and conforms to Edition 3 of the ECMA-262
Standard for scripting languages.

5 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

JavaScript – What is it & Why does DE use
it?

> The CA Workload Automation DE product has included a full

version of JavaScript 1.5 for the products use.

> There are no changes to how the JavaScript implementation

operates within the product as it would outside of the product.

> There are specific features and functions that have been added

to the JavaScript implementation to facilitate interfacing to the

product

> The use of JavaScript was expected to be used as an

IF/THEN/ELSE engine to facilitate advanced features of the

product.

> The implementation is not expected to be used for all of the

functions that JavaScript can perform.

6 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

JavaScript – What is it & Why does DE use
it?

> Suggested Reading Materials & Websites:

 CA Workload Automation DE Programming Guide

 www.javascript.com – The self proclaimed ―Definitive

JavaScript Resource‖ – General JavaScript Examples &

JavaScript programming forum.

 JavaScript: The Definitive Guide - by David Flanagan

 JavaScript: A Beginner's Guide, Second Edition - by John

Pollock

7 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

http://www.javascript.com/
http://www.javascript.com/
http://www.javascript.com/

Choosing where to specify the script

> You can specify the script within an Event definition, an

Application definition (Application level), or a job

definition (job level).

> Where you specify the script determines the availability

of elements such as variables, symbolic variables, and

parameters.

8 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Choosing to specify scripts within an Event
definition

> Specify the scripts within an Event definition for the following
scenarios:

 You want to run multiple scripts when the Event is triggered.
In contrast, the Application definition and job definition let
you specify only one script using the At run time option and
one script using the At Event trigger time option.

Note: Specifying one script in the Event definition is
equivalent to specifying the script in the Application definition
using the At Event trigger time option.

 The script defines or sets values for system-level symbolic
variables. The names of these variables begin with the prefix
ESP.

 The script defines or sets values for Application-level
symbolic variables. The names of these variables begin with
the prefix APPL.

9 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Choosing to specify a script within an
Application definition

> Specify the script within an Application definition for the following
scenarios:

 The script defines or sets values for symbolic variables that need to
be available to multiple jobs within the Application. These variables
can be system-level (the names begin with the prefix ESP) or
Application level (the names begin with the prefix APPL).

 The script passes parameters from the Event to the Application.

 The script determines whether multiple jobs will run.

 The script generates date and time variables to be used by multiple
jobs.

 The script defines or sets values for job-level symbolic variables. The
names of these variables begin with the prefix WOB. For these
scripts, you must select the At run time option. The script runs when
each job in the Application starts to run.

10 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Choosing to specify a script within a job
definition

> Specify the script within a job definition for the following
scenarios:

 The script defines or sets values for symbolic variables that begin
with the prefix WOB.

 The script sets values for variables used by a single job.

 The script sets a variable whose value must be confined to a single
job (the symbolic variable is used in multiple jobs but must have a
unique value for each job).

 The script specifies run criteria for a single job.

 The script defines or sets values for system-level symbolic variables.
The names of these variables begin with the prefix ESP.

 The script defines or sets values for Application-level symbolic
variables. The names of these variables begin with the prefix APPL.

11 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Choosing when to run the script

> You can choose to run a script at Event trigger time or when one
or more jobs run (at run time). When you run the script depends
on the kinds of values you are calculating within the script. Some
information is required at trigger time (when the Application
builds) and other information is required at run time.

> For example, when an Event triggers and the CA WA server builds
the Application, the server needs to know which jobs will be run as
part of that Application. This means that all of the run frequencies
need to be resolved at Event trigger time. The server, however,
does not need to know the argument being passed to a UNIX
script until the script is ready to run. This means that arguments
do not need to be resolved until run time.

> Note: If you plan to use a symbolic variable as part of a job name
or qualifier, the symbolic variable must be assigned a value at
Event trigger time.

12 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

13 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Properties Resolved at Trigger time

Properties CA WA Desktop Client dialog CA WA Desktop Client fields

> Application name > Application properties dialog > Name dialog

> Default Agent name > Application properties dialog > Agent dialog

> Application run frequency > Application properties dialog > Run frequency section

> Job name and qualifier > Job definition Basic dialog > Name and Qualifier fields

> Job run frequency > Job definition Basic dialog > Run frequency section

> Notifications > Job definition Notifications dialog > All fields within the Alerts tab

> Job resources > Job definition Resources dialog > All fields

> Job time dependencies > Job definition Time Dependencies

dialog

> All fields

> External job attributes > External job definition Basic dialog > All fields

14 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Properties Resolved at Run time

Properties CA WA Desktop Client dialog CA WA Desktop Client fields

> Email addresses > New Email Notification dialog > To field

> Agent specifications > Job definition Basic dialog > Agent name, Command to run,

Script/command name,

Arguments to pass, and User ID

fields

> Environment variables > Job definition Environment

Variables dialog

> Name and Value fields

> OS/400 environment

specifications

> Environment dialog > Library specifications, Job

specifications, and OS/400 exit

program fields

15 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Properties Resolved at Run time

Properties CA WA Desktop Client dialog CA WA Desktop Client fields

> Exit codes > Job definition Exit Codes tab > Code and Interpretation fields

> Trigger conditions for File

trigger jobs

> Job definition Basic dialog

> Job definition User/Group

specifications dialog

> File name field

> Owner user ID, group, and

Monitor as user fields

> Step specifications for SAP

R/3 jobs

> Job definition Step Specifications

dialog

> All fields

> Agent specifications for

PeopleSoft jobs

> Job definition Basic dialog > Process name and Process type

fields

Storing the script

> Before the script can be available to an Event,

Application, or job, you must first store the script in the

Application that will use it or in the JavaScript repository

on the CA WA server.

