

CA Release Automation

CDE Plugin Creation

Best Practices Guide

Author : Walter Guerrero

Version: 1.2

Filename: CA-Release-Automation-CDE-Plugin-Creation-Best-Practices-GuideV1.0.docx

Date: 6/2/2016

Page 2 of 19

Table of Contents
Overview ... 3

RA CDE Plugin Framework .. 3

RA CDE —Bamboo Plugin .. 3

Calling Bamboo RESTful API .. 4

Setting up Hook.io micro service .. 5

GitHub Repository ... 5

JSON Manifest File .. 7

JavaScript Function ... 9

Hook.io Micro Service ... 11

Adding Plugin to RA CDE ... 14

Best Practices .. 17

Planning... 17

Tools .. 18

Using the proper version of the API calls .. 18

Using the correct parameter method ... 18

Recommended Tools .. 18

Copyright Notice ... 18

Useful Links ... 18

Page 3 of 19

Overview

Customers in their Continuous Delivery journey that is part of their Agile maturity have a
new tool called Release Automation Continuous Delivery Edition, which permits customers
the ability to build “releases”; and these releases can be part of a sprint, program
increments, or milestones.

These releases are composed of multiple applications’ contents (which is what is going to be
delivered at the end of the sprint or program increment). It becomes important as part of
these releases that the different tools being used by the customer can be called directly by
tasks that make up the RA CD Edition release.

Release Automation CDE provides the customers with the ability of creating additional
plugins.

This document will take you thru the process that it will take for the creation of a RA CDE
plugin based off the Hook.io micro services and utilizing GitHub as the provider of the files
needed to interface with the Hook.io micro service. The flow for the creation of RA CDE
plugin is as follows:

 Design the plugin by selecting the proper Restful API calls to be used.

 Test the Restful API calls independently.

 Setup the Github user implementation, where the gh-pages is configured and ready
to run.

 Implement the RA CDE plugin JSON manifest

 Implement the RA CDE plugin JavaScript

 Create a hook.io micro service and copy the RA CDE plugin JavaScript that is part of
the GitHub implementation.

 Add the plugin to the RA CDE implementation by importing the JSON manifest.

 Add an endpoint pointing to the Bamboo implementation.

 Add a task to a RA CDE release.

RA CDE Plugin Framework

The RA CDE plugin implementation follows the steps listed above, now we are going to start
the detailed explanation of this process.

RA CDE —Bamboo Plugin

As part of the process in how to create a RA CDE plugin, we are going to utilize the Atlassian
Bamboo tool as part of the method to follow.

To accomplish this integration, we are going to be performing the following restful calls
dealing with the build processes initially.

Page 4 of 19

 http://<bamboo-host>:<port>/rest/api/latest/plan?expand this call was selected
for you to get familiar with the Bamboo Restful calls. This call will provide you with
all the plans that are presently available in the Bamboo server.

 http://<bamboo-host>:<port>/rest/api/queue/{planKey} this is the call that we
are going to use for the execution of builds in a Bamboo server.

o Where <bamboo-host> The hostname where the Bamboo server is
running

o Where <port> the port number where the Bamboo server is listening on,
and by default is 8085.

If you want to learn more about the Bamboo restful API, you can get that information at
the following URL location.

 https://docs.atlassian.com/bamboo/REST/5.10.0

Calling Bamboo RESTful API

To successfully use the Bamboo RESTful API, the following pre-requisites are needed:

 HTTP basic authentication.

 Add the following header entry: “X-Atlassian-Token” with a value of “nocheck” to be
able to execute the job build.

 Generate a Base64 string for the username/password combination. This can be
generated by the postman application or you can use an online encoder/decoder to
obtain this value.

 You can also use the Base64 API directly in your application.

 Define the HTML header in the micro service or JavaScript function.

The recommendation is to use the Postman utility to conduct most of your testing of the

Bamboo RESTful API that you would need to use. Not only will postman help you build the

correct RESTful API call, but it will also build the “curl” options as well.

Figure 1: Typical Postman session

https://docs.atlassian.com/bamboo/REST/5.10.0

Page 5 of 19

In the above figure, you see how the “/plan” call is built and the corresponding results in the

postman session.

