Plex Java for Dimwits (like me) 2nd Edition

Table of Contents

1Table of Contents

Introduction to Plex for Java
3
Overview
3
Copyright Notices, Disclaimers, and other Legal Mumbo Jumbo
4
Everyday Tasks Using Plex Java
5
Overview
5
Getting Plex to Compile Some Java
6
The Mysterious Client Properties Object
16
Calling a Plex Java Program from a Hand Coded Java Program
22
Calling a Hand Coded Java Program from a Plex Java Program
24
Using Your PC as a Java Server
27
Deploying Plex Java Applications
31
Introduction
31
Server
31
Client
32
Application or Applet
32
Jars or Individual Objects
33
What Does Not Work
34
The APPLET Tag
34
The OBJECT Tag (without the Sun Java Plug In)
36
What Does Work - The Sun Java Plug-In
38
Details of the OBJECT Tag
46
Details of the EMBED Tag
51
Using the OBJECT and EMBED Tags on the Same HTML Page
54
Modifications to ob450client.properties
56
Putting it all Together
57
Running Your Programs
59
In an Internet/Intranet Environment
59
In an non-Internet/Intranet Environment
59
Miscellaneous Deployment Information
60
Saving the User Id and Password from an Applet
60
HTTP Server Pass Directives
62
Using Your Development PC for Testing
63
Creating JAR Files
63
The HTML Template
65
Don’t Let this Alarm You
67
Java Consoles
68
Mysterious Error Messages, UFOs and Other Encounters of the Third Kind [or Fourth or Fifth…]
69
JDK 1.3 and Beyond
69
The Limitations of the Browser “Sandbox”
71
Debugging ObRun
72
Meet Your New Best Friend
76
Dots—Not Backslashes
77
The Mysteries of Wrapped Beans
78
Any Hair Left?
88
Multiple JDKs on the Same PC
88
Panels and the Plex 4.5 Implementation of the Swing Class
90

Introduction to Plex for Java
Overview

This document has two purposes:

1) To show you how to set up Plex for Java.

2) To give some real-world examples of how accomplish common tasks using Plex Java generated code.

I have dropped the Java decompiles that were in the first edition of this document, because everybody was whining this made the document enormous and unwieldy—plus it made War and Peace look live a Stephen King novella. The document has shrunk from 1,226 pages as a result, so I guess James Michener doesn’t need to worry anymore.

This version of this document goes with Plex version 4.5. There is another version of this document for version 4.0b of Plex. There are massive differences between Java for Plex versions 4.0b and 4.5.

Copyright Notices, Disclaimers, and other Legal Mumbo Jumbo

The Java classes contained in the “ObRun.jar” are copyrighted by the owner of Plex, whoever that happens to be this week—and I recognize their various copyrights here.

Various other odd words, phrases, command names, etc. are copyrighted by Sun Microsystems, at least until CA buys them. I recognize their copyrights here.

Microsoft Internet Explorer is copyrighted by Microsoft Corporation.

Netscape Navigator is copyrighted by Netscape Communications Corporation.

This document, with the above exceptions, is Copyright © 2000-2001 by Louis H. Kurrelmeyer, Jr. The price for a copy of this document is US$10, which goes into a Maxwell House can to pay for my annual $39.95 subscription to Sun for the JDKs (assuming at least four people cough it up). If you get a copy of this document and find it useful, please pay for it. If you have contributed something that has been included in this document, you are entitled to a free copy.

Mark Phippard contributed the original section named, “Deploying Plex Java Applications” that is in the version of this document that goes with Plex version 4.0b. I completely rewrote this section for version 4.5 of Plex expanding it allot. My thanks to Mark for getting this started. Mark’s email is MarkP@softlanding.com.

Louis H. Kurrelmeyer, Jr.

Sole Proprietor

Kurrelmeyer Konsulting

245 Starr Ridge Road

Brewster, NY 10509

LouKur@Erols.com
(845)278-2663

The information in this document is believed to be correct, but is supplied on an as-is, best-effort basis, with absolutely, positively no warranties expressed or implied. So, don’t plan on suing me—ever. Not even if you use something from this document and it makes your computer melt and run through the cracks in your raised floor.

Everyday Tasks Using Plex Java

Overview

I’ve been using Plex since before it was released, and have always found the generated C++ code absolutely incomprehensible. Then again, I find MSVC++ absolutely incomprehensible in general. Over the years, I have figured out how to coerce Plex into performing native Windows and MSVC++ tasks. You know, the really bizarre stuff, like calling another program or sending somebody an email.

Plex Java is not like the C++. It is much easier to make Plex Java do things like calling other programs, be called by other programs, etc.

This document sets out some examples of how to get Plex to do these types of things.

If you have any COOL or Advantages stuff (puns always intended) you want me to add to this document, send it along—and if it looks like it might work, I’ll add it to this document and give you the blame.

Getting Plex to Compile Some Java

Sounds easy? Guess again. There is a ton of stuff you have to do before you can even think about compiling. The good news is this got allot easier with version 4.5 of Plex, because of the switch from Sun JDK version 1.1.8 to version 1.2.2.

Here are the steps:

1) Get the Sun Java JDK (Java Development Kit) from Sun Microsystems at www.Sun.com. It’s a free download. You can order a CD for $39.95, but it comes about as fast as those free things we used to get by mailing in coupons cut out of the back of cereal boxes. I’m still waiting for my Captain Midnight decoder ring and my Mother is still finding the bits of Captain Crunch that leaked out of the holes I cut in the boxes. Get the right version. Plex Java version 4.5 supports Sun JDK 1.2.2 and 1.1.8. Setup is easier if you use Sun JDK 1.2.2 with Plex Java 4.5. Stop! Make a yellow sticky note right now and pin it up on the wall of your cubicle or on the forehead of the programmer in the next cubicle. You know, the one that never seems to move or do anything. The note should read, “Plex version 4.5 wants Sun Java JDK version 1.2.2.” The last time I downloaded this, I got, “jdk-1_2_2_007-win.exe”. Sun JDK version 1.3.0 is unsupported by Plex 4.5, but seems to be working and has some definite advantages for applet deployment from a web site. The last time I downloaded this, I got, “j2sdk-1_3_0_02-win.exe”.

