
Proper Care and Feeding of your SQL MDB
(Recommendations for General MDB Maintenance)

A well thought-out MDB installation is only the beginning. There are
regular maintenance tasks that must be performed – including
TEMPDB and logging considerations - as well as recommended
backup/recovery tasks.

This document reviews those tasks (and provides recommendations for
them) and also highlights performance aspects that should be
considered. It was last revised May 15, 2006.

Maintenance Considerations

As part of your day to day maintenance tasks you should carefully
monitor the following to ensure the MDB server’s capacity is not
exceeded or its performance compromised:

 SQL memory config/usage

 Indexes

 Data files

 Transaction logs

Of course, you should also regularly (and frequently) backup critical
files.

Monitor Indexes

Fragmented indexes should be rebuilt using SQL Server facilities such
as Database Maintenance Planner.

This dialog includes the following options:

 Reorganize data and index pages - Reorganizing data and
index pages can reestablish the free space.

 Reorganize pages with the original amount of free space -
Causes the indexes on the tables in the database to be dropped
and re-created with the original FILLFACTOR that was specified
when the indexes were created.

 Remove unused space from database files - Remove any
unused space from the database, thereby allowing the size of the
data files to be reduced.

 When it grows beyond - Remove unused space from the
database only if the database exceeds the specified size, in MB.

 Amount of free space to remain after shrink - Determine the
amount of unused space to remain in the database after the
database is shrunk (the larger the percentage, the less the
database can shrink, and the less it’ll expand - avoiding
performance hits).

 Schedule - Set the frequency that the data optimization tasks.

Some products provide specific database index maintenance tools.
Unicenter Desktop and Server Management, for example, provides the
dsmmssqlopt script that monitors state for performance problems and
conducts a two level defragmentation and index rebuild strategy. Run
this script anytime report or UI performance deteriorates after adding
or updating many machines.

Note: It does not perform maintenance on tables/indices unless
needed.

Monitor Data Files and Disk Space

Operating system data files should be defragmented as often as
necessary using system tools such as Disk Defragmenter. Disk space
should be kept at least 20% free.

Monitor Transaction Logs

For best performance you should increase the initial size of the
transaction log file based on estimated usage.

Using a specific growth increment amount, such as 100MB, instead of
a percentage increment may be beneficial. Automatically growing
transaction logs does cause some performance degradation, therefore
you should select a reasonable size for the autogrow increment to
avoid automatic growing too often. At most, automatic growing should
only arise once per week. This also applies to the MDB database.

Manually shrink the transaction log files based on monitoring
observations and defragment the transaction log file as necessary.

Regularly Backup Critical Files

The following files should be regularly backed up to assist in recovery
procedures:

 Database and transaction log files should be scheduled for regular
backups

 The master database should be included in the backup plan

Multiple simultaneous backup devices may be used for improved
performance.

Further backup and recovery guidelines are provided later in this
document.

Note: For More Information, see Microsoft SQL Server Books Online –
Database Maintenance Plan Wizard, DBCC SHOWCONTIG, and
DBCC_INDEXDEFRAG.

Performance Considerations

Depending on the number of processors, memory, and disks, installing
Microsoft SQL Server on a dedicated server is not required. Network
latency between the application and a separate SQL server may, in
fact, degrade application performance.

It is best practice to always run SQL Server on the same box as a mid-
tier manager (for example a Unicenter Desktop and Server
Management Domain Manager should run on the same box as its
MDB).

For the enterprise tier you may wish to run the MDB on a dedicated
SQL Server box – however, this decision depends upon the number of
enterprise components and the peak load.

An Enterprise MDB may coexist with Enterprise Managers but, for large
clients, this may not be feasible. DBAs tend to prefer dedicated
database hardware, but with SQL 2005 and modern hardware this is
not required. It is relatively easy to allocate hardware to SQL and a
shared box for Enterprise Manager software and the MDB may be the
best choice (it often simplifies configuration and administration of fault
tolerant environments). However, where a number of large enterprise
managers are involved the best choice for over all performance and
ease of management may be a separate dedicated SQL server.
Caution: it is generally unwise to consolidate an r11 MDB on the same
SQL server as used for other databases, especially application
databases.

Manage Memory

You should set reserved physical memory for SQL server and specify
an amount – on a 4GB box we suggest reserving at least 2GB (monitor
memory usage to determine if more memory can be reserved for SQL)

As highlighted above, our best practice is to run middle tier managers
on the same box as their MDB. In general, but especially in such
cases, it is best to reserve memory for SQL Server use.