> When storing the script, you can write the script in CA

WA Desktop Client or import the script from your local

computer or a network drive. The name of each script

must be unique for every instance of the server.

16 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Storing the script

> If a JavaScript script is used in only one Application, you

can store the script in the Application by using CA WA

Desktop Client.

> If you want to use the script in multiple Applications,

store the script in the JavaScript repository on the CA WA

server.

> The JavaScript repository provides a common storage

location on the CA WA server for your JavaScript scripts.

17 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Specifying scripts within an Event definition

> You can specify a list of
JavaScript scripts in an
Event definition, which are
run when the Event is
triggered.

> You can specify scripts in
an Event definition to set
default values for the
Application, define
symbolic variables to be
used by the Application,
and for many other
purposes.

18 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Specifying a script within an Application
definition

> You can specify a JavaScript
script within an Application
definition, and run it when
the Event is triggered or
when each job in the
Application starts to run.

> You can specify a script in an
Application definition to set
default values for the
Application, define symbolic
variables to be used by the
Application, and for many
other purposes.

19 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Specifying a script within a job definition

> You can specify a
JavaScript script within a
job definition, and run it
when the Event is
triggered or when the job
runs.

> You can specify a script in
a job definition to create
symbolic variables for use
by the job, specify
alternative times to submit
the job, and for other
purposes.

20 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Product Based JavaScript Functions

> A function is a set of instructions that can receive data, process
that data, and return a value.

> The CA WA server provides built-in functions you can use
within a JavaScript script.

> Built-in functions do not have a symbol introducer character—
they are JavaScript constructs that are recognized by the
server automatically.

> A built-in function appears in the following format
function_name(arguments) where function_name must be a
valid function name and arguments is a list of values specific to
that function.

> Function names are case sensitive and must be typed exactly
as shown. Unless otherwise specified, parameters and
keywords provided in the syntax are also case sensitive.

21 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Product Based JavaScript Functions

> Using built-in functions

 You can use CA WA server built-in functions in the

following ways:

– Within a script that is run at the Application level to have

the returned values available throughout the Application.

– Within a script that is run at the job level. In this usage,

the returned values can be restricted only to that job.

– Within a script as part of an Alert definition.

 You can use built-in functions with conditional logic to

cause different actions to occur based on circumstances.

22 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Product Based JavaScript Functions

> Using built-in functions

 For example, if today is Friday, you want joba to complete
successfully before 5:00 pm. On the remaining days, joba
must complete successfully by 9:00 pm. You can use the
built-in function today in a job-level script as follows:

if (today('friday')) WOB.dueout = '5pm‗;

else WOB.dueout = '9pm';

 Another way to specify the same condition is by using the
JavaScript condition (?) as follows:

WOB.dueout = today('friday') ? '5pm' : '9pm';

In this example, the server assigns the WOB.dueout
variable a value depending on the day of the week.

23 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Product Based JavaScript Functions

> Using built-in functions
 To complete the example, you

specify %WOB.dueout on the
job's Time Dependencies
dialog in the Not completed by
field.

 On Fridays, %WOB.dueout
resolves to 5pm, which is the
time the job must complete
successfully before it is
marked overdue.

 On all other days,
%WOB.dueout resolves to
9pm, which is the time the job
must complete successfully
before it is marked overdue.

24 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Product Based JavaScript Functions

> Categories of built-in functions

 Built-in functions fall into the following categories.

– Calendaring functions - Perform actions based on

schedule criteria, calculate time periods, and make

conditional logic statements to control the occurrence of

actions.

– Event trigger functions - Control the triggering of

Events.

– File-level functions - Perform file-level operations against

individual files and return the results.

25 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Product Based JavaScript Functions

> Categories of built-in functions

 Built-in functions fall into the following categories.

– Integer functions - Format any number to an integer.

– Job, subApplication, and Application control

functions - Control a specified job, subApplication, or

Application.

– Resource functions - Reset resource availability.

– Symbolic variable functions - Determine which symbolic

variables exist and create user-defined date and time

symbolic variables.

26 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Product Based JavaScript Functions

> Calendaring functions

 These functions perform actions based on schedule

criteria, calculate time periods, and make conditional logic

statements to control the occurrence of actions.

27 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

28 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Calendaring Functions

Function Name Function Description

> daysBetween > Use the daysBetween function to calculate the amount of time between two dates.

The time can be calculated in days, months, workdays, and so on. Specify a start

and end period and the type of date to use in the calculation.

> daysFrom > Use the daysFrom function to calculate the number of days from a date you specify

to today. Specify a schedule expression that resolves to a date.

> daysTo > Use the daysTo function to determine the number of days from today to a date you

specify. Specify a schedule expression that resolves to a date.

> today > Use the today function with conditional logic to cause an action to occur. The today

function compares a schedule expression you specify to today's date. The CA

Workload Automation DE server returns a value of true or false, depending on

whether the expression resolves to today's date.

> tomorrow > Use the tomorrow function with conditional logic to cause an action to occur. The

tomorrow function compares a schedule expression you specify to tomorrow's date.

The CA Workload Automation DE server returns a value of true or false, depending

on whether the expression resolves to tomorrow's date.

29 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Calendaring Functions

Function Name Function Description

> yesterday > Use the yesterday function with conditional logic to cause an action to occur. The

yesterday function compares a schedule expression you specify to yesterday's date.