2) Install the JDK. It will wind up in a folder named C:\jdk1.2.2 if you use the default. JDK 1.2.2 seems to have figured out Windows directory names, and the periods in the folder name do not cause the problems that we had with JDK 1.1.8. Sun JDK 1.2.2 supports folder names with spaces, periods, long Windows names, etc. With JDK 1.1.8, you have to refer to everything by its DOSish 8-letter name. You can install multiple versions of Java on your workstation, but you can only run one Java version at a time—and you have to reboot to switch versions. (Is this fun or what?) Relax. There’s a section named “Multiple JDKs on the Same PC” later on in this document that tells you how to avoid the rebooting. The latest version of Sun JDK 1.3.0 winds up in a folder named C:\jdk1.3.0_02. It’s a good thing we don’t have to use DOS names any more. The DOS name for the Sun JDK 1.3.0_02 version default folder is C:\JDK13~1.0_0. Type that three times fast.

3) Do not waste your time downloading the JRE (Java Runtime Engine). You already have it. It is in:

C:\Program Files\JavaSoft\JRE\1.2.2_007\bin
Version 1.2.2_007
C:\Program Files\JavaSoft\JRE\1.3.0_02\bin
Version 1.3.0_02

4) Add a line your Windows path statement to point to the JDK executable objects (java, javac, javaw, javap, etc.). Mine looks likes this:

SET PATH=%PATH%;C:\PLEX\BIN;C:\jdk1.2.2\bin;C:\SQLANY50\WIN32;~~~(etc.)
REM SET PATH=%PATH%;C:\PLEX\BIN;C:\jdk1.3.0_02\bin;C:\SQLANY50\WIN32;~~~(etc.)
REM SET PATH=%PATH%;C:\PLEX\BIN;C:\jdk118\bin;C:\SQLANY50\WIN32;~~~(etc.)

Notice I have three path statements and two are “REM”(arked) out. To switch back and forth between JDK versions, I move the REM statements from one line to the other and reboot my PC. Also notice the version 1.1.8 JDK is installed in a folder that does not have periods or spaces in the name.

5) With Sun JDK 1.1.8 you also have to download the Swing Class. This is not a step with JDKs 1.2.2 or 1.3.0, because the Swing Class is built into the rt.jar object. The Swing Class is the Java class that supports GUI panels.

6) Create a directory called Java. Say C:\Java. Add a lib sub-folder to it. That is C:\Java\lib. Find the following two objects and put them in C:\Java\Lib:

ObRun.jar
This contains the Plex Java class objects.
OBPTJAVA.JAR
This contains the Plex pre-compiled date, time, etc. functions for the Patterns class libraries.

Note: If you are using the old OBASE “Class” libraries, you will want OBCLJAVA.JAR instead of OBPTJAVA.JAR. If you are using a mixture of OBASE and Patterns libraries (typical if you are doing a 2E to Plex migration project), you will want both OBPTJAVA.JAR and OBCLJAVA.JAR.

7) I also have a sub-folder in my C:\Java called C:\Java\Sources for hand-coded Java sources. You don’t need this if you are not going to hand code anything. Right.

8) Add four sub-folders to your normal GEN folder. You know, the GEN\WIN\Release… feller. You will need GEN\CLIENT, GEN\SERVER, GEN\PDate and GEN\MISC. These names are no longer case sensitive with Sun JDK 1.2.2 or 1.3.0. They were with Sun JDK version 1.1.8.

9) Add a “ClassPath” statement to your AutoExec.bat file or equivalent. It might look like this:

SET ClassPath=C:\Java\Lib\ObRun.jar;C:\Java\Lib\OBPTJAVA.JAR;feller\GEN\;C:\Java\Source\

Where “feller” is the root of the folders you Gen to.

NOTE 1: Notice the ClassPath statement does not include the Java 1.2.2 or 1.3.0 jars i18n.jar and rt.jar. At JDK versions 1.2.2 and higher, Java can find these on its own. These contain:

i18n.jar
The ASCII to EBCDIC conversion code and Country/Language (NLS) code.
rt.jar
The base Java language objects and the Java Swing class objects.

NOTE 2: Notice that feller\GEN\ and C:\Java\Source\ ends with a backslash. This is how you tell Java you are giving it a folder (path) name and not a jar name. If you leave off the trailing “\”, Java won’t be able to find any of the sources you Gen and Compile or. If you are using the C:\Java\Source\ folder for hand-coded programs, add this to the ClassPath statement.

The ClassPath statement is not case sensitive like it is with JDK 1.1.8. I have tried various mis-capitalizations, and found they all work.

10) Fire up good ‘ole Plex and open up the local model you want to use for your first Java frontal lobotomy. Set your variants so they look like this for version 4.5:

[image: image1.png]Model Configuration

Mokl Varant Langiage Verson Level =
SUPRCOMP | B3 Base Base Base
ACTVE | Javabean Base VaOPaliems | Va0Patens
MYFNDTN | Base Base Base Base
25400 Base Base V30Paliems | Va0Patns
DATE 57400 sevver Base V30Patiems | V30Pattens
FIELDS Base Base V30Patiems | V30Pattens
FOUNDATI | Base Base V30Patiems | V30Pattens
JBVAAPI | Base Base V30Patiems | V30Pattens
GBJECTS | Base Base V30Patiems | V30Pattens
0BODEC | 8o Base V30Patiems | V30Pattens
0DEC3 Base Base V30Patiems | V30Pattens
STORAGE | AS/400 server Base V30Patiems | V30Pattens
UBASIC | Java Base V30Patiems | V30Pattens
USTYLE | JavaBean Base V30Patiems | V30Pattens
VALIDATE | Base Base V30Patiems | V30Pattens
WiNPl | Base Base V30Patiems | V30Pattens
STORAGE | AS/400 server Base V30Patiems | V30Pattns
UBASIC | Java Base V30Patiems | V30Pattens
USTYLE | JavaBean Base V30Patiems | V30Pattens
VALIDATE | Base Base V30Patiems | V30Pattens
WiNPl | Base Base V3OPatiems | Va0Patens

KT}

This is an AS/400 example. Notice I am using the Pattern libraries. Really notice. You don’t need the three JavaBean settings if you will not be using any Beans. Typically these are used to replace ActiveX controls. Also notice I am using AS/400 server for my STORAGE variant. This runs much faster that generating the Java variant to run on the AS/400 as a server. That is, I generate native AS/400 code to run on the AS/400, not Java code.