If you do not reserve memory for SQL, Windows will swap out SQL
pages that could be readily available in memory – resulting in SQL
performance swings.

Since reserving memory for SQL takes memory away from the middle
tier manager you should monitor memory use and paging. But, in
general, SQL Server always benefits from reserved memory.

You should set the minimum memory for SQL 2005 – on a 4GB box we
suggest reserving 2GB (monitor memory usage to determine if more
memory can be reserved for SQL).

SQL Server Enterprise Editions can use more than 2GB of memory so if
you have more than 2GB of memory available for SQL you may wish to
enable AWE (refer to http://support.microsoft.com/kb/274750/en-us
for details).

Performance Considerations for Storing Data

Store the MDB data and log on separate disk drives for improved
performance (keeping the log on a separate disk can be a significant
tuning benefit). The same applies to TEMPDB.

Maintaining SQL data on striped disks also provides a major tuning
benefit – if you have limited drives available and a choice between
separate log/data disks or one striped drive the striped drive is usually
the better option.

http://support.microsoft.com/kb/274750/en-us

More about TEMPDB

SQL Server uses the TEMPDB database as a scratch area for MDB
temporary tables, sorting, subqueries, and so forth. TEMPDB should
be stored on its own drive away from other databases whenever
possible (default is SQL install disk, so it is common to add a new
separate tempdb on a different drive).

The size of the TEMPDB database should be increased based on the
amount of available disk space and expected usage. If TEMPDB often
grows to the same size, you may want to leave it that way as
performance is hurt if it has to grow constantly.

The big question here is how big the MDB is and how big is its biggest
table (that should be the guide for the smallest TEMPDB can be for
safety – i.e. “order by” clauses, etc). TEMPDB file growth is
expensive each time it occurs. At the very least, you should set the
file growth increment percentage to a reasonable size to prevent
TEMPDB files from growing by too small a value.

Logging Considerations

Be sure to install SQL Server on a disk with sufficient available space –
this is the default log location. SQL Server allows transaction log files
to exist on multiple devices – this improves logging system
performance by allowing it to write to multiple disk devices.

MDB Transaction Log automatically grows by 10% and its growth is
unrestricted, but using a specific growth increment amount, such as
100MB, instead of a percentage increment may be beneficial.

In some situations the Transaction Log may become very large,
leading to the following situations:

 Run out of space

 Transactions may fail and may start to roll back

 Transactions may take a long time to complete

When that happens, shrink it with the following:

DBCC SHRINKFILE: DBCC SHRINKFILE(mdb_log, TRUNCATEONLY).

The TRUNCATEONLY option causes any unused space in the files to be
released to the operating system and shrinks the file to the last
allocated extent, reducing the file size without moving any data.

For recovery purposes, immediately execute BACKUP DATABASE.

IMPORTANT: shrinking the transaction log every day may impact the
performance of your database due to fragmentation!

BACKUP LOG MDB WITH TRUNCATE_ONLY could also be used instead of
DBCC SHRINKFILE. TRUNCATE_ONLY removes the inactive part of the
log without making a backup copy of it and truncates the log, thereby
freeing up space. Specifying a backup device is unnecessary because
the log backup is not saved. For recovery purposes, immediately
execute BACKUP DATABASE.

If you are having difficulty controlling log growth, the best thing that
you can do is increase the frequency of your log backups. Log
backups cause inactive portions to be moved to the END of the log file.
That won't cost you much more disk space for the backups, and will
allow your transaction log to stay much, much smaller because you
are just splitting up those transactions among more backup files. You
will find that when you arrive at that “magic” log backup frequency,
your log file will stabilize at a size that you are satisfied with and will
quit expanding.

When to Backup

Using a combination of database, differential database, and transaction
log backups minimizes the amount of time needed to recover from a
failure.

Differential database backups reduce the amount of transaction log
that must be applied to recover the database. This is normally faster
than creating a full database backup. The MDB uses full recovery
model. Suggested backup plan:

 Use Database, Differential and Transaction

 A full backup should be created at least once a day

 Transaction log backups should occur every hour

 Differential backups should occur every three hours

 The full backup should occur during off-hours when there is
minimal database use

 The transaction and differential backups should be on a set
schedule based on when your full backup occurs

Backup and Recovery Options

MDB Full Backup

For a full MDB backup, do the following:

BACKUP DATABASE DB_NAME TO BACKUP_DEVICE

USE MASTER

EXEC SP_DROPDEVICE 'MDB_BKP1'

EXEC SP_ADDUMPDEVICE 'DISK', 'MDB_BKP1', 'C:\PROGRAM FILES\MICROSOFT

SQL SERVER\MSSQL\BACKUP\MDB_BKP1.BAK'

USE MDB

BACKUP DATABASE MDB TO MDB_BKP1

EXEC SP_DROPDEVICE 'MDB_BKP1': Drops a backup device, deleting
the entry from master.dbo.sysdevices.