The CA Workload Automation DE server returns a value of true or false, depending

on whether the expression resolves to yesterday's date

30 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Event trigger function

Function Name Function Description

> execTrigger > Use the execTrigger built-in function to automatically trigger an Event from within a

JavaScript script.

Function Syntax

execTrigger('eventname','ADD | REPLACE','time','NOHOLD | HOLD‗,

'userparameter1','userparameter2','userparameter3‗,'userparameter4','rootjob');

Example Code

> Triggering an Event

execTrigger('CYBER.BACKUPS');

> Triggering an Event at a specific time

execTrigger('CYBER.PAYROLL','replace','4pm');

> Triggering an Event using the hold parameter

execTrigger('CYBER.RECOVER','','','hold');

31 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

File-level Functions

Function Name Function Description

> file_appendContents > Adds new data to the specified file. The function returns a Boolean value. True

is returned if the contents were successfully added to the specified file. False is

returned if an IOException or FileNotFoundException exception occurs.

> file_canRead > Tests whether the application can read the specified file. The function returns a

Boolean value. True is returned if the specified file exists and it can be read by

the application. False is returned otherwise.

> file_canWrite > Tests whether the application can modify the specified file. The function returns

a Boolean value. True is returned if the file system contains the specified file

and the application is allowed to write to the file. False is returned otherwise.

> file_create > Automatically creates a new, empty file if the file does not exist. The function

returns a Boolean value. True is returned if the file does not exist and the file is

created. False is returned if the specified file already exists.

> file_delete > Deletes the specified file or directory. A directory must be empty to be deleted.

The function returns a Boolean value. True is returned if the file or directory is

successfully deleted. False is returned otherwise.

32 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

File-level Functions

Function Name Function Description

> file_exist > Tests whether the specified file or directory exists. The function returns a

Boolean value. True is returned if the file or directory exists. False is

returned otherwise.

> file_getLastLine > Gets the last line of the specified file even if the line is empty. The

function returns a string. If successful, this function returns the content

of the last line or, if unsuccessful, [undefined] is returned.

> file_getLastModified > Returns the time that the specified file was last modified. The function

returns a number. If successful, this function returns the time that the

file was last modified, measured in milliseconds since the epoch

(00:00:00 GMT, January 1, 1970). The value 0L is returned if the file

does not exist or if an I/O error occurs. If the task was unsuccessful,

then [undefined] is returned.

> file_getLastNonEmptyLine > Gets the last non-empty line of the specified file. The function returns a

string. If successful, this function returns the content of the last line or, if

unsuccessful, [undefined] is returned.

33 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

File-level Functions

Function Name Function Description

> file_getLength > Returns the length of the specified file. The function returns a number. If

successful, the function returns the length, in bytes, of the file specified by the

file path. The value 0L is returned if the file does not exist. The return value is

unspecified if the file path denotes a directory. If the function was

unsuccessful, [undefined] is returned.

> file_getLineCount > Gets the number of lines in a specified file. The function returns a number. If

successful, this function returns the number of lines or, if unsuccessful,

[undefined] is returned.

> file_getName > Returns the name of the specified file or directory. This is just the last name in

the pathname's sequence. If the pathname's sequence is empty, the empty

string is returned. The function returns a string. If the function is unsuccessful,

[undefined] is returned.

> file_getParent > The parent of an abstract pathname consists of the pathname's prefix, if any,

and each name in the pathname's sequence except for the last. If the

pathname's sequence is empty, the pathname does not name a parent

directory.

34 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

File-level Functions

Function Name Function Description

> file_isDirectory > Tests whether the specified file is a directory. The function returns a Boolean

value. The function returns true if the specified file exists and it is a directory.

False is returned otherwise.

> file_isFile > Tests whether the specified file is a normal file. A file is normal if it is not a

directory. The function returns a Boolean value. The function returns true if the

specified file exists and it is a normal file. False is returned otherwise.

> file_isHidden > Tests whether the file named by this abstract pathname is a hidden file. The

definition of hidden depends on the operating system. On UNIX systems, a file

is hidden if the file name begins with a period character ('.'). On Microsoft

Windows systems, a file is hidden if it has been marked as such in the file

system. The function returns a Boolean value. The function returns true if the

specified file is hidden. False is returned otherwise.

> file_list > Returns an array of strings naming the files and directories in the directory

specified by the file path. If this path does not denote a directory, this function

returns [undefined]. Otherwise an array of strings is returned, one entry for

each file or directory in the file path. The array will be empty if the specified

directory is empty.

35 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

File-level Functions

Function Name Function Description

> file_mkdirs > Creates the directory named by this abstract pathname, including any

necessary but nonexistent parent directories. Even if this operation fails, it may

have succeeded in creating some of the necessary parent directories. The

function returns a Boolean value. The function returns true if the directory is

created, including any necessary parent directories. False is returned

otherwise.

> file_read > Reads the content of a file, byte by byte. A start offset can be specified to skip

an offset number of bytes. A length can be specified to limit the data that can

be read. The function returns a string. If successful, this function returns the

content of the file or, if unsuccessful, [undefined] is returned.

> file_readLines > Reads the content of a specified file line by line. A start offset can be specified

to skip an offset number of lines. A line count can be specified to limit the data

that can be read. If successful, this function returns an array containing the

lines that were read or, if unsuccessful, [undefined] is returned.

> file_renameTo > Renames the specified file. Whether this method can move a file from one file

system to another is platform-dependent. The return value should always be

checked to make sure that the rename operation was successful. The function

returns a Boolean value. True is returned if the renaming succeeded. False is

returned otherwise.

36 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

File-level Functions

Function Name Function Description

> file_replaceContents > Overwrite the file with new data. The function returns a Boolean value. True is

returned if the new data was written correctly. False is returned otherwise.

