How To Put Any Dynamically Generated Value On A Clarity Object

What this ‘technique’ does
Allows us to display “any” sort of calculated value on a Clarity object edit-page.

Where “any sort of calculated value” could be;

· A derived value based on the current object (similar to a calculated attribute but with much more control over the calculation

· A “looked up” value from another related object

· A dynamically generated hyperlink to another Clarity page (such as a portlet-page with a URL parameter)

· A dynamically generated hyperlink to an external system

· The result from a call to an external system (performance may be an issue here)

· Just about ANYTHING else “data-like”* that you can think of
(* - I have not tried to get it working with images)

How It Works

We create a parameterized-NSQL based lookup.
The lookup ALWAYS returns a known value (e.g. “1”) as its ‘hidden key’ and a calculated value as its “display Attribute” – the calculated value is where we derive the dynamically generated value based on the parameter.
We then create a new attribute on the object, and use the lookup against the attribute. We need to set the attribute default to our “known value”.

Place the attribute on the object edit page and set its values to read-only.

Worked Example
(screen shots from a v13/Oracle test system, but this does all works ok in earlier Clarity versions and for SQL*Server databases – the SQL syntax will just be slightly different for the latter)
I want to place, on my RISK object, a derived value which is the last time that the STATUS was changed.

(this is clearly not the same as the last_updated_date value since that reflects any update to the Risk object; I am interested in just updates to the STATUS attribute.)

I know that the system can audit the STATUS attribute (and therefore I can derive my value from reading the audit data for the Risk record)

Step 1 – Workout how to derive the calculated value
For my example, I need to run the SQL similar to this;
SELECT to_char(max(created_date),’dd/mm/yyyy’) AS calc_value
 FROM CMN_AUDITS

 WHERE object_code = 'risk'

 AND object_id = <<my parameter id>>
 AND table_name = 'rim_risks_and_issues'

 AND column_name = 'STATUS_CODE'
This step is the one that perhaps involves most thought from YOU; since YOU need to know how YOU will derive YOUR calculated value based upon a “parameter”. YOU need to make sure that you are not going to write bad SQL or cause performance problems. My example SQL is (I hope) using an index on CMN_AUDITS to get to the data, but it is still an execution overhead that is going to happen every time the page is rendered.
Step 2 – Create the “Dummy Lookup”

Create a new lookup, selecting the “Dynamic Query” option.
For the NSQL you just “wrap” the SQL you have determined in Step 1 in the following NSQL;

SELECT

 @SELECT:1:DUMMY_ID@

,@SELECT:X.CALC_VALUE:CALC_VALUE@

FROM

(

<< your SQL goes here >>
UNION

SELECT to_XXXX(null) from DUAL

WHERE @WHERE:PARAM:USER_DEF:INTEGER:parm_id@ is NULL

) X

WHERE @FILTER@

Notes :

1)
The UNION‘ed statement is needed to provide a default “1” row when we attach the lookup to the object attribute in Step 3

2)
to_XXXX we need to cast the UNION’s dummy value to the same data type as the returned calc_value attribute

3)
parm_id This is the “parameter id” that we will reference in step 3

So my example code looks like this;
SELECT

 @SELECT:1:DUMMY_ID@

,@SELECT:X.CALC_VALUE:CALC_VALUE@

FROM

(

SELECT to_char(max(created_date),’dd/mm/yyyy’) AS calc_value

 FROM CMN_AUDITS

 WHERE object_code = 'risk'

 AND object_id = @WHERE:PARAM:USER_DEF:INTEGER:ri_id@

 AND table_name = 'rim_risks_and_issues'

 AND column_name = 'STATUS_CODE'

UNION

SELECT to_char(null) from DUAL

WHERE @WHERE:PARAM:USER_DEF:INTEGER:ri_id@ is NULL

) X

WHERE @FILTER@
In the lookup’s “Parent Window” tab, ensure that the Hidden Key is “dummy id” and the Display Attribute is your “calc_value”

Note we don’t care about any other “lookup” settings.
Step 3 – Create the “Dummy Attribute”

We now create the dummy attribute on our object. I would suggest you give it a name / id / description that clearly identifies it as a “dummy” attribute!
Choose “lookup” as the attribute’s data-type and select the lookup that we created in Step 2.

Click “Save” and the screen will change to something like this;

[image: image1.png]Object: Risk | Attribute: E3 Last RI Status Update - Object Atribute

Dattribute Name.

