©

©

Implementing Metrics
with Function Points

Session 240

Frank Mazzucco
Texas Instruments

Texas Instruments 1996 1

Agenda

>« Measurement drivers
* Function Points
» Using Composer Function Point report
» Metrics implementation techniques

Texas Instruments 1996 2

Evolution of I/S Development

Methods & Data Computing

Techniques Languages Management Platforms
1995 it i 0ODB Client/
Information Action ﬁ Server
1990 Engineering Diagrams Entity Model ﬁ
ﬁ ﬁ Access ,
1085 Entity {r PC's
Modeling AGL's ReDlgtli\Aogal ﬁ
1980 Mini’s
Structured i
Techniques ﬁ
1975 o cosoL DBﬁMS i)
1970 Flowcharts Assembler Flat Files Mainframes

© Texas Instruments 1996 3 i E

Quality and Productivity Trends

* Annual software productivity improvement: 4 - 7%
— Barry Boehm

* Less than one company in five measuring
software productivity and quality

— Howard Rubin

* 76% of assessed software organizations at the
initial (ad hoc / chaotic) level of software maturity

— Software Engineering Institute, Carnegie-
Mellon University)

* Many well-publicized “software disasters”

© Texas Instruments 1996 4 i E

©

©

Measuring Productivity and Quality
 Historically, very little to measure
» Drivers for a new emphasis on measurement
— Application of TQM techniques to software
» e.g., Malcolm Baldrige Criteria, ISO 9000-3
— Software process improvement
» e.g., Software Engineering Institute (SEI)

— Maturity and acceptance of model-based
developmenttools

» e.g., Composer by IEF

— Objective, non-technical, reproducible
measures of size

» e.g., Function Points

Texas Instruments 1996 5

Agenda

 Measurement drivers
> e Function Points
» Using Composer Function Point report

» Metrics implementation techniques

Texas Instruments 1996 6

©

Function Points

» Measure of work-product (or, relative size) of a
software application or project

— Based on IBM study of key project variables
— Originally proposed by Allan Albrecht in 1979
» Synthetic metric based on user functionality

— Measure functions requested/received

» Inputs, Outputs, Inquiries, Files, Interfaces
— Components weighted by complexity
— Total adjusted by system-level factors

» 14 General Systems Characteristics

© Texas Instruments 1996 7 i E

Applications of Function Points

* Asatechnology-independent
component of software metrics

— Development productivity (function
points per person-month)

— Maintenance productivity (function
points supported per full-time
maintenance staff)

— Defect density (defects per
function point), etc.

Texas Instruments 1996 8 i E

Applications of Function Points (cont.)

» To validate project estimates

— Can be measured early in the project
lifecycle (early measures are estimates
which must be updated at project

completion)

— Early use allows validation based on
project history (or, with caution, industry
averages) on projects with similar
attributes of the estimate developed from

the detailed project plan

e Asa standard means of communication
among project managers, software users,

and management

© Texas Instruments 1996 9

B

Components of Function Point Analysis

Transactions

| External User |
Input Output Inquiry

A $

Input

Other Applications

Internal
Logical

Output

p | Transactions

File

Inquiry

General
Systems
Characteristics

-

External

Adjustment -

Application Boundary

© Texas Instruments 1996 10

Interface
File

Applicability of Function Points

* FPs count “logically, from the user’s point of view”

* Logical user data and transactions—not dependent on
implementationtechnique

» Can be easily applied to new development technologies
- GUI's
— Client/Server
— Object-Oriented

* Logical user data
(Files, Interfaces)

* Logical user transaction
(Inputs, Outputs, Inquiries)

. B

n

Entity type

n

Elementary process

© Texas Instruments 1996

FP Example—GUI

— | Human Resources System | |

Employees Jobs Assignments Locations .l Help

- | Employee Assignments

—l Create Employee Job Assighments

EmployeelD [123-45-6789 Name |John Q. Doe
Job Number REC5536378 Desc |[Welder-Journeyman

Eff Date
Salary
Rating [satisfactory | V]

© Texas Instruments 1996 12

FP Example—Client/Server

% * One logical transaction
ADD_PART — One External Input
ADD_PART
Standalone SERVER
ADD_PART_
CLIENT Computer
DB update
Validation
and [y =

editing <§?? « One logical]

Client tTransalcttlfon Server System
System wo platforms

* Two “programs”
* One External Input

© Texas Instruments 1996 13 2 E

Why Function Points?