You will also need to take into account how the how the different parameters being used by the

different GET/POST calls, these parameters can either be inline URL call, for example: /plan?expand

Setting up Hook.io micro service

The available Release Automation CDE plugin framework is based off the creation of the
necessary micro-services as defined in the Hook.io (www.hook.io) implementation. This
provides us with benefits of taking a very complex implementation and creating discrete,
independent processes.

Hook.io (www.hook.io) support several languages, but we are going to concentrate on the
creation of the necessary RA CDE plugins based off JavaScript language.

You can learn and download Hook.io from the following GitHub location
(https://github.com/bigcompany/hook.io).

The Hook.io micro service is composed of three sections:

 GitHub Repository

o Plugin manifest file

o Plugin JavaScript function(s)

 The micro service contents

We are going to start by explaining how the manifest file is setup and where it would need to be

located.

GitHub Repository
To make the creation of a successful RA CDE plugin, you will need to create a new GitHub repository

(recommended).

http://www.hook.io/
http://www.hook.io/
https://github.com/bigcompany/hook.io

Page 6 of 19

Figure 2: A GitHub Reposatory

After you have created the GitHub repository, it is recommended that you create the static GitHub

pages by clicking in the “Launch automatic page generator” in the settings tab.

Figure 3: Adding GitHub Pages

Once the GitHub pages have been created, you can place the manifest and JavaScript function files

in the gh-pages branch

Page 7 of 19

Figure 4: Selecting gh-pages branch

Since GitHub pages are static in nature and for you to be able to get to the manifest and JavaScript

function files, you will need to place copies of these files in the “gh-pages” branch.

Figure 5: Adding files to gh-pages branchr

JSON Manifest File

The manifest file will describe the connection between Release Automation CDE and the plugin. This

file contains the available tasks and the necessary endpoint template information.

Page 8 of 19

Figure 6: Manifest file

Contents of the proposed Bamboo-plugin manifest file

{
 "name": "Atlassian Bamboo",
 "vendor": "CA Technologies",
 "uniqueId": "ca.cdd.bamboo",
 "description": "Plugin for Atlassian Bamboo powered by Hook.io",
 "version": "1.0.0",
 "iconUrl":"https://cloud.githubusercontent.com/assets/14964166/12397368/7823d66e-be15-11e5-
9b94-86673ff64912.png",
 "relativeUrl": true,
 "endpointTemplate":
 {
 "name": "Atlassian Bamboo",
 "description": "Endpoint Template for Atlassian Bamboo",
 "serviceType": "ENDPOINT",
 "endPointType": "Bamboo endpoint",
 "uniqueId": "ca.cdd.bamboo.endpoint",
 "parameters":
 [
 {
 "uniqueId": "ca.cdd.bamboo.endpoint.bambooServer",
 "name": "bambooServer",
 "displayName": "Bamboo URL",
 "type": "string",
 "isOptional": false,
 "defaultValue": null,
 "description": "Enter the full URL of the System you want to connect
to, ex. https://[Bamboo server]:8085/"
 },
 {
 "uniqueId": "ca.cdd.bamboo.endpoint.username",
 "name": "username",
 "displayName": "Bamboo Username",
 "type": "string",
 "isOptional": false,
 "defaultValue": null,

Page 9 of 19

 "description": "Enter the Bamboo username"
 },
 {
 "uniqueId": "ca.cdd.bamboo.endpoint.password",
 "name": "password",
 "displayName": "Bamboo User Password",
 "type": "password",
 "isOptional": false,
 "defaultValue": null,
 "description": "Enter the Bamboo user's password"
 }

]
 },
 "services":
 [
 {
 "name": "Bamboo Run Build",
 "uniqueId": "ca.cdd.bamboo.task.run_build",
 "description": "Use this task to run a Bamboo build",
 "serviceType": "TASK",
 "url":"rest/api/latest/queue",
 "parameters":
 [
 {
 "name": "planKey",
 "uniqueId": "ca.cdd.bamboo.task.run_build.planKey",
 "displayName": "Bamboo Plan Key",
 "type": "string",
 "isOptional": false
 }
]
 }
]

}

JavaScript Function

The implementation of the hook.io micro service that will carry out the task defined in the JSON

manifest file will be look something like the following entries.