EXEC SP_ADDUMPDEVICE 'DISK', 'MDB_BKP1', 'C:\PROGRAM
FILES\MICROSOFT SQL SERVER\MSSQL\BACKUP\MDB_BKP1.BAK': adds a
backup device (disk file as backup device in this case) to SQL Server.

Valid device types are:

 disk - Hard disk file as a backup device.

 pipe - Named pipe - If you are backing up your MDB directly
over a network (not really recommended as it hurts
performance), one way to boost throughput is to perform the
backup over a dedicated network which is devoted to backups and
restores only. All devices should be on the same high speed
switch. Avoid going over a router when backing up over a
network, as they can greatly slow down backup speed.

 Tape - Any tape devices supported by Windows. If device is tape,
noskip is the default.

For fastest backups, perform a disk backup to a local drive array
(ideally, to an array dedicated to backups only), then move the backup
file(s) over the network to another server where the file can be stored,
or to a tape device (this also ensures you will be able to recover in
case of hardware failure). Backing up a database directly to tape on a
local device, or to a tape device over the network, or to directly to a
hard disk over the network, is generally slower. However, there’s
nothing wrong with keeping one copy of MDB backup on the local
server (even though it has been moved to another disk/tape or off the
server) should you need to restore the backup quickly.

BACKUP DATABASE MDB TO MDB_BKP: Backs up the entire MDB
database.

Differential Backup

For a differential backup, do either of the following:

 BACKUP DATABASE MDB TO MDB_BKP1 WITH DIFFERENTIAL

 BACKUP DATABASE MDB TO DISK = 'C:\PROGRAM
FILES\MICROSOFT SQL SERVER\MSSQL\BACKUP\
MDB_LOG_BKP3.BAK' WITH DIFFERENTIAL

The WITH DIFFERENTIAL parameter specifies that the database or file
backup should consist only of the portions of the database or file
changed since the last full backup. A differential backup usually takes
up less space than a full backup. If you use this option all individual
log backups since the last full backup do not need to be applied.

Notice that in the first differential backup example, we used the same
backup device (i.e. MDB_BKP1). Keep reading for more on RESTORE
DATABASE DB_NAME FROM BACKUP_DEVICE WITH FILE = FILE_NUMBER.

In the second differential backup example, we’re not defining a logical
backup device. We are using the TO
DISK=PHYICAL_BACKUP_DEVICE_NAME syntax.

Using Multiple Backup Devices in Parallel

When dealing with a large MDB, the backup process can be optimized
by using multiple backup devices in parallel:

USE MASTER

EXEC SP_ADDUMPDEVICE 'DISK', 'MDB_BKP2', 'C:\PROGRAM FILES\MICROSOFT

SQL SERVER\MSSQL\BACKUP\MDBBKP2.BAK'

EXEC SP_ADDUMPDEVICE 'DISK', 'MDB_BKP3', 'C:\PROGRAM FILES\MICROSOFT

SQL SERVER\MSSQL\BACKUP\MDBBKP3.BAK'

EXEC SP_ADDUMPDEVICE 'DISK', 'MDB_BKP4', 'C:\PROGRAM FILES\MICROSOFT

SQL SERVER\MSSQL\BACKUP\MDBBKP4.BAK'

USE MDB

BACKUP DATABASE MDB TO MDB_BKP2, MDB_BKP3, MDB_BKP4

Using multiple backup devices allows backups to be written to all
devices in parallel. Similarly, the backup can be restored from
multiple devices in parallel.

Backup device speed is one potential bottleneck in backup throughput.
Using multiple devices can increase throughput in proportion to the
number of devices used.

IMPORTANT: When using multiple backup devices, they must be all
of the same type (i.e. disk)!