37 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

File-level Functions

Function Name Example Code

> file_appendContents > APPL.append = file_appendContents('/home/reports/logfile1', 'new data');

> file_canRead > APPL.status = file_canRead('c:\\batch\\myfile.txt');

> file_canWrite > APPL.status = file_canWrite('/home/reports/logfile1');

> file_create > APPL.newfile = file_create('c:\\batch\\myfile.txt');

> file_delete > APPL.status = file_delete('/home/reports/logfile1');

> file_exist > APPL.status = file_exist('c:\\batch\\myfile.txt');

> file_getLastLine > APPL.lastLine = file_getLastLine('/home/reports/logfile1');

> file_getLastModified > APPL.tlm = file_getLastModified('c:\\batch\\myfile.txt');

> file_getLastNonEmptyLine > APPL.lastLine = file_getLastNonEmptyLine('/home/reports/logfile1');

> file_getLength > APPL.length = file_getLength('c:\\batch\\myfile.txt');

> file_getLineCount > APPL.lineCount = file_getLineCount('/home/reports/logfile1');

38 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

File-level Functions

Function Name Example Code

> file_getName > // returns 'myfile.txt‗

APPL.fileName = file_getName('c:\\batch\\myfile.txt');

> file_getParent > // returns '/home/reports‗

APPL.parent = file_getParent('/home/reports/logfile1');

> file_isDirectory > // returns false

APPL.directory = file_isDirectory('c:\\batch\\myfile.txt');

> // returns true

APPL.directory = file_isDirectory('/home/reports/');

> file_isFile > APPL.file = file_isFile('c:\\batch\\myfile.txt'); // returns true

> APPL.file = file_isFile('/home/reports/'); // returns false

> file_isHidden > // returns false

APPL.hidden = file_isHidden('/home/reports/logfile1');

> // returns true

APPL.hidden = file_isHidden('/home/reports/.logfile');

39 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

File-level Functions

Function Name Example Code

> file_list > // returns ['logfile1', '.logfile']

APPL.filePath = newArray();

APPL.filePath = file_list('/home/reports/');

> file_mkdirs > // creates a new directory 'sept' in '/home/reports/2004‘

APPL.mkdir = file_mkdirs('/home/reports/2004/sept');

> file_read APPL.content = file_read('/home/reports/logfile1');

> //start from 23rd byte

APPL.content = file_read('c:\\batch\\myfile.txt', 23);

> //read only 200 bytes

APPL.content = file_read('/home/reports/logfile1', 0, 200);

> file_readLines APPL.MyFile=new Array();

APPL.MyFile=file_readLines('/home/reports/logfile1');

> // start from 3rd line

APPL.MyFile=file_readLines('c:\\batch\\myfile.txt', 3);

> // read only first 20 lines

APPL.MyFile=file_readLines('/home/reports/logfile1', 0, 20);

40 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

File-level Functions

Function Name Example Code

> file_renameTo > If (file_renameTo('/home/reports/2004/sept', '/home/reports/2004/09')) ...;

> file_replaceContents > APPL.replace = file_replaceContents('c:\\batch\\myfile.txt', 'new file data...');

41 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Integer Function

Function Name Function Description

> format_toInt > Converts a number to an integer format string. If the function is successful, it

returns a string that contains the integer value. If the function is unsuccessful,

the specified number is not in the correct format and "0" is returned.

Function Syntax

> format_toInt(number)

Example Code

> APPL.int = file_toInt('1.2333'); // returns '1‗

> APPL.int = file_toInt(4.0); // returns '4'

42 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Job, subApplication, & Application control
function

Function Name Function Description

> execCommand > Use the execCommand built-in function to control a job, a subApplication, or an

Application. You can use the execCommand function at trigger time or at run time.

Function Syntax

> execCommand('jobname | ALL | SUBAPPL(subApplname)','applname.gen', 'ACTION

the_action')

Example Code

> Setting user status

execCommand('UNIX1','TEST.0','ACTION USERSTATUS TEXT("This is a test")');

> Dropping multiple predecessors

execCommand('UNIX2,'TEST.0','Action DropDep Pred("TASK1,TASK2")');

> Removing a job's submission time

execCommand('UNIX5','TEST.%APPL._gen','Action Reset Earlysub()');

> Holding a subApplication

execCommand('SUBAPPL(SUBC)','TEST.2','ACTION HOLD');

43 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Alert Function

Function Name Function Description

> WOB.isAutoResubmit > Use the WOB.isAutoResubmit built-in function to check if a job that has failed

is going to be resubmitted.

Function Syntax

> WOB.isAutoResubmit()

Example Code

> Checking if a Failed Job is Going to be Resubmitted

> When a job fails, an Alert triggers and runs the following JavaScript

script. The script triggers the CYBERMATION.VERIFY Event if the failed

job is going to be resubmitted.

if(WOB.isAutoResubmit())

execTrigger('CYBERMATION.VERIFY');

44 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Resource function

Function Name Function Description

> resetResourceProperty > You can use the resetResourceProperty built-in function to set a resource's

availability count.

> For example, you can run a JavaScript script that automatically resets the

availability count of a resource at a specific time of day.

Function Syntax

> resetResourceProperty('resname','property','count');

Example Code

> The following example sets the availability count of a resource named

LOWPRIO to 1:

resetResourceProperty('LOWPRIO','Availability','1');

45 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Symbolic variable functions

Function Name Function Description

> defined > Use the defined function to determine if a symbolic variable is already defined. The

CA WA server returns a value of true or false.