Page 10 of 19

Figure 7: Implementation of Hook.io micro service

Here is the contents of a typical JavaScript function that will implement the Hook.io micro service.

// this module will allow for the Hook IO micro services to be used as the
// interface mechanism for CA Release Automation CDE to interact with
// Atlassian Bamboo.
//

module['exports'] = function runBambooBuild (hook) {
 // Read task inputs
 var request = require('request'),
 endPointProperties = hook.params.endPointProperties,
 bambooserver = endPointProperties.bambooServer,
 user = endPointProperties.user,
 password = endPointProperties.password,

 taskProperties = hook.params.taskProperties,
 planKey = taskProperties.planKey;

 // need to create an encoded value.
 var encodedUser = window.btoa(escape(endcodedURIComponent(user+password)));
 console.log("encodedUser value: " + encodedUser);

 headers = {'Authorization': encodedUser, 'X-Atlassian-Token': 'nocheck'};
 console.log("user["+user+"] running new build based off Bamboo plan key["+plankey+"]");

 // Initiate build using the Bamboo REST API
 var urlValue = bambooServer + 'rest/api/latest/queue/' + planKey;
 console.log("urlValue contents: " + urlValue);
 request.post(
 {'url':urlValue, 'headers':headers}, function(err, res, resBody)

Page 11 of 19

 {
 if (err)
 {
 return hook.res.end(err.messsage);
 }

 // Build response
 hook.res.setHeader("Content-Type", "application/xml");

 // now processing the response
 var resBuild = "/s:restQueueBuild/buildResultKey";
 var responseNode = XML.getNode(hook.resBody, resBuild);

 hook.res.end(JSON.stringify(
 {
 'bamboo build' : "+responseNode"
 }
)
);

 hook.res.end(JSON.stringify(
 {
 'externalTaskExecutionStatus' : 'FINISHED',
 'executionContext' : {},
 'taskState' : "Bamboo build has been issued"+responseNode,
 'detailedInfo': "Bamboo build for plan key " +planKey+ "has been issued, build
number: " +responseNode,
 'progress' : 100,
 'delayTillNextPoll' : 0
 }
)
);
 }
)
};

Hook.io Micro Service

We need to define the micro service that will be used to make the CA Release Automation CDE

plugin work correctly. First, you will need to login to http://hook.io

Figure 8: Landing page for hook.io

Login to Hook IO either by using your email or GitHub account (it is recommended that the GitHub

account be used).

http://hook.io/

Page 12 of 19

Once you have login to Hook IO, you will see the following screen:

Figure 9: Your Hook IO view

Select the “Create Hook” option, and enter the following information: “Service Name” initially, we

are going to be discussing the additional entries and logic shortly.

Figure 10: Hook IO Micro service definition

In the above example, we are defining a service name “runbamboo-build”, which will eventually

execute a Bamboo defined build utilizing the Bamboo Restful API.

Please keep in mind that the default service security is going to be “Public Service”, you can setup

this security to be private in nature, but there are costs associated. Please review Hook.io “paid

account” for additional information.

Page 13 of 19

Copy the code from the JavaScript that is part of the GitHub repository implementation, for example

the “bamboo_plugin_hook_1_0.js” in the Hook source window.

Figure 11: Source Code for runbamboo-build hook

After you have enter the necessary source code for the hook, you can click the “Create new Hook”

button for the creation of the Hook.io micro service.

You will get the following message stating that the hook has been created and ready for you to use.

Figure 12: The Hook has been created message

Page 14 of 19

Adding Plugin to RA CDE
After you have completed testing the access to the different hook.io methods, you will need to

define the following in Release Automation CDE:

 Register the plugin

 Add the bamboo endpoint based off the registered plugin

 Add a task to a given release’s phase

The above steps are accomplished by following the steps below:

Register the plugin with Release Automation CDE, in this scenario that plugin will be Bamboo as

described in the prior sections. To get to plugins, select AdministrationPlug-ins in RA CDE.