Setting the DATE Variant is tricky. If you set DATE to AS/400 server and generate a Java panel function, it will expect to find the date functions on the AS/400. For example, function Date/Date8ToDateISO with the implementation name PDrF. If you set DATE to Windows client and generate an RPG server function you can get all kinds of warning messages that the date functions are defaulting to language RPG. You can also wind up using the date and time from your Client PC when you would prefer the Server date.

11) Open a Generate and Build window, so you can set the Generate and build options. Go to the Java Generation Options and make it look like this for version 4.5 of Plex:

[image: image2.png]Generate and Build Options

[p— Defou pnel packoge: Databos bicts cnrer
[FCEnT]
Buid Dirctores Default server package: Defaut server location:
—— [GEmveR [Pefauenes
Defat packoge: Defoul s
EdtorPreferences isc [Pefaubize

Template fie: [CAPLEXiDBIAVANDEFAULT122TRL
it g e [P
Biowser Location: [\INTERNET EXPLORERVEXPLORE EXE
I~ Generate HTML I~ Generate plugin HTML.

Execute as
" Applet Console appicalion (& Application

Generate & Buid Syster

Generatian Optons

B
£
it
=

A

Name Alocation

% Update cliet propertes e

Name Alocalion Paame
|

Cancel Help Speciy Generaton options

The C:\PLEX\OBJAVA\DEFAULT122.TPL will work as is, if you installed Plex on your C: drive. The documentation says the object is named , “DEFAULT122.TPL” in one place and, “DEFAULT12.TPL” in another. The shipped object is named, “DEFAULT122.TPL”. This is the JDK 1.2.2 HTML Template file.

The C:\Plex\ObJava setting for the client properties file specifies the location of the ob450client.properties file, which is used for generating and compiling. I have the checkbox set to update this, so I don’t have to remember to do this by hand. Use the one in C:\Plex\ObJava for generating and compiling. Make a copy of it somewhere else for testing. Say, C:\feller\GEN. You don’t want the same ob450client.properties for both generating & compiling and for testing.

The full path for the Browser Location is C:\PROGRAM FILES\INTERNET EXPLORER\IEXPLORE.EXE. This is how Plex knows which web browser you want to compile for and test with—although I have yet to see Plex use this reference.

The rest of the screen depends on what you’re going to do. In the example I am going to generate an application, as opposed to an applet. Applets run from Web browsers or the Java Plug-in. Applications don’t require a Web browser or Plug-in. The first time a Web browser encounters a Sun Java applet, it must download many megabytes of Sun Java stuff before your applet will run. You can distribute the Plug-ins for applets or all the run-time objects needed for an application. If that other programmer still hasn't moved, stick this to their forehead too, “How many Browser users are going to wait for a 3 bazigabyte download from Sun so they can run my 3k program?” This topic is covered in much more depth in the deployment “What Does Work – The Sun Java Plug-In” section of this document.

The only difference between an “Application” and a “Console Application” is that Java displays a DOS window, which displays all untrapped errors (unhandled exceptions for you C++ weenies) for a “Console Application”. This is great for testing but looks weird in production. I suggest you use “Console Application” for Testing/Debugging and “Application” for production.

Starting with Plex version 4.5, we now get to pick between “Generate HTML” and “Generate plug-in HTML”. Both options create a skeleton HTML source for you to complete and put on your web server. The “Plug-in” option generates HTML that uses the Java Plug-in Runtime Engine (JRE) and includes the OBJECT tag for Microsoft Internet Explorer and the EMBED tag for Netscape Navigator. The non-“Plug-in” option uses the APPLET tag which invokes the default Java Virtual Machine (JVM) built into the web browser used to run an applet. Great concept. Too bad it doesn’t work. Make a note: “The APPLET tag is as useless as the Programmer whose forehead I am going to stick this too.” If the Browser JVMs ever get to the point where they work, the choice between “Generate HTML” and “Generate plug-in HTML” will present an interesting option. You can create an applet that does not require the multi-megabyte JRE/Plug-in download from Sun; however, your applet is at the mercy of whatever JVM the web browser is using—and may not work all the time. This is because the HTML generated when you don’t pick Plug-in uses the old APPLET tag which has been “Deprecated” (tossed in the trash) in favor of the OBJECT and EMBED tags in the newer versions of the popular web browsers. If you try the APPLET tag, you will get the see the error message “load: ObRun.ObPanel.ObLaunch can't be instantiated.” across the bottom of your web browser. If you have chosen to hide the browser status line, you will see nothing—and can happily spend the rest of the day tearing your hair out, looking for the problem. For now, I suggest you forget the APPLET tag and the non-“Plug-in” HTML.

In order to get Plex to generate HTML you must check Generate HTML. If you want Plex to generate Plug-in HTML you must check both Generate HTML and Generate plug-in HTML.

Notice there is no place to specify the PDate folder I had you set up back at step 8. The PDate folder is not mentioned anywhere in the Plex documentation, but appears the first time you generate a program that uses any of the built-in date-and-time functions. I guess the name, “PDate” is fixed. I have also found that all objects Plex builds and places in the PDate folder are duplicates of the objects in the OBPTJAVA.JAR jar. I have been deleting everything Plex puts the PDate folder and not distributing these with my applications and applets.