Function Syntax

> defined('variable')

Example Code

> If global variable is defined

> In the following example, an Application-level script defines a symbolic variable

APPL.alltrue when certain circumstances occur. If these circumstances do not occur,

the variable is not defined. The job-level script is as follows:

if (defined('APPL.alltrue')) WOB.truecalc = APPL.alltrue * 40;

46 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Symbolic variable functions

Function Name Function Description

> genTime > Use the genTime function to create user-defined date and time symbolic variables,

similar to the built-in date and time variables, for any date you choose. The genTime

function creates a standard set of symbolic variables when you provide a prefix for

the variable names.

Function Syntax

> genTime('prefix','date')

Example Code

> Generating symbolic variables for next workday

> The following example defines a set of symbolic variables for the next

workday, beginning with the characters NW:

genTime('NW','today plus 1 workday');

Symbolic Variables

> Symbolic variables provide powerful substitution capabilities.

> In a JavaScript script, you can define your own symbolic
variables or use one of the CA WA server's built-in symbolic
variables.

> When the server encounters a symbolic variable in an
Application, job or Alert, it substitutes the current value of that
variable.

> You can use symbolic variables to define date parameters,
specify job names, pass arguments to scripts, and many more
functions.

> You can export the value of a symbolic variable to one or more
jobs in an Application or to the Application itself.

47 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Identifying symbolic variables

> Within the JavaScript script, symbolic variables are

identified by their prefix (ESP, APPL or WOB), which

allows their values to be exported from the script.

> Within an Application or job, symbolic variables are

identified by their symbol introducer character.

> A symbolic variable begins with the percent sign (%) and

ends with a space, another symbolic variable introducer

character, a character that is not valid in a symbolic

variable such as an asterisk (*), or any other character

that is not alphanumeric or an underscore.

48 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Identifying symbolic variables

> A symbolic variable is defined as a variable within a JavaScript
script. As such, it must conform to the rules of JavaScript
variable definitions.

> Each symbolic variable must have a prefix (ESP, APPL or WOB)
that identifies the CA WA server host object it belongs to.

> If it is not part of a host object, the value of a symbolic variable
cannot be exported from the script, and you will not be able to
use the variable in a field.

> A symbolic variable name may contain alphanumeric characters
and underscores. The first character cannot be numeric. The
name of the symbolic variable can be as long as you want;
however, it is best to keep symbolic variable names to a
manageable length.

49 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Identifying symbolic variables

> A symbolic variable may be assigned a text string or a numeric
value, such as the following:

ESP.DC='Toronto';

ESP.NUM=78;

> When you assign a symbolic variable a value that is a text
string, you must enclose the string in single or double
quotation marks.

> Note: The following names are reserved for server built-in
symbolic variables:

ESP._name

APPL._name

WOB._name

50 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Availability of symbolic variable values

> The resolved value of a symbolic variable is made available to
jobs and Applications as follows:

 At the system level, where its value is available to any
Application. This symbolic variable is identified by the prefix
ESP.

 At the Application level, where its value is available to any
job within the Application. This symbolic variable is identified
by the prefix APPL.

 At the job level, where its value is confined to the specific
job. This symbolic variable is identified by the prefix WOB.

> Note: When you define a JavaScript variable, you must identify
the scope of its availability if you want the value of the variable
to be available outside of the script. Variables with no prefix
cannot be referenced outside the script.

51 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Using built-in symbolic variables

> The CA WA server provides several predefined symbolic
variables that you can use as required. You do not need to
define these variables to use them. You can use these variables
in two ways:

 Within a JavaScript script when you want the value of the
variable for use within the script—simply specify the variable
with the appropriate prefix within the script.

 Within CA WA Desktop Client when you want to specify the
resolved value of the variable directly in an input field—
simply include the variable preceded by its symbol introducer
wherever you need to use the value the symbolic variable
resolves to.

> The server built-in symbolic variables consist of two parts: a
prefix that identifies the scope of the symbolic variable and the
symbolic variable name, separated by a period.

52 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

53 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

APPL-prefixed built-in symbolic variables

Variable Name Description

> APPL._alert > This variable is only available in Alerts. Use %APPL._alert when you need

the name of the Alert. The variable resolves to the Alert name if one is

specified; otherwise, it resolves to null. The value is in uppercase.

> APPL._connectionfactory > Use %APPL._connectionfactory when you need the name of the connection

factory used in a JMS Subscribe Event. The connection factory contains all

the bindings the CA WA server needs to look up the referenced topic or

queue.

> APPL._destination > Use %APPL._destination when you need the name of the destination file

used in a JMS Subscribe Event. The destination file stores messages

consumed from a topic or queue.

> APPL._dsn > Use %APPL._dsn when you need the name of the data set monitored in a

z/OS Data Set Trigger Event.

> APPL._event > Use %APPL._event when you need the full name of the Event. The Event

name resolves in uppercase, for example CYBER.PAYROLL.

54 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

APPL-prefixed built-in symbolic variables

Variable Name Description

> APPL._eventid > Use %APPL._eventid when you need the name of the SAP event

monitored in a SAP Monitor Event.

> APPL._eventname > Use %APPL._eventname when you need the name of the Event without

the prefix. The Event name resolves in uppercase. For example, suppose

that the full name of an Event is CYBER.PAYROLL. The

%APPL._eventname variable resolves to PAYROLL.

> APPL._eventparam > Use %APPL._eventparam when you need the name of the SAP event

parameter, such as a job name or job count, used in a SAP Monitor Event.

> APPL._eventprefix > Use %APPL._eventprefix when you need the prefix of the Event name.

