
© Texas Instruments 1996 1

Implementing Metrics
with Function Points

Session 240

Frank Mazzucco
Texas Instruments

© Texas Instruments 1996 2

• Measurement drivers
• Function Points
• Using Composer Function Point report
• Metrics implementation techniques

Agenda

© Texas Instruments 1996 3

1970

1975

1980

1985

1990

1995

Methods &
Techniques Languages Data

Management
Computing
Platforms

Flat Files

DBMS

Relational
DBMS

Flowcharts

Structured
Techniques

Entity
Modeling

Information
Engineering

Assembler

COBOL

4GL’s

Action
Diagrams Entity Model

Access

OODB

Mainframes

PC’s

Client/
Server

Mini’s

Evolution of I/S Development

© Texas Instruments 1996 4

• Annual software productivity improvement: 4 - 7%
– Barry Boehm

• Less than one company in five measuring
software productivity and quality
– Howard Rubin

• 76% of assessed software organizations at the
initial (ad hoc / chaotic) level of software maturity
– Software Engineering Institute, Carnegie-

Mellon University)
• Many well-publicized “software disasters”

Quality and Productivity Trends

© Texas Instruments 1996 5

• Historically, very little to measure
• Drivers for a new emphasis on measurement

– Application of TQM techniques to software
» e.g., Malcolm Baldrige Criteria, ISO 9000-3

– Software process improvement
» e.g., Software Engineering Institute (SEI)

– Maturity and acceptance of model-based
development tools
» e.g., Composer by IEF

– Objective, non-technical, reproducible
measures of size
» e.g., Function Points

Measuring Productivity and Quality

© Texas Instruments 1996 6

• Measurement drivers

• Function Points

• Using Composer Function Point report

• Metrics implementation techniques

Agenda

© Texas Instruments 1996 7

• Measure of work-product (or, relative size) of a
software application or project
– Based on IBM study of key project variables
– Originally proposed by Allan Albrecht in 1979

• Synthetic metric based on user functionality
– Measure functions requested/received

» Inputs, Outputs, Inquiries, Files, Interfaces
– Components weighted by complexity
– Total adjusted by system-level factors

» 14 General Systems Characteristics

Function Points

© Texas Instruments 1996 8

• As a technology-independent
component of software metrics
– Development productivity (function

points per person-month)
– Maintenance productivity (function

points supported per full-time
maintenance staff)

– Defect density (defects per
function point), etc.

Applications of Function Points

© Texas Instruments 1996 9

• To validate project estimates
– Can be measured early in the project

lifecycle (early measures are estimates
which must be updated at project
completion)

– Early use allows validation based on
project history (or, with caution, industry
averages) on projects with similar
attributes of the estimate developed from
the detailed project plan

• As a standard means of communication
among project managers, software users,
and management

Applications of Function Points (cont.)

© Texas Instruments 1996 10

Components of Function Point Analysis
Transactions

External User
Input Output Inquiry

Application Boundary

General
Systems

Characteristics
Adjustment

Internal
Logical

File

Other Applications

Transactions

External
Interface

File

Input

Output

Inquiry

© Texas Instruments 1996 11

Applicability of Function Points
• FPs count “logically, from the user’s point of view”
• Logical user data and transactions–not dependent on

implementation technique
• Can be easily applied to new development technologies

– GUI’s
– Client/Server
– Object-Oriented

• Logical user data Entity type
 (Files, Interfaces)

• Logical user transaction Elementary process
 (Inputs, Outputs, Inquiries)

~~

~~

© Texas Instruments 1996 12

FP Example –GUI

Human Resources System

Employees Jobs Assignments Locations Help

Employee Assignments

Create Employee Job Assignments

Employee ID Name123-45-6789 John Q. Doe

Job Number REC5536378 Desc Welder - Journeyman

Eff Date 02/16/95

Salary 18.50

Rating Satisfactory

Ok

Clear

Cancel

Exit

???

© Texas Instruments 1996 13

ADD_PART

Standalone
Computer

• One logical transaction
• One External Input

Server SystemClient
System

• One logical
transaction

• Two platforms
• Two “programs”
• One External Input

ADD_PART_
CLIENT

Validation
and

editing

ADD_PART_
SERVER

DB update

FP Example –Client/Server

© Texas Instruments 1996 14

• Independent of the technology used
– Well-suited to measuring impact of new

technology
• Can be used early in project lifecycle
• Can be used to validate project estimates
• Reproducible

– ±10% accuracy verified by MIT research
– Accuracy can be much higher in controlled

environments
• Supported by active, worldwide user group

(IFPUG)

Why Function Points?