Switch to the System Definitions section, highlight your PC and Click on Properties:

[image: image3.png]Generate and Build Options (x]

Editor references T T

[Elp cenermion s 101603113 Asdnn

[e i

Name Alocation Parame

Ll

Cancel Help Speciy System defiions

12) Set up the Java Build section of the next screen to look like this:

[image: image4.png]324t e+ Build

AN ovanui
2% imake diectory |= ‘PROGRAM FILES\MICROSOFT
@ 0DBC Buid M ey

Compilr [CAIDKT 2 2A8IN\AVAC EXE
JDK Classes

Userclasses [CAPsClassd50\PatiemLbs\0BP.
BB

I~ Buid for debugging

Java buid optons.

The Nmake directory is where your C++ compiler is and the full text reads, “C:\PROGRAM FILES\MICROSOFT VISUAL STUDIO\VC98\BIN”. Plex for Java uses the Microsoft Nmake command. If you installed MSVC++ in the default folder on your C: drive, the above should work. If you are a Java-only programmer and don’t have a C++ compiler, call up whoever owns Plex this week and whine pitifully until they tell you what to do.

UPDATE: Whining works… CA Support points out that the solution to this problem is documented in the Plex manual and writes, “The answer to this problem is to download the (free!) Microsoft SDK for Java which includes Nmake (or at least it did last time we checked) from http://www.microsoft.com/java/download.htm.” Guess I should have looked a little harder in the manual…

If you installed JDK 1.2.2 on your C: drive, you will probably want C:\jdk1.2.2\bin\Javac.exe for the Compiler location. If you installed JDK 1.3.0 on your C: drive, you will probably want C:\jdk1.3.0_02\bin\Javac.exe or something like that.

If you get the name or the path of the Compiler setting wrong, Plex will generate and compile everything you ask it to; issue all positive messages saying the builds worked fine—but will create no .class files whatsoever. Not one. You can stare at the empty CLIENT, MISC and SERVER folders until your eyes burn a hole in the screen—clicking refresh every second or two; but you will never get any .class files. If you wind up with no .class files in your CLIENT, SERVER, MISC, etc. folders, check the Compiler setting. I use the Browse button to find and fill out this parameter. This way I don’t have to worry about getting any spelling, punctuation or syntax wrong.

For versions 1.2.2 and 1.3.0, the JDK Classes line reads “C:\Plex\Class450\PatternLibs\OBPTJAVA.JAR”. I set the line this way because I am only using the Pattern libraries. If you are using the old OBASE “Class” libraries, you will want OBCLJAVA.JAR instead of OBPTJAVA.JAR. If you are using a mixture of OBASE and Patterns libraries (typical if you are doing a 2E to Plex migration project), you will want both OBPTJAVA.JAR and OBCLJAVA.JAR here. Change the drive letter to where you put Plex. Notice I did not have to name the JDK 1.2.2 or 1.3.0 jar objects “rt.jar” and “i18n.jar”. You have to do that with JDK 1.1.8; however, the version 1.1.8 names are “classes.zip” and “swingall.jar”. I have not listed any of the Java Bean jars that ship with Plex. These were built by:

ProtoView Development Corp.
2540 Route 130
Cranbury, New Jersey, 08512
(609)655-5000 voice
(609)655-5353 fax
http://www.ProtoView.com Web Site
Tech@ProtoView.com email

The ProtoView beans shipped with Plex are a trial version. You have to get a license from ProtoView for a fully enabled, developer version. You get a nag message every time you touch these with the ACTIVE class set to the JavaBean variant, until you cough up the license fee.

ProtoView has built the Java Bean equivalents to the ActiveX controls used in Plex. There are cleverly hidden at path, “C:\Plex\Class450\PatternLibs\ACTIVE\Beans\PVApps\pvBeans11\jars”. Here is the full list:

pvButton.jar
Button controls (toolbar). These must be the non-round ones...
pvCal.jar
Calendar controls.
pvCombo.jar
Combo controls.
pvCurr.jar
Currency controls for you Euro folks.
pvDate.jar
Date controls. These must be old or "short" ones...
pvDateL.jar
Date Long controls. These must be old or for you nonplused folks...
pvDateLP.jar
Date Long Plus controls (extends PVDateLong and has drop-down calendar).
pvDateP.jar
Date Plus controls.
pvEdit.jar
Edit controls (like edit boxes).
pvImBut.jar
Image Button controls. Goes with pvButton.jar.
pvMask.jar
Mask controls. These must be for Jim Carey.
pvNum.jar
Number controls. Has an Odometer class. Use in Detroit only...
pvPass.jar
Password controls.
pvRound.jar
Round Button controls (goes with pvButton.jar). For you non-square folks...
pvSpin.jar
Spin controls.
pvStatic.jar
Static controls (like frames and static text).
pvTab.jar
Tab [strip] controls.
pvTable.jar
Data Table controls (like MS Flex Grid).
pvTime.jar
Time controls.
pvTree.jar
Tree view controls.

You only use these for replacing ActiveX controls. You don’t have to use them just to have spin controls, edit boxes, etc. in your application.

13) You can now generate, build, and test from the Generate and Build screen—but not much else.

The Mysterious Client Properties Object

When you call a Plex Java program, one of the call parameters is the location of the Client Properties file. If Plex can’t find this, you will get some mysterious error message about a null pointer. If that other programmer is still sitting around doing nothing while you do all the work like usual, stick this note to their forehead too, “If you get a Null Pointer Message, check the location and name of your Client Properties file.” If not, your cubicle wall will do. By the way, if the lazy slug wandered off to the water cooler, run over there, tackle them and hold ‘em down long enough to get your first two notes back. The Client Properties file tells Plex where to find your Panel Resources file, the server you want to connect to, where Jimmy Hoffa is buried, etc. At release level 4.5 of Plex, the Client Properties file MUST be named ob450client.properties. Here’s the picture:

java ObRun.ObPanel.ObLaunch MyCleverJavaProgram Path=C:\MyClientPropertiesFolder

 |

 |(ob450client.properties

 |

 |(MyCleverJavaProgram.panelresource

 |(The Server I want

 |(James R. Hoffa’s Burial Location, etc.
You need at least one ob450client.properties for compiling and one more for testing/production. You probably want one ob450client.properties for each different test/production environment. Leave the one in C:\Plex\ObJava alone and check the box that says “Update client properties file” on the Java Generation Options panel. This makes Plex update that one to match what you’re doing, and will let you run Java programs using the Run option from a Generate and Build window.