The Event prefix resolves in uppercase. For example, suppose that the

full name of an Event is CYBER.PAYROLL. The %APPL._eventprefix

variable resolves to CYBER.

> APPL._initialcontextfactory > Use %APPL._initialcontextfactory when you need the name of the initial

context factory used in a JMS Subscribe Event. The initial context factory

acquires an arbitrary initial context that the application can used and is

required within the JNDI framework.

55 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

APPL-prefixed built-in symbolic variables

Variable Name Description

> APPL._filename > Use %APPL._filename when you need the name of the file monitored in a

File Trigger Event.

> APPL._ftfile > Use %APPL._ftfile when you need the name of the file monitored in a file

trigger job. The variable resolves to the last file trigger that occurred

within the Application. For example, you can use this variable in a

successor job to process a file that caused the file trigger to occur.

> APPL._gen > Use %APPL._gen when you need the absolute generation number of the

Application, for example 24.

> APPL._jndidestination > Use %APPL._jndidestination when you need the JNDI name of the topic or

queue monitored in a JMS Subscribe Event.

> APPL._loadmode > Use %APPL._loadmode to determine if an Application is running. The

variable returns a string that resolves to "false" if the Application is

running and resolves to "true" otherwise.

56 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

APPL-prefixed built-in symbolic variables

Variable Name Description

> APPL._name > Use %APPL._name when you need the name of the Application. The value

is in uppercase, for example PAYROLL.

> APPL._providerurl > Use %APPL._providerurl when you need the URL of the JMS Provider used

in a JMS Subscribe Event.

> APPL._rootjobs > Use %APPL._rootjobs when you need the names of the root jobs specified

in an Event trigger. The %APPL._rootjobs variable resolves to the root job

names including any unresolved symbolic variables in the names. If no

root jobs are specified, the %APPL._rootjobs variable resolves to an empty

string.

> APPL._tag > Use %APPL._tag when you need the Application tag. The variable resolves

to the Application tag if one is specified; otherwise, it resolves to null. The

value is in uppercase.

> APPL._truser > Use %APPL._truser when you need the user ID that triggered this Event.

For scheduled and monitor Events, this is the Event's execution user

(which defaults to the user that created or last modified the Event). The

value is in uppercase, for example OPER1.

57 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

APPL-prefixed built-in symbolic variables

Variable Name Description

> APPL._user > Use %APPL._user when you need the user ID of the last person to create

or edit the Event. The value is in uppercase, for example SCHEDMASTER.

> APPL._user1 through

APPL._user4

> Use %APPL._usern when you need to pass user parameters to an Event

when it is triggered or simulated. Specify the value for n that corresponds

to the user parameter you will use when triggering or simulating. The case

you specify the parameters in is preserved, where required.

58 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

WOB-prefixed built-in symbolic variables

Variable Name Description

> WOB._agent > Use the %WOB._agent symbolic variable when you need the name of the

agent the job ran on. You can use this symbolic variable in a JavaScript

script from an Application or an Alert.

> WOB._avgruntime > Use %WOB._avgruntime when you need the average run time for a job.

By default, the CA WA server uses the last ten executions of the job to

calculate the average run time.

> WOB._cmpc > Use %WOB._cmpc when you need the completion code of the job. The

value of this variable is available when a job completes or fails.

> WOB._fullname > Use %WOB._fullname when you need the full name of the job, including

the qualifier. The name resolves in uppercase, for example PAYJOB1.RUN1.

If the qualifier is not specified, the %WOB._fullname variable resolves to

the job name.

> WOB._jobno > This variable applies to Alerts only. Use %WOB._jobno when you need the

job number of the job that executes the Alert. It is an integer variable and

is set to 0 for a job that has not been submitted.

59 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

WOB-prefixed built-in symbolic variables

Variable Name Description

> WOB._lstatus > Use %WOB._lstatus when you need the long status of the job. The long

status provides additional information about the job. If the job does not

have a long status, the %WOB._lstatus variable resolves to null.

> WOB._name > Use %WOB._name when you need the name of the job, excluding the

qualifier. The name resolves in uppercase, for example PAYJOB1.

> WOB._qualifier > Use %WOB._qualifier when you need the qualifier of the job name. The

value resolves in uppercase, for example RUN1.

> WOB._retrycount > Use %WOB._retrycount when you need the retry count of the job. The

retry count specifies the number of times the CA WA server tries to

resubmit a job if it fails.

> WOB._state > This variable applies to Alerts only. Use %WOB._state when you need the

value of the job's state.

60 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

WOB-prefixed built-in symbolic variables

Variable Name Description

> WOB._status > Use %WOB._status when you need the job status sent by the agent or CA

WA server. You can use this symbolic variable in a JavaScript script from

an Application or an Alert.

> WOB._subcount > Use %WOB._subcount when you need the job submission count. The

count is incremented each time the job is submitted. If the job has not

been submitted, the %WOB._subcount resolves to 0 (zero).

> WOB._tag > Use %WOB._tag when you need the value for the job tag. The variable

resolves to the job tag if it is specified in the job definition; otherwise, it

resolves to the Application tag if one is specified. If neither tag is specified,

the variable resolves to null. The value is in upper case.

> WOB._type > Use %WOB._type when you need the type of job.

> WOB._userstatus > Use %WOB._userstatus when you need the user status of a job. You can

use this symbolic variable in a JavaScript script from an Application or an

Alert.

Date and time built-in symbolic variables

> The CA WA server provides several built-in date and time
symbolic variables that you can use for scheduled, actual or
runtime dates or times.

> The first character after the period determines if it is a
scheduled (S), actual (A,) or runtime (R) date or time.