Figure 13: Registering the plugin

Now we are going to register the Bamboo plugin, you will take the complete URL for the manifest

file that describes how the plugin will interface with RA CDE, click the “Register” button to complete

the plugin registration.

Figure 14: Enter manifest URLr

Once the Bamboo plugin has registered successfully, you will see it listed as one of the available

plugins and its available services.

Page 15 of 19

Figure 15: Registered Bamboo plugin

After the Bamboo plugin has been registered, we move to the AdministrationEndpoints to add an

endpoint for the tasks as defined as part of a release’s phases can be executed. Click the :Add

Endpoint” to start the process.

Figure 16: Add Endpoint

Enter the necessary information as shown below, you will have to select the correct endpoint type.

Click the “Add” button to complete adding the Bamboo endpoint.

Page 16 of 19

Figure 17: Adding Endpoint

Now we need to go to a release, which already has a phase defined and select “Create a task…”

option in one of the phases and add entries as shown below, once you have entered the necessary

information, click on the “Create” button.

Figure 18: Creating Bamboo task

The newly created Bamboo task will be shown in the phase.

Page 17 of 19

Figure 19: Bamboo task as part of phase

Best Practices

The following best practices will help you in creating a Release Automation CDE plugin, these best

practices will take from planning, setting up manual tasks to emulate the new tasks, tools to be

used.

Planning

As in any development project, it is important that you plan how the RA CDE plugin will interface and

interact with the targeted tool, as well as availability of the plugin’s resources.

For the plugin to work correctly, it is important that the following conditions are met.

 A HTTP service that can accept a POST request, instrument the requested operation, and

return a response.

 A “manifest.json” file is needed, which contains the details of the plugin’s capabilities.

 For offline implementations, you will need to setup a JAVA project via Eclipse or IntelliJ IDEA.

 For online implementations, you need to make sure that you have access to the online

service that will be performing the call.

Page 18 of 19

Tools

Prior to starting the development effort of the RA CDE plugin, make sure that the targeted tool is

accessible online, as well as making sure that the tool’s server can interact with the GitHub

implementation of Hook.io.

Using the proper version of the API calls

Some of the API calls can be used as version 1 (v1) or version 2 (v2), and there are other calls that

will provide you with different results based on the version being utilized.

Using the correct parameter method

Given that some API calls use URL parameters and other calls are using JSON body parameters, it

becomes very crucial that you become aware of the requirements for the API calls that you are going

to be using. This is where the tools listed in this document can be of great help to you in determining

how build the parameters require for a given API call.

Recommended Tools

To fully test the different Bamboo RESTful API calls prior to creating the necessary Hook.io

micro services, the following tools can be used:

 Postman by postman running as a standalone Google Chrome application or plug-in.

 REST Easy extension in FireFox.

 HttpRequester extension in FireFox.

 Curl, which is a command-line utility used extensively to test the different HTTP

get/post calls.

 SOAPUI 5.2.x or greater.

Copyright Notice
Copyright © 2016 CA, Inc. All rights reserved. All marks used herein may belong to their
respective companies. This document does not contain any warranties and is provided for
informational purposes only. Any functionality descriptions may be unique to the customers
depicted herein and actual product performance may vary.

Useful Links
https://docs.atlassian.com/bamboo/REST/5.10.0/

http://hook.io/

https://docops.ca.com/ca-release-automation-continuous-delivery-edition/6-1/en

http://www.getpostman.com/docs

https://docs.atlassian.com/bamboo/REST/5.10.0/
http://hook.io/
https://docops.ca.com/ca-release-automation-continuous-delivery-edition/6-1/en
http://www.getpostman.com/docs

Page 19 of 19

http://github.com

https://www.base64decode.org/

http://tomcat.apache.org

http://www.eclipse.org

http://www.jetbrains.com/idea/

http://github.com/
https://www.base64decode.org/
http://tomcat.apache.org/
http://www.eclipse.org/
http://www.jetbrains.com/idea/