Here’s what’s in the ob405client.properties: (My notations start “# LK - ” and are on the line above what they are talking about. I added line numbers to the original lines so I can reference them). The lines in blue are new with version 4.5 of Plex.:

01 #---

02 # Plex Java runtime client options file

03 #---

LK – Must match the environment name on lines 13-80.

04 Environment=Default

LK – Should applets frame inside a web browser or not. Yes and No seem backwards to me.

LK – No means use the Browser as the panel frame. Yes means display as separate panel with its own frame.

LK – This setting only applies to the first panel displayed. All other panels load with their own frames.

LK – If the first panel is not a Top Application, it will load with its own frame no matter what setting

LK – you use. That is, dialog panels will not frame inside the a web browser.

05 Applet.UseFrame=No

06 UseMouseOverCursor=Yes

07 MessageLog.Width=600

08 MessageLog.Height=300
LK – I changed my line 09 to DefaultFont=timesroman, because I like that font face better.

09 DefaultFont=sansserif
10 CourierNew=monospaced

LK – If you change the Default Font like I did, you have to tell Java what it is. Use the Windows Name

LK – for the font without the spaces. That is, “Times New Roman” is “TimesNewRoman”.
11 TimesNewRoman=timesroman

12 # Plex Environment Options:

13 Environment.Default.Driver=sun.jdbc.odbc.JdbcOdbcDriver

14 Environment.Default.DataSource=jdbc:odbc:

LK – There are two User and Password settings. This is probably not the one you want.

LK – The User and Password settings you probably want are the ones on lines 85 and 86.

15 Environment.Default.User=

16 Environment.Default.Password=

LK – Lines 17 and 18 were in version 4.0b, but have been dropped from version 4.5.

LK – See line 116 for the current location of lines 17 and 18.

17 Environment.Default.Package=CLIENT

18 Environment.Default.PackageList= MISC CLIENT SERVER SERVER

LK – The location of the Panel Resources file. For example, MyCleverJavaProgram.panelresource

LK – The “file:C:\\” notation is when a web server is not used. This changes to “http:…” for a web server

LK – The closing “\\” or “/” are essential. You will get null-pointer error messages or your program

LK – will suffer silent deaths if you leave it off.

LK – The first example line 19 shows setup for a local hard drive. The closing “\\” is essential.

19a Environment.Default.Resources=file:C:\\MyAppRoot\\

LK – The second example line 19 shows setup for a web server. The closing “/” is essential.

19b Environment.Default.Resources=http://MyServer.com/MyAppRoot/HTML/Java/

LK – The location of any GIFs you are using in your application.

LK – The first example line 20 shows setup for a local hard drive. The closing “\\” is essential.

20a Environment.Default.ImagePath=file:C:\\MyAppRoot\\Images\\

LK – The second example line 20 shows setup for a web server. The closing “/” is essential.

20b Environment.Default.ImagePath=http://MyServer.com/MyAppRoot/HTML/Java/Images/

LK – The Plex document does not tell us how to make this “Native” meaning Java look and feel.

LK – “System” look and feel means Windows look and feel on a Windows client.

21 Environment.Default.LookAndFeel=System

22 Environment.Default.AutoCommit=Yes

23 Environment.Default.ReadOnlyAccess=No

24 Environment.Default.TransactionIsolation=TRANSACTION_NONE

25 Environment.Default.DefaultDateMask=MM/dd/yy

26 Environment.Default.DefaultTimeMask=hh:mm:ss a

27 Environment.Default.DefaultTimeStampMask=MM/dd/yy hh:mm:ss a

28 Environment.Default.MenuFont=Regular 8 MS Sans Serif

29 Environment.Default.UseUncheckedMenuImage=Yes

30 Environment.Default.CharacterHighValue=z

31 Environment.Default.CharacterLowValue=

32 Environment.Default.CharacterEmptyValue=

33 Environment.Default.DateHighValue=9999-12-31

34 Environment.Default.DateLowValue=0001-01-01

35 Environment.Default.DateEmptyValue=0001-01-01

36 Environment.Default.TimeHighValue=23:59:59

37 Environment.Default.TimeLowValue=00:00:00

38 Environment.Default.TimeEmptyValue=00:00:00

39 Environment.Default.TimestampHighValue=9999-12-31 23:59:59

40 Environment.Default.TimestampLowValue=0001-01-01 00:00:00

41 Environment.Default.TimestampEmptyValue=0001-01-01 00:00:00

42 Environment.Default.ClearResourceCache=No

43 Environment.Default.HeightAdjustment=0

44 Environment.Default.EventTimeoutValue=1000

45 #---

46 # Panel resource file caching

47 #---

48 # if you have panels with no control states, setting this to Yes will unload the panel resource file

49 # once the panel is displayed. This will free up memory. However it will be reloaded if any control

50 # states change and the resource file needs to be re-read for information

51 Environment.Default.ClearResourceCache=No

52 # If panels are visited often during an application session, the resource file can be cached so

53 # next time the panel is visited, it does not need to be loaded from disk. This can improve

54 # performance but will use more memory. The values for this option can be

55 # ALL - cache all panels

56 # NONE - do not cache panels

57 # SOME - cache selected panels

58 # If you choose some you must provide entries in this file in the format

59 # Environment.Default.CacheResource.FncName=Yes or No e.g.

60 # Environment.Default.CacheResource.MyPackage.AA1f_ObFnc=Yes

61 # Note the function name is the function implementation name including its package and _ObFnc

LK – I suggest changing line 62 from “NONE” to “ALL” to speed things up by caching panel resource files.

LK – I have a fairly simple grid type panel, and it’s panel resource file is 153kb.