> For example, the scheduled date symbolic variable is
APPL._SDATE. The corresponding actual date symbolic variable
is APPL._ADATE, and the corresponding runtime date symbolic
variable is APPL._RDATE.

> Scheduled dates and times are based on the time the Event is
scheduled to trigger or, if the Event is manually triggered, the
trigger time for the Event.

> Actual dates and times are based on the actual system time
when the Application is generated.

61 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

62 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Date and time built-in symbolic variables

Date/Time Variable Description

APPL._SDATE

APPL._ADATE

APPL._RDATE

WOB._RDATE

WOB._LDATE

> Date in full Example: Friday 31st March 2009. If you want to pass this as

an argument, you need to enclose it in double quotation marks.

> For example: "%APPL._SDATE"

APPL._SYY

APPL._AYY

APPL._RYY

WOB._RYY

WOB._LYY

> Last two digits of the year

> Example: 09

APPL._SYEAR

APPL._AYEAR

APPL._RYEAR

WOB._RYEAR

WOB._LYEAR

> Year

> Example: 2009

63 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Date and time built-in symbolic variables

Date/Time Variable Description

APPL._SMM

APPL._AMM

APPL._RMM

WOB._RMM

WOB._LMM

> Number of month

> Example: 10 for October

APPL._SMMM

APPL._AMMM

APPL._RMMM

WOB._RMMM

WOB._LMMM

> First three characters of month

> Example: Oct

APPL._SMONTH

APPL._AMONTH

APPL._RMONTH

WOB._RMONTH

WOB._LMONTH

> Name of month

> Example: October

64 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Date and time built-in symbolic variables

Date/Time Variable Description

APPL._SDAY

APPL._ADAY

APPL._RDAY

WOB._RDAY

WOB._LDAY

> Name of day

> Example: Monday

APPL._SDD

APPL._ADD

APPL._RDD

WOB._RDD

WOB._LDD

> Number of actual day of month

> Example: 09

APPL._SDDD

APPL._ADDD

APPL._RDDD

WOB._RDDD

WOB._LDDD

> Julian day, or the number of the day in the year

> Example: 045

65 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Date and time built-in symbolic variables

Date/Time Variable Description

APPL._SDOWNUM

APPL._ADOWNUM

APPL._RDOWNUM

WOB._RDOWNUM

WOB._LDOWNUM

> Number of day in week

> Example: 1 for Sunday, 2 for Monday, and so on.

APPL._SDOW#

APPL._ADOW#

APPL._RDOW#

WOB._RDOW#

WOB._LDOW#

> Number of actual day of month

> Example: 09

APPL._STIME

APPL._ATIME

APPL._RTIME

WOB._RTIME

WOB._LTIME

> Time in 24-hour format

> Example: 14.55.32

66 October 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Date and time built-in symbolic variables

Date/Time Variable Description

APPL._SHH

APPL._AHH

APPL._RHH

WOB._RHH

WOB._LHH

> Hour in 24-hour format

> Example: 08

APPL._SMN

APPL._AMN

APPL._RMN

WOB._RMN

WOB._LMN

> Minute of hour

> Example: 55

APPL._SSS

APPL._ASS

APPL._RSS

WOB._RSS

WOB._LSS

> Number of seconds past the minute

> Example: 32

Defining a system-level symbolic variable

> You can define your own system-level symbolic variables if you
require a variable that is not provided. You can use a system-level
symbolic variable in any Application or job running on the CA WA
server. System-level symbolic variables are stored in the ESP host
object. You can define a system-level symbolic variable in the
following ways:

 Define the variable as a default in the Resources.Define.UserESP file

 Define the variable in a JavaScript script

> All system-level symbolic variables start with the ESP prefix.

> Note: After a cold start of the CA WA server, system-level
variables that are defined in a JavaScript script are cleared or, if a
default exists, restored to their default value. To preserve a
system-level variable and its value, define it as a default instead.

67 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Global variables

> Global variables let you store information that you can reuse across
Applications. Global variables save time: you do not have to enter specific
information, such as job names or argument values, each time you want
to perform the same kind of processing. When you use global variables,
you also reduce the possibility of coding errors.

> Global variables are stored in the relational database for CA WA. Each
global variable belongs to a context, which is a group of related variables.
Contexts help you avoid naming conflicts.

> You can use global variables when you define jobs. The %VAR statement
lets you specify a global variable name in supported job definition fields.

> When an Event is triggered, the CA WA server substitutes the current
value of that global variable. You can also define jobs that have a
dependency on global variables. The job is submitted after all of the job's
dependencies (time, predecessor, variable, and resource dependencies)
are met.

68 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Global variables

> Although both global variables and system-level symbolic variables
let you store information that you can reuse across Applications,
they are created and managed differently.

> A symbolic variable is a JavaScript variable whose value can be
accessed outside the context of the JavaScript script.

> All symbolic variables are stored in built-in JavaScript host objects.

> Unlike symbolic variables, global variables are not dependent on
JavaScript. Instead, global variables are stored in the relational
database for CA WA.

> You can specify both types of variables in supported job definition
fields and use them in JavaScript scripts.

> When CA WA encounters a symbolic variable or the global variable
%VAR statement in a job definition field, it substitutes the current
value of that variable.

69 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Global variables

> Another difference between the two types of variables is

that global variables support variable dependencies.

> Whereas symbolic variables only let you substitute values

in job definition fields, global variables let you define jobs

that run when their global variable expressions are

satisfied.

> For example, you can define a job that only runs when a

global variable named quota is assigned a value greater

than or equal to 1000.