© Texas Instruments 1996 15

• Non-profit organization - promotes and supports
Function Points and related metrics
– 600+ member companies worldwide
– 11 international affiliate organizations

• Membership services
– Counting practices and case studies
– Certification
– Management reporting
– Measurement start-up
– Conferences and workshops
– Hotline support
– WWW home page (http://www.ifpug.org/ifpug)

Contact IFPUG, (614) 895-7130, for additional information

International Function Point Users Group

© Texas Instruments 1996 16

• Measurement drivers
• Function Points
• Using Composer Function Point report
• Metrics implementation techniques

Agenda

© Texas Instruments 1996 17

Using the Composer
Function Point (FP) Report

• Composer counting rules (simplified)
– Elementary processes (or action blocks) counted

as Inputs, Outputs, or Inquiries
– Entity types counted as Files or Interfaces based

on usage
– Classification and complexity based on actual

usage in action diagrams
• Matches the spirit of IFPUG 4.0 rules quite well
• Must be adjusted to account for:

– Differences in development methods
– Objects unknown to Composer
– General systems characteristics

© Texas Instruments 1996 18

Using the Composer FP Report (cont.)

• Adjusting for development method differences
– Composer assumes:

»Action block (w/entity actions) = Business
function (EI, EO, or EQ)

– “Elementary process level or equivalent” – for
both Analysis and Design report options
(Note: Design is used most often)

© Texas Instruments 1996 19

Using the Composer FP Report (cont.)

• Adjusting for development method differences (cont.)
– Consistent with Composer Method, but

implementation variants can cause discrepancies
– Examine action block hierarchy
– Remove (manually) non-business function AB’s

»e.g., paging commands
– Aggregate (manually) partial business function AB’s

into single inputs, outputs, or inquiries
»e.g., “modular I/O,” validation routines

© Texas Instruments 1996 20

FP Report–Activities

MODEL NAME: CORPORATE_ORDER_PROCESSING
BUSINESS SYSTEM: ORDER_MAINTENANCE

ACTION BLOCKS:
XXXXXXXXXXXX
 XXXXXXXXXXXXXX
 XXXXXXXXXXXXXX
ORDER_LINE_MAINTENANCE
 CREATE_ORDER_LINE
 DELETE_ORDER_LINE
 PAGE_BKWD_ORDER_LINE
 PAGE_FWD_ORDER_LINE
 READ_ORDER_LINE
 UPDATE_ORDER_LINE
 VALIDATE_PRODUCT_CODES
XXXXXXXXXXXX
 XXXXXXXXXXXXXX

Paging commands–
should be deleted

Validation routine - delete or
combine with add/update
functions

}

© Texas Instruments 1996 21

MODEL NAME: CORPORATE_ORDER_PROCESSING
BUSINESS SYSTEM: ORDER_MAINTENANCE

ACTION BLOCKS:
XXXXXXXXXXXX
 XXXXXXXXXXXXXX
ORDER_LINE_MAINTENANCE
 ASSOC_ORD_LINE_WITH_ORDER
 ASSOC_ORD_LINE_WITH_PRODUCT
 CREATE_ORDER_LINE
 DELETE_ORDER_LINE
 READ_EACH_ORDER_LINE
 READ_ORDER
 READ_ORDER_LINE
 READ_ORDER_LINE_FOR_UPDATE
 READ_PRODUCT
 UPDATE_ORDER_LINE
 UPDATE_PRODUCT

FP Report–Activities (cont.)

Typical “modular I/O” action
blocks–should be combined
with other AB’s or deleted

(Note: If the entire model has
been built this way, it may
be preferable to do a manual
function point count.)

© Texas Instruments 1996 22

Using the Composer FP Report (cont.)

• Adjusting for development method differences
(cont.)

– Examine entity types for possible aggregation

»Files (ILFs) and interfaces (EIFs) must be
maintained independently and may consist
of multiple entity types

»Examine attributive and associative entity
types and combine (manually) where
necessary

© Texas Instruments 1996 23

MODEL NAME: CORPORATE_ORDER_PROCESSING
BUSINESS SYSTEM: ORDER_MAINTENANCE

FILES/ENTITY TYPES: FILES INTERFACES
 S A C S A C

CUSTOMER 1
ORDER 1
ORDER_LINE 1
ORDER_LINE_DESCRIPTION 1
PRODUCT
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

FP Report–Data

This is likely an attributive
entity type of ORDER_LINE,
and not maintained
independently–should be
combined with
ORDER_LINE as one
internal logical file

© Texas Instruments 1996 24

Using the Composer FP Report (cont.)