62 Environment.Default.CachePanels=ALL

63 #--

64 # Download on demand settings

65 #--

66 # Show information messages to the end user as classes are being remotely loaded

LK – During debugging I suggest you set line 67 to “Yes”. For production, you will want “No” to avoid

LK – displaying a log screen that won’t mean anything to users.

67 Environment.Default.RemoteLoadMessages=No

68 # Attempt any remote loading if classes cannot be found automatically

LK – I suggest you leave set line 69 to “Yes”, especially for web site deployment.

LK – If you change line 69 to “No”, you must deliver all class objects directly to the user.

69 Environment.Default.AttemptRemoteLoad=Yes

70 # Locations to try to load from can be file and http protocols

71 # can be directories or jar files - many entries can be placed here

72 # but must be seperated by a space. Some examples:-

73 # Environment.Default.RemoteLoadLocations=http://localhost:8080/a.jar

74 # Environment.Default.RemoteLoadLocations=http://localhost:8080/

75 # Environment.Default.RemoteLoadLocations=file:d:\\working\\

76 # Environment.Default.RemoteLoadLocations=file:d:\\working\\a.jar

77 # Environment.Default.RemoteLoadLocations=file:d:\\working\\a.jar http://localhost:8080/a.jar

LK – Filling out line 78 is required for download on demand, which would only be used when

LK – serving Applets from a web server. The line points to your jar or class objects.

LK – The first line 78 is how this line should look when you are not using download on demand.

78a Environment.Default.RemoteLoadLocations=

LK – The second line 78 is filled out to use download on demand from a URL. The closing “/” is essential.
78b Environment.Default.RemoteLoadLocations=http://MyServer.com/MyAppRoot/HTML/Java/

LK – You can also use download on demand from a hard drive or network folder.
LK – The third line 78 is filled for download on demand from drive “g”. The closing “\\” is essential.

LK – The assumption is C:\feller\Gen\ has the sub-folders CLIENT, MISC, PDate and Server.
78c # Environment.Default.RemoteLoadLocations=file:C:\\feller\\Gen\\

79 #--

80 # Remote function calls

LK – The IP name of your AS/400 if you are using one. Two examples are shown. Only use one of them.

81a DefaultAS400.System=192.168.1.1

 or

81b DefaultAS400.System=MyAS400.MyServer.com

LK – RCP may work, but I wouldn’t try it—especially if you want to use your own PC as a test server. I suggest always using AS400TCPIP

82 DefaultAS400.Protocol=AS400TCPIP

LK – The IP port your AS/400 YOBLISTEN job (program YOBSYTCP) is listening on.

83 DefaultAS400.Port=45000

LK – Cp037 is US English(ENU), Cp285 is UK English (ENG). If you’re not sure what to use,

LK – Display your YOBLISTEN job and look for the code page it is using.

LK – Code page 1252 is also popular. Code page 1252 is Latin characters for any national language.

84 DefaultAS400.Encoding=Cp037

85 DefaultAS400.User=

86 DefaultAS400.Password=

87 DefaultAS400.JobDescription=MyLib/MyJobd

LK – Setting this to No allows you to use a stored user id and password and skip the back-end server

LK – Sign-on panel. You can only save passwords when you run using the java command from your PC.

LK – There is a section in this document named “Saving the User Id and Password from an Applet”.

LK – This section explains how to save passwords for applets launched from a web browser.

88 DefaultAS400.BypassAppletLogin=No

89 DefaultAS400.AdditionalEncryption=None

90 DefaultAS400.SecureConnection=No

91 DefaultAS400.SSLCipherSuites=Supported

92 DefaultAS400.DynamicProviders=com.sun.net.ssl.internal.ssl.Provider
93 DefaultServer.System=*THIS

94 DefaultServer.Port=

95 DefaultServer.Environment=

96 DefaultServer.AdditionalEncryption=None

97 DefaultServer.SecureConnection=No
98 SecureServer.System=*THIS

99 SecureServer.Port=

100 SecureServer.Environment=

101 SecureServer.AdditionalEncryption=None

102 SecureServer.SecureConnection=Yes

103 SecureServer.SSLCipherSuites=SSL_DH_anon_WITH_RC4_128_MD5

104 SecureServer.DynamicProviders=com.sun.net.ssl.internal.ssl.Provider

105 DefaultMisc.System=*THIS

106 DefaultMisc.Port=

107 DefaultMisc.Environment=

108 MyLocation.System=

109 MyLocation.Port=

110 MyLocation.Environment=

111 FunctionLocation.YourFunction=

112 # Locale information

113 Locale.language=en

114 Locale.country=

115 Locale.variant=

116 James.R.Hoffa.=Burried@Somplace Near Carbondale Illinois in trunk of ’71 Cadillac
Calling a Plex Java Program from a Hand Coded Java Program

The parameters are the tricky part. What the manual doesn’t tell you is that Plex Java programs pass the input parameters back to you as the first output parameters.

In native Java, calls look like OutputParms = MyCleverProgram(InputParms), where both OutputParms and InputParms are String arrays, or String[] in Java. Notice I am so brainwashed on capitalization that I now write “String” instead of “string” even in documentation. Wait until you get Byte and byte mixed up and spend the better part of a day wondering why you are getting all these weird compiler error messages. Get a yellow sticky, and write, “The road to Java Hell is paved with incorrect capitalization”, and stick it to the center of your monitor. Not the side. The center. It's a little hard to see things after that, but at least you won’t forget to check your capitalization when something weird happens—and, believe me, this wILL happen.