70 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

%VAR Statement—Specify a global variable
in a job definition

> You can use global variables when you define and

monitor jobs.

> The %VAR statement lets you specify a global variable

name in supported job definition fields in the Define and

Monitor perspectives of CA WA Desktop Client.

> When an Event is triggered, the CA WA server tries to

substitute the current value of a global variable specified

in the %VAR statement.

> Example:

WOB.locationvalue = %VAR(‗location1‘,‘dclocations‘)

71 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

JavaScript Examples

> Overriding average runtime for estimated end times

 For example, if you know that the job normally takes 10

times longer to execute on a Friday, use the following

script in the Application:

if (today('friday')) WOB.duration=WOB._avgruntime * 10;

else WOB.duration=WOB._avgruntime;

 Run this script at Event trigger time, so that the server

calculates the correct value.

 To complete this example, specify the %WOB.duration

symbolic variable in the Duration in minutes field on the

job's General dialog.

72 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

JavaScript Examples

> Scheduling a job to run based on day and time

 An Event is scheduled every hour on the hour to run an Application.
Job X in the Application should only be selected to run on Fridays at
3 p.m.

– To schedule a job to run based on day and time

1. Use the following JavaScript script at Event trigger time for job X:

if (today('friday') && APPL._SHH=='15')

WOB.runme='true';

else WOB.runme='false';

2. Use the %WOB.runme variable as the run frequency in the job
definition.

3. Schedule an hourly Event to run the Application.

 Job X is selected to run only if it is Friday and the Event's scheduled
hour (APPL._SHH) is 15 (in other words, the Event was scheduled at
3 p.m.).

73 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

JavaScript Examples

> Running different jobs based on the scheduled hour

 An Event is scheduled every hour on the hour. Different

jobs run based on the scheduled hour. The following is

the schedule frequency for each job:

– JOBA runs at 13:00, 15:00, and 17:00.

– JOBC runs at 08:00, 12:00, and 16:00.

– All other jobs run each hour.

74 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

JavaScript Examples

> Running different jobs based on the scheduled hour

1. Use the following JavaScript script at Event trigger time for each job:
WOB.runme=false;

//run different jobs based on scheduled hour

switch (WOB._name)

{

case 'JOBA':

if (APPL._SHH == '13' || APPL._SHH == '15' ||

APPL._SHH == '17') WOB.runme=true;

break;

case 'JOBC':

if (APPL._SHH == '08' || APPL._SHH == '12' ||

APPL._SHH == '16') WOB.runme=true;

break;

default:

WOB.runme=true;

}

2. Use the %WOB.runme variable as the run criteria for each job.

 The WOB.runme variable is set based on the job name and the scheduled hour. ―case‖
statements are used for jobs with special requirements. If the name of a job in the
Application does not match one of the case statement labels, WOB.runme is set to true
for the job.

75 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

JavaScript Examples

> Scheduling a different script each quarter

 Schedule a job and run a different script for the job each calendar
quarter. Each calendar quarter consists of three months, and the
first quarter starts on January 1.

1. Use the following JavaScript script at run time for the job:

if (today('jan feb mar')) WOB.scriptname='quarter1';

if (today('apr may jun')) WOB.scriptname='quarter2';

if (today('jul aug sep')) WOB.scriptname='quarter3';

if (today('oct nov dec')) WOB.scriptname='quarter4';

2. Use the %WOB.scriptname variable in the Script/command name field
for the job, for example:

/export/home/jsmith/%WOB.scriptname

 In a single job definition, the JavaScript script determines the
current calendar quarter, and sets the WOB.scriptname variable to
―quarter1‖, ―quarter2‖, ―quarter3‖, or ―quarter4‖.

 When the job is ready to run, the CA WA server resolves this
variable and runs the appropriate script.

76 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

JavaScript Examples

> Creating multiple dynamic executions of the same job

with different arguments per execution

 An jobstream needs to run a script and extract information

for arguments for each run of the same job. The number

of unique arguments fluctuates from day to day. So the

number of jobs needed to process all the unique argument

mixes is not static. All unique parameter sets are loaded

in to a CA Workload Automation DE Global Variable

Context with all variables starting with DAVE and

appended to that a number for each unique parameter

set.

77 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

JavaScript Examples

var counter = getVar('DAVECOUNTER','TEST');

var x = 1;

while (x<=counter) {

var parm = getVar('DAVE' + x, 'TEST');

var name = parm.split(" ");

execCommand("DATA_STAGE" + '.' + name[0], APPL._name + '.' +
APPL._gen, "ACTION Insert Type(UNIX) Container(%(APPL._name)~~)
Rununit(DW005) Tag(" + '\"' + parm + '\"' + ")
Command(/export/home/dsadm/Ascential/DataStage/DSEngine/bin/dsjob
) Pred(START.APPL) Succ(STOP.APPL) User(dsadm) Args(" + '\"' + parm
+ '\"' + ")");

x++;

}

execCommand('STOP.APPL', APPL._name + '.' + APPL._gen, 'ACTION
RELEASE');

78 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

JavaScript Examples

> Creating multiple dynamic executions of the same job

with different arguments per execution

 The JavaScript is defined as part of link workload object

definition to execute at link run time, reads the number of

parameter sets in the context from a control variable

(DAVECOUNTER) and then inserts a job per parameter

set.

79 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Troubleshooting

> JavaScript Syntax

Checker

 Check Syntax button

when editing JavaScripts

checks format and

provides feedback on

statement errors

 Works with JavaScripts

stored in the Java Script

Repository

80 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

Questions?

81 August 12, 2009 [Enter presentation title in footer] Copyright © 2009 CA