Spreadsheet option can be helpful - but be
aware of missing procedure step indent!

• Adjusting for unknown objects
– External databases

»e.g., DL/1 database referenced by
external action block

– Activities implemented outside Composer
»e.g., reports produced with a 3GL or 4GL

• Including 14 general systems characteristics
– Calculate adjusted function point count

© Texas Instruments 1996 25

Using the Composer FP Report (cont.)

User function =
elementary

process

Some user
functions as EPs,
others split into

CABs

Structured
programming
AB ‘modules’

Model
Characteristic

FP Report
Discrepancy

FP Report
Useful?

10-25% 30-70% 70-200%

 Yes Probably Maybe No

© Texas Instruments 1996 26

© Texas Instruments 1996 27

• Measurement drivers

• Function Points

• Using Composer Function Point report

• Metrics implementation techniques

Agenda

© Texas Instruments 1996 28

Metrics Implementation

Initial
Metrics

Program

Metrics
Captured

Systems
Measured Ultimate

Metrics
Program

© Texas Instruments 1996 29

Near-term (6 months)
• Obtain management commitment
• Join IFPUG and/or local user group
• Train 1-2 people in function point analysis
• Count 1-3 new applications as metrics pilots
• Measure:

–Development and enhancement productivity
(FP/person-month)

–Maintenance productivity (FP/full-time equiv.
maintenance staff)

–Defect density (defects/FP @ release + 6 months)
• Demonstrate results to management

Metrics Implementation Plan
~~

© Texas Instruments 1996 30

Intermediate Term (1-2 years)
• Train additional staff in function points
• Deploy metrics program to all new development
• Begin counting existing systems for a baseline
• Consider a software process assessment
• Add one or more metrics

– Cycle time (elapsed time/FP)
– On-time project completion (actual vs. plan)
– Customer satisfaction (user survey)

• Demonstrate results to management
– Use best practices to align metrics with

business goals and objectives, such as:
» Goal-Question-Metric paradigm,

Catchball process

Metrics Implementation Plan (cont.)
~~

© Texas Instruments 1996 31

Goal

Question

Metric

• Overall goals of the measurement effort:
– object, environment, purpose, perspective

»Assess the reliability of a software product as
perceived by the customer using it.

• Quantifiable questions that support each goal,
such as: Does the customer associate reliability
with the product failures?

• Quantifiable data to answer the questions
– easy to collect, calculate, and understand

»Failure density
»Mean time between failures

Reference: Basili, V.R., and D.M. Weiss, “A Methodology for Collecting Valid
Software Engineering Data,” IEEE Transactions on Software Engineering ,
November 1984

Goal/Question/Metric Paradigm

© Texas Instruments 1996 32

Division Management

Department Management

Section Management

Project Team

Define metrics
Identify benchmarks
Set goals

Resolve barriers
Accept or modify goals

Resolve barriers
Accept or modify goals

Resolve barriers
Accept or modify goals

•Policy deployment ‘best practice’

•Developed by TI Malaysia

•Adapted by other businesses

Catchball Process

© Texas Instruments 1996 33

Metrics Implementation Plan (cont.)

Long-term (3-5 years)
• Establish a metrics repository
• Initiate metrics benchmarking with other

companies
• Deploy all metrics to all projects, all systems

– Milestone completion (% on-time)
– Return on investment
– Risk analysis

• Demonstrate results to management

~~

© Texas Instruments 1996 34

Implementation FAQs
• Centralized or distributed metrics function?

– How are other, similar functions in your
company organized?

• How many people should be trained?
– Distributed function – 1-2 per project team
– Centralized function – 2 - 4% “overhead”
– Note: phase implementation allows phased

training
• How many hours in a person-month?

– Varies by company based on HR policies,
overtime, etc.

– Typically 130 to 140 hours

~~

© Texas Instruments 1996 35

Implementation FAQs (cont.)

• No formal time-reporting system?
– Use equivalent person-months

• Lacking support, resources, infrastructure for a
baseline study?

• Compare new projects against industry
averages (with some caution)
– e.g., 8 FT/PM for new MIS development

• Build baseline gradually as projects complete
~~

© Texas Instruments 1996 36

• Model-based development can be successful if you:
–Manage the implementation
–Measure the results (implementing gradually, if

necessary)
• Function points are a useful and industry-accepted

technique for software size measurement
• Composer function point report may be useful; but, if

not, counting manually is a valid alternative
• You may already be a success story!

–So, why not find out?

Summary

© Texas Instruments 1996 37

Implementing Metrics
with Function Points

Session 240

Frank Mazzucco
Texas Instruments