B atrute D
Descripion
EDsta Tyne

BlLockin

Defaut

Populate Nl Values with the
Defaut

Value Rectirect
Presence Reatiredt

ReadkOrly

Last Rl Status Update L]
last_status_cummy.
Dummy aftriute to isplay the last risk stetus ¢

Lookup - Number

Last Rl Status Updiate

oo o

]

(10 order to make an stribute read-orly a defaut must be selected)

Lookup Parameter Mappings

Lookup Parameter Object Attribute ID

]

okt v

Save Save And Return Return

Reaured I =EferOnce # =Liaue

Select “Object Id” as the Object Attribute ID in the parameter mappings section at the bottom (assuming of course your query is driven off the object id, it could of course be driven off something else so you would just change the mapping here)
Click “Save” again
Now select a “1” default for the attribute using the binoculars – you should only see the one available value “1” (the one provided by the UNION’ed statement in the lookup – see above).

Do not be too alarmed that the default appears empty when you select the “1” value, since this will just be the NULL value provided by the lookup.

Check the Populate Null Values with the Default checkbox – this will ensure that all your existing data gets the “1” value created in the attribute.
Check the Read-Only checkbox.
Click “Save” again – (note that if you are making this change on an object with a lot of data then this may take a little time as the default value gets updated to all records)

(the default will probably now display “null” and the Populate Null Values with the Default checkbox will now be unchecked – this is normal!)

Step 4 – Display the “Dummy Attribute”

Add the dummy attribute to the Edit View of the object - it doesn’t make much sense to add it to the Create-View (unless you are not actually using a parameter and are using this technique just to display some system-wide value on an object!)

That’s it, we are done!

Notes
I’ve not had any success getting the field to display on List-Views – it just comes out empty; I don’t think the parameter gets passed in correctly.

Its important that the attribute is read-only, if not then the field appears editable on screen – you can make the [Fields]* value enter-once and change the lookup display type from browse to drop-down and this also gets around the problem. It is less work to make the attribute read-only though!
* - Where I am using this technique to provide dynamic links (see below), I think that the attribute [Fields] settings were actually important – i.e. that the display settings were set as indicated above and not just the attribute value.

I have this working to display dynamic links (stored elsewhere in my data) to URLs by using lookups defined a bit like this;

SELECT

 @SELECT:1:DUMMY@

,@SELECT:X.details:template_details@

FROM

(

SELECT

'Link to TEMPLATE'

END

AS details

FROM

odf_ca_XXXXXX T

JOIN odf_ca_YYYYYY R ON R.item = T.ID

WHERE R.ID = @WHERE:PARAM:USER_DEF:INTEGER:object_id@

UNION

SELECT 'DUMMY' FROM DUAL

WHERE @WHERE:PARAM:USER_DEF:INTEGER:object_id@ IS NULL

) X

WHERE @FILTER@

And links to portlet pages with code that looks a bit like this;

SELECT

 @SELECT:1:DUMMY@

,@SELECT:X.link_details:link_details@

FROM

(

SELECT 'Link to PORTLET PAGE' link_details

FROM cmn_config

WHERE NAME = 'properties.xml'

UNION

SELECT 'N/A – No link available' link_details

FROM DUAL

WHERE something something something

) X

WHERE @FILTER@

Clearly the “hard” part of this technique is determining how to generate your calculated value in Step 1 based upon the data available to you in Clarity. This may be very trivial in some examples or incredibly complex (I’d suggest putting complex logic in a database function called from the lookup rather than trying to write it in a single NSQL statement)

Example lookup NSQL with database function;

SELECT

@SELECT:1:DUMMY_ID@,

@SELECT:X.CALC_VALUE:CALC_VALUE@

FROM

(

SELECT

Z_my_package.Z_my_function(@WHERE:PARAM:USER_DEF:INTEGER:obj_id@) CALC_VALUE

FROM dual

) X

WHERE @FILTER@

(in the above 3 code examples I have removed anything that is specific to my system, so clearly the examples will not work for YOU, they are merely examples)

When I was putting this document together I was intending my returned calc_value to be a date format, but that did not work too well when displayed, so I have changed it in the document to be a char format – this isn’t a great example I’m afraid!

In summary – this works! I have it in production systems displaying dynamically generated text, links, scores etc.

You might need to experiment to see how it satisfies YOUR particular requirements – I suggest you PLAY with it in a DEV system to understand what you can and can not accomplish.

David Morton

Capgemini

[As always : the Code Sharing Disclaimer on the CA Community applies to all information in this document]
22.11.2012