Independent of the technology used

— Well-suited to measuring impact of new
technology

Can be used early in project lifecycle

Can be used to validate project estimates

Reproducible

— £10% accuracy verified by MIT research

— Accuracy can be much higher in controlled
environments

Supported by active, worldwide user group

(IFPUG)

© Texas Instruments 1996 14 2 E

International Function Point Users Group
* Non-profit organization - promotes and supports
Function Points and related metrics
— 600+ member companies worldwide
— 11 international affiliate organizations
* Membership services
— Counting practices and case studies
Certification
Management reporting
Measurement start-up
Conferences and workshops
Hotline support
— WWW home page (http://www.ifpug.org/ifpug)

Contact IFPUG, (614) 895-7130, for additional information @?

© Texas Instruments 1996 15

Agenda

* Measurement drivers
* Function Points

> « Using Composer Function Point report
» Metrics implementation techniques

© Texas Instruments 1996 16 i E

©

©

Using the Composer
Function Point (FP) Report

» Composer counting rules (simplified)

— Elementary processes (or action blocks) counted
as Inputs, Outputs, or Inquiries

— Entity types counted as Files or Interfaces based
on usage

— Classification and complexity based on actual
usage in action diagrams

» Matches the spirit of IFPUG 4.0 rules quite well
» Must be adjusted to account for:
— Differences in development methods
— Objects unknown to Composer
— General systems characteristics @P

Texas Instruments 1996 17

Using the Composer FP Report (cont.)

» Adjusting for development method differences
— Composer assumes:

»Action block (w/entity actions) = Business
function (El, EO, or EQ)

— “Elementary process level or equivalent” — for
both Analysis and Design report options
(Note: Design is used most often)

Texas Instruments 1996 18 i E

Using the Composer FP Report (cont.)

» Adjusting for development method differences (cont.)

— Consistent with Composer Method, but
implementation variants can cause discrepancies

— Examine action block hierarchy
— Remove (manually) non-business function AB’s
»e.g., paging commands

— Aggregate (manually) partial business function AB’s
into single inputs, outputs, or inquiries

»e.d., “modular I/O,” validation routines

© Texas Instruments 1996 19 i E

FP Report—Activities

MCDEL NAME: CCORPCRATE_CRDER_PROCESSI NG
BUSI NESS SYSTEM CRDER_MAI NTENANCE

ACTI ON BLOCKS:
XOOOOONXKX
XOOOOOOKNNNKK
XOOOOOOKNONKK
ORDER LI NE_MAI NTENANCE
CREATE_ORDER LI NE
DELETE_ORDER LI NE .
PAGE_BKWD ORDER LI NE Paging commands—
PAGE_FWD_ORDER LI NE } should be deleted
READ_ORDER LI NE
UPDATE_ORDER LI NE I L
VALI DATE_PRODUCT OCDES <~ Vallda_ltlon routlne delete or
XOOOOOONNRKK combine with add/update
XOOOOOOKNONNKK functions

© Texas Instruments 1996 20 i E

FP Report—Activities (cont.)

MCDEL NAME: CORPCRATE_CRDER _PROCESSI NG
BUSI NESS SYSTEM CRDER_MAI NTENANCE

ACTI ON BLOCKS:

XOOODOONKK
XOOOOOONNNK

ORDER LI NE_MAI NTENANCE
ASSOC_ORD_ LI NE_W TH_ORDER -
ASSOC_ORD_LI NE_W TH_PRODUCT -

CREATE_CRDER LI NE Typical “modular I/0” action
DELETE_ORDER LI NE

READ._EACH ORDER LI NE < bl_ocks—shoulc,i be combined
READ ORDER P with other AB’s or deleted

-l

READ_ORDER LI NE

READ_ORDER_LI NE_FCR_UPDATE - been built this way, it may
READ_PRODUCT -t

UPDATE_ORDER LI NE ?e p:_eferab_letto do ztimanual
UPDATE_PRODUCT =~ - unction point count.)

© Texas Instruments 1996 21 2 E

(Note: If the entire model has

Using the Composer FP Report (cont.)

» Adjusting for development method differences
(cont.)

— Examine entity types for possible aggregation

»Files (ILFs) and interfaces (EIFs) must be
maintained independently and may consist
of multiple entity types

» Examine attributive and associative entity
types and combine (manually) where
necessary

© Texas Instruments 1996 22 2 E

©

©

FP Report—-Data

MODEL NAVE: CORPORATE_CRDER_PROCESS| NG
BUSI NESS SYSTEM CRDER_MAI NTENANCE
FI LES/ ENTI TY TYPES: FILES | NTERFACES
SAC SAC
CUSTOVER 1
ORDER 1
ORDER_LI NE 1 o -
ORDER LI NE_DESCRI PTION 1< This is likely an attributive

PRCDUC entity type of ORDER_LINE,
XOOGOGOONKX .

OOONKK and not maintained
XOOOOOOORNK independently—should be

Texas Instruments 1996

combined with
ORDER_LINE as one
internal logical file

23

B

Using the Composer FP Report (cont.)