Transaction Log Backup

To backup the transaction log, do the following:

BACKUP LOG DB_NAME TO BACKUP_DEVICE

USE MASTER

EXEC SP_DROPDEVICE 'MDB_LOG_BKP1'

EXEC SP_ADDUMPDEVICE 'DISK', 'MDB_LOG_BKP1', 'C:\PROGRAM

FILES\MICROSOFT SQL SERVER\MSSQL\BACKUP\MDB_LOG_BKP1.BAK'

USE MDB

BACKUP LOG MDB TO MDB_LOG_BKP1

MDB Restore

TO restore the MDB, do the following:

RESTORE DATABASE DB_NAME FROM BACKUP_DEVICE

RESTORE DATABASE MDB FROM MDB_BKP1

This example demonstrates restoration of a full database backup
followed by a differential backup. A second backup set is also restored
on the media. The differential backup was appended to the backup
device that contains the full database backup:

 RESTORE DATABASE MDB FROM MDB_BKP1 WITH NORECOVERY

 RESTORE DATABASE MDB FROM MDB_BKP1 WITH FILE = 2

The NORECOVERY option instructs the restore operation to not roll back
any uncommitted transactions. Either the NORECOVERY or STANDBY
option must be specified if another transaction log has to be applied.
If neither NORECOVERY, RECOVERY, or STANDBY is specified, RECOVERY
(instructs the restore operation to roll back any uncommitted
transactions) is the default –

SQL Server requires that the WITH NORECOVERY option be used on all
but the final RESTORE statement when restoring a database backup
and multiple transaction logs, or when multiple RESTORE statements
are needed (for example, a full database backup followed by a
differential database backup).

Note: When specifying the NORECOVERY option, the database is not
usable in this intermediate, nonrecovered state.

The FILE option identifies the backup set to be restored. For
example, a file number of “2” indicates the second backup set.

During the restore, the specified database must not be in use.

Transaction Log Restore

To restore the transaction log, do the following:

RESTORE LOG DB_NAME FROM BACKUP_DEVICE

RESTORE LOG MDB FROM MDB_LOG_BKP1

This example restores a full database backup followed by a differential
backup.

In addition, this example includes restoration of the second backup/log
set on the media. The differential and second log backups were
appended to the backup devices that contain the full database/first log
backups:

RESTORE DATABASE MDB FROM MDB_BKP1 WITH NORECOVERY

RESTORE DATABASE MDB FROM MDB_BKP1 WITH NORECOVERY, FILE=2

RESTORE LOG MDB FROM MDB_LOG_BKP1 WITH FILE=2, RECOVERY

Restoring MDB Backups to Different SQL Servers

In order to restore the MDB from a backup do the following:

1. Create a database called mdb. (this value must be case
insensitive, accent sensitive – i.e. …_CI_AS.)

If your Server is using a different collation and the DB got created
with a different collation name, please, run the following SQL
statement in SQL Query Analyzer:

ALTER DATABASE MDB COLLATE SQL_Latin1_General_CP1_CI_AS.

Note that “SQL_Latin1_General_CP1_” can be replaced by the
Server’s default collation.

2. Launch SQL Query Analyzer and restore the MDB by running the
following statements:

USE MASTER

EXEC SP_DROPDEVICE 'MDB_BKP1' –- >i.e. just in case there is dump

device called MDB_BKP1

EXEC SP_ADDUMPDEVICE 'DISK', 'MDB_BKP1', 'Backup file path' –-

i.e. 'C:\PROGRAM FILES\MICROSOFT SQL

SERVER\MSSQL\BACKUP\MDB_BKP1.BAK'

RESTORE DATABASE MDB FROM MDB_BKP1

IMPORTANT: The RESTORE statement always produces a database
that is identical to the one that was backed up. The backup file
contains information on the name, number, size, and location of all
files for the database at the time the backup was created. Therefore,
if your location is different from the default one (e.g., i.e. C:\PROGRAM
FILES\MICROSOFT SQL SERVER\MSSQL\DATA), you’ll have to use the
WITH MOVE clause. For example:

RESTORE DATABASE MDB FROM MDB_BKP1 WITH MOVE 'mdb' TO 'Your custom

location – i.e. D:\MSSQL\DATA\MDB.MDF', MOVE 'mdb_log' TO 'Your custom

location – i.e. D:\MSSQL\DATA\MDB_LOG.LDF'

	Proper Care and Feeding of your SQL MDB (Recommendations for General MDB Maintenance) - revised May 15, 2006
	Maintenance Considerations
	Monitor Indexes
	Monitor Data Files and Disk Space
	Monitor Transaction Logs
	Regularly Backup Critical Files

	Performance Considerations
	Manage Memory
	Performance Considerations for Storing Data
	More about TEMPDB

	Logging Considerations
	When to Backup
	Backup and Recovery Options
	MDB Full Backup
	Differential Backup
	Using Multiple Backup Devices in Parallel
	Transaction Log Backup

	MDB Restore
	Transaction Log Restore
	Restoring MDB Backups to Different SQL Servers