» Adjusting for unknown objects
— External databases

»e.g., DL/1 database referenced by
external action block

— Activities implemented outside Composer

e Incl

»e.d., reports produced with a 3GL or 4GL
uding 14 general systems characteristics

— Calculate adjusted function point count

Spreadsheet option can be helpful - but be
aware of missing procedure step indent!

Texas Instruments 1996

24

Using the Composer FP Report (cont.)

Model
Characteristic

FP Report
Discrepancy

FP Report
Useful?

© Texas Instruments 1996

© Texas Instruments 1996

User function =

Some user
functions as EPs,

elementary others split into
process CABs
10-25% 30-70%
Yes Probably ~ Maybe

Structured
programming
AB ‘modules’

70-200%

No

25

26

Agenda

* Measurement drivers
* Function Points
» Using Composer Function Point report

>> « Metrics implementation techniques

© Texas Instruments 1996 27

Metrics Implementation

© Texas Instruments 1996 28

Metrics Implementation Plan

Near-term (=6 months)

» Obtain management commitment

* Join IFPUG and/or local user group

* Train 1-2 people in function point analysis

* Count 1-3 new applications as metrics pilots
* Measure:

—Development and enhancement productivity
(FP/person-month)

—Maintenance productivity (FP/full-time equiv.
maintenance staff)

—Defect density (defects/FP @ release + 6 months)
—> « Demonstrate results to management

© Texas Instruments 1996 29 i E

Metrics Implementation Plan (cont.)

Intermediate Term (=1-2 years)
» Train additional staff in function points
» Deploy metrics program to all new development
* Begin counting existing systems for a baseline
» Consider a software process assessment
* Add one or more metrics
— Cycle time (elapsed time/FP)
— On-time project completion (actual vs. plan)
— Customer satisfaction (user survey)
—>+ Demonstrate results to management

— Use best practices to align metrics with
business goals and objectives, such as:

» Goal-Question-Metric paradigm,
Catchball process %@p

© Texas Instruments 1996 30

Goal/Question/Metric Paradigm

Goal

N\

Question

N\

Metric

Reference:

© Texas Instruments 1996

 Overall goals of the measurement effort:
— object, environment, purpose, perspective
»Assess the reliability of a software product as
perceived by the customer using it.

 Quantifiable questions that support each goal,
such as: Does the customer associate reliability
with the product failures?

* Quantifiable data to answer the questions
— easy to collect, calculate, and understand

»Failure density
»Mean time between failures

Basili, V.R., and D.M. Weiss, “A Methodology for Collecting Valid
Software Engineering Data,” IEEE Transactions on Software Engineering ,

November 1984 @p
31

Catchball Process

Division Management

Define metrics +Policy deployment‘best practice’
Identify benchmarks

*Developed by Tl Malaysia
Setgoals velopedby YS!

* Adapted by other businesses

Department Management

Resolve barriers
Accept or modify goals

© Texas Instruments 1996

Resolve barriers

Section Management .
J Accept or modify goals

Resolve barriers
Accept or modify goals Q@?

Project Team

32

©

©

Metrics Implementation Plan (cont.)

Long-term (= 3-5 years)
» Establish a metrics repository

* Initiate metrics benchmarking with other
companies

* Deploy all metrics to all projects, all systems
— Milestone completion (% on-time)
— Return on investment
— Risk analysis
—> e Demonstrate results to management

Texas Instruments 1996 33

Implementation FAQsS
* Centralized or distributed metrics function?

— How are other, similar functions in your
company organized?

» How many people should be trained?
— Distributed function — 1-2 per project team
— Centralized function — = 2 - 4% “overhead”

— Note: phase implementation allows phased
training

* How many hours in a person-month?

— Varies by company based on HR policies,
overtime, etc.

— Typically 130 to 140 hours

Texas Instruments 1996 34

Implementation FAQs (cont.)

* No formal time-reporting system?
— Use equivalent person-months

 Lacking support, resources, infrastructure for a
baseline study?

« Compare new projects against industry
averages (with some caution)

—e.g., = 8 FT/PM for new MIS development
» Build baseline gradually as projects complete

© Texas Instruments 1996 35 i E

Summary
» Model-based development can be successful if you:
—Manage the implementation

—Measure the results (implementing gradually, if
necessary)

* Function points are a useful and industry-accepted
technique for software size measurement

» Composer function point report may be useful; but, if
not, counting manually is a valid alternative

* You may already be a success story!
—So0, why not find out?

© Texas Instruments 1996 36 i E

©

Texas Instruments 1996

Implementing Metrics
with Function Points

Session 240

Frank Mazzucco
Texas Instruments

37