Let’s say we write a Plex Java program that has three input parameters and two output parameters. When Plex is done generating and building, you actually have a program with three input parameters and five output parameters. The first three output parameters are the input parameters being sent back to you. Below is a sample hand coded Java program that calls a Plex Java program:

public class CallPlexJavaProgram

{

 public static String[] main(String[] args)

 {

 String[] ParmsOut = new String[5];

 String[] ReturnParms = new String[2];

 String FunctionName = "PlexJavaProgram";

 String ProfilePath = "C:\\Java";

 String EnvironmentName = "Default";

 ParmsOut = ObRun.ObPanel.ObLaunch.callFunction(FunctionName, ProfilePath, args, EnvironmentName);

 ReturnParms[0] = ParmsOut[3];

 ReturnParms[1] = ParmsOut[4];

 return ReturnParms;

 }

}

The “args” coming in are used to fill in the three input parameters the Plex Java program wants as input. Trust me, “args” is the perfect name. If you’re like me, you will wind up yelling, “args!” at the Java compiler ever time it spits out some error message that makes you want to drive to Sun Microsystem’s HQ and strangle someone.

Java makes you declare arrays with the number of elements, but references them starting at 0. That is 0 is the first array element. The ReturnParms in this program are picking out the two real output parameters from the combined Input and Output in the ParmsOut String array from the Plex Java program and passing them back to a caller. If the number of parameters ever changes, you get to renumber this code each and every time.

Calling a Hand Coded Java Program from a Plex Java Program

The parameters are the tricky part. Déjà vu? You betcha. The data conversions are much easier than C++, because Java wants everything to be a String. All the Obxxx types have String conversion methods.

Here is a screen shot of a call to a hand coded Java program:

[image: image24.png]Do you want toinstalland un "Java(TW1 2 Furtime
Envionment SE 1.2.2" signed on 11/27/2000 1242 PM
and ditibuted by

Sun Microsystems.

Publsher authenticity veriied by VeriSign Commercial
Software Pubishers CA

Caution: Sun Microsystems, Inc. sssets that this contentis
safe. You should onl instalview this content f you st
Sun Microsystems, Inc. to make that asseiton.

I~ Always st cortent from Sun Microsystems,

Yes More Info

Cool huh? Err, Advantages huh?

SC_FullPath is a VaryCharacter, size 1024.

ScanResult is a char, size 1.

ScanString is a VaryCharacter, size 32,767.

Notice all the casting is handled with the “.toString” and “.fromString” methods, which are part of Plex for Java. Also notice that both the input and output parameters are numbered starting with 0. This hand-coded Java program does not pass back the input parameters are the first output parameters, which is typical of native Java programs.

The program this calls is shown partially on the next page. It counts the frequency of hex byte combinations in any file. The package MISC; line had to be included or the Plex initiated Java compile won’t find the FreqHex class. If you don’t include this, you will get an error message saying that FreqHex is not part of the class you are compiling—like you didn’t already know that. Also, put the compiled object for the hand-coded program in the C:\feller\Gen\xxx folder. In this case, the FreqHex.class object you got when you compiled FreqHex.java needs to be put into the C:\feller\Gen\MISC folder.

Print this out if you are having trouble seeing around the yellow sticky note stuck to the middle of your screen:

package MISC;

import java.io.*;

public class FreqHex

{

 public static FileInputStream ObjectIn = null;

 public static Map ByteMap;

 public static int iScanResult;

 public static String[] main(String[] args)

 {

 iScanResult = 1;

 Integer ScanResult;

 String[] ScanReturn = new String[2];

 ByteMap = new HashMap();

 try

 {

 ObjectIn = new FileInputStream(args[0]);

 Freq2Bytes();

 }

 catch (FileNotFoundException FileErrorMessage)

 {

 System.out.println("FileNotFoundException: " + FileErrorMessage);

 iScanResult = 2;

 }

 finally

 {

 if (ObjectIn != null)

 {

 CloseObject();

 }

 ScanResult = new Integer(iScanResult);

 ScanReturn[0] = ScanResult.toString();

 ScanReturn[1] = ByteMap.toString();

 System.out.println(ScanReturn[0]);

 System.out.println(ScanReturn[1]);

 return ScanReturn;

 }

 }

}
When you see all the crazy data conversions being done above, you’ll come to appreciate how much work Plex Java is doing for you. For that matter, look at the gillion or so lines that make up a panel resource file, that Plex generates for you. And we all thought IBM 5250 DDS was bad…

Using Your PC as a Java Server

Want to test the whole thing without getting involved with other servers? (and avoid filling out the 50 forms the Ops team wants…)

To do this you can make your PC run the server engine or the “Dispatcher”. Below is the two-line content of a file from my PC named, “StartDispatcher.bat”.

C:\JDK1.2.2\bin\java ObRun.ObComms.ObService Path=C:\Plex\Objava 1998 No

PAUSE

The part of the first line up to the number 1998 is what you type to get the dispatcher going, assuming you have installed the Sun JDK version 1.2.2 using the default folder names. The Path statement, “Path=C:\Plex\Objava” is the location of your ob450svr.properties file. The number 1998 is the TCP/IP port your PC listens to itself on. (I don’t know if there is a way to make your PC talk to itself, but I think I hear mine muttering to itself under its chips from time to time…) This number must match up with an entry in your ob450svr.properties file. Mine looks like the one below, which is the shipped object without any changes (misspellings and all). Port 1998 is the second service port. This is the recommended port to use. The “No” at the end of the line says to not use the Secure Socket Layer. (I trust my PC, even though is listens to itself…)

#---

Plex Java runtime options file

#---

Plex service administrator options and service defaults

Default.Admin.Port=2000

Default.Service.MaximumClients=200

Default.Service.UseLog=1

Default.Service.LoggingLevel=4

Default.Service.SSLCipherSuites=Supported

Default.Service.DynamicProviders=com.sun.net.ssl.internal.ssl.Provider

Plex Service Options:

1997.Service.MaximumClients=2

1997.Service.UseLog=1

1997.Service.LoggingLevel=4

1998.Service.MaximumClients=100

1998.Service.UseLog=1

1998.Service.LoggingLevel=4

1999.Service.MaximumClients=10

1999.Service.UseLog=0

1999.Service.LoggingLevel=4

1999.Service.SSLCipherSuites=SSL_DH_anon_WITH_RC4_128_MD5

Plex Environment Options:

Environment.Default.Driver=sun.jdbc.odbc.JdbcOdbcDriver

Environment.Default.DataSource=jdbc:odbc:

Environment.Default.User=

Environment.Default.Password=

Environment.Default.AutoCommit=Yes

Environment.Default.ReadOnlyAccess=No

Environment.Default.TransactionIsolation=TRANSACTION_NONE

Environment.Default.DefaultDateMask=MM/dd/yy

Environment.Default.DefaultTimeMask=HH:mm:ss a

Environment.Default.DefaultTimeStampMask=MM/dd/yy HH:mm:ss a

Environment.Default.MenuFont=Regular 8 MS Sans Serif

Environment.Default.CharacterHighValue=z

Environment.Default.CharacterLowValue=

Environment.Default.CharacterEmptyValue=

Environment.Default.DateHighValue=9999-12-31

Environment.Default.DateLowValue=0001-01-01

Environment.Default.DateEmptyValue=0001-01-01

Environment.Default.TimeHighValue=23:59:59

Environment.Default.TimeLowValue=00:00:00

Environment.Default.TimeEmptyValue=00:00:00

Environment.Default.TimestampHighValue=9999-12-31 23:59:59

Environment.Default.TimestampLowValue=0001-01-01 00:00:00

Environment.Default.TimestampEmptyValue=0001-01-01 00:00:00

#--

Download on demand settings

#--

Show information messages to the end user as classes are being remotely loaded

Environment.Default.RemoteLoadMessages=No

Attempt any remote loading if classes cannot be founf automatically

Environment.Default.AttemptRemoteLoad=Yes

Locations to try to load from can be file and http protocols

can be directories or jar files - many entries can be placed here

but must be seperated by a space. Some examples:-

Environment.Default.RemoteLoadLocations=http://localhost:8080/a.jar

Environment.Default.RemoteLoadLocations=http://localhost:8080/

Environment.Default.RemoteLoadLocations=file:d:\\working\\

Environment.Default.RemoteLoadLocations=file:d:\\working\\a.jar

Environment.Default.RemoteLoadLocations=file:d:\\working\\a.jar http://localhost:8080/a.jar

Environment.Default.RemoteLoadLocations=

#--

Remote function calls

DefaultServer.System=*THIS

DefaultServer.Port=

DefaultServer.Environment=

DefaultMisc.System=*THIS

DefaultMisc.Port=

DefaultMisc.Environment=

MyLocation.System=

MyLocation.Port=

MyLocation.Environment=

FunctionLocation.YourFunction=

Locale information

Locale.language=en

Locale.country=

Locale.variant=

Once you get this all set up and started, a DOS Window will appear that looks like this:

[image: image5.png][Parancter value not in allowed range

C:\Java>C: \JDK122\bin\java ObRun.ObConns.OhService Path=C:\Plex\Objava 1998 No
[COOL:Plex Dispatcher started.

I have no idea what the, “Parameter value not in allowed range” message is all about, but I always get it when I run a DOS application. (I did find peanut butter in my CD drive around the time this started…) The rest of the screen just tells us that the Dispatcher is running.

Now the reason for the PAUSE statement at line two in my, “StartDispatcher.bat” file.

If my Java test fails, I don’t want the Dispatcher closing this panel without showing me its final, throws-of-death messages. I put the PAUSE line in, so I can see any closing error messages, and scream hysterically to the Plex and Java gods that, “LIFE IS NOT FAIR.”

You end the Dispatcher by typing Ctrl+C on the DOS Window. Screaming hysterically at the same time is optional.

Deploying Plex Java Applications

Introduction

This section describes the process for deploying Plex generated Java Client programs and the Server programs, which support them.

Server

There is one major decision affecting how you will deploy your server programs.

1) What platform and language do you want to use on the server?

If you want complete platform independence, you will generate your server programs in Java. This will allow you to run your server programs on any computer platform, which supports Java—which is all the popular ones. You will pay a price in performance for this decision with most computer platforms, because Java is not a native language and does not hard compile on most platforms.

If server-computer-platform independence is not an issue I suggest you use a language native to the server. Remember, you are using a CASE tool to create your programs—and aiming a CASE tool at a new platform using a different generator is not the amount of work that rewriting your entire application would be. One person emailed me asking how they could speed up their Java server programs on an AS/400. I told them to change the generated server language to RPG, when deploying on an AS/400 server.

Plex generated Java client programs call server programs generated using RPG, WinC, etc. just fine.

The steps to setup a server differ with each platform, and you should refer to the documentation for the platform you pick. If you are using one of the Java server platforms, you will need to configure a Java dispatcher. There is a simple example of how to do this with your own PC in the section of this document named, “Using Your PC as a Java Server”. Setting up other Java servers is similar—but varies with each type of server.

If you do not generate server code in Java, you do not need to start the Java dispatcher—unless watching dispatcher jobs that do nothing is of interest to you…

Client

There are two major decisions that affect what steps you will follow to deploy Java client programs.

1) Are you going to ship people an application or deliver applets directly from a web server?

2) Are you going to package your class files in Java Archives (jars) or deliver them as individual objects?

Application or Applet

Delivering Java client programs as applications is similar to delivering C++ client programs. You bundle up everything and send it to people on a CD, in a Zip file, using InstallShield, etc. This has the advantage of giving you complete control over every object you send to the end user, and makes sure all the versions match—leaving nothing to chance. This has the disadvantage of making you responsible for keeping everything up to date, and shipping new versions of objects whenever there are changes. If you pick the approach of delivering applications, think of your target “client” as being the PC on the desktop of your end users.

Delivering Java programs as applets means you deliver everything from a web server. This takes advantage of the power of the current generation of web browsers, which assemble the applets from the one set of current objects you keep on your web server. This is the typical approach for delivering Java programs. This has the disadvantage of delivering everything you need to send to your end user over the potentially low-speed communication lines of the Internet or an Intranet. If you pick the approach of delivering applets, think of your target “client” as being your web server. Your end users use a web browser from the PC on their desktops to get to your web server “client”.

I have found that the Plex generated .class objects work the same if I generate and compile “Application”s or “Applet”s. I have gotten into the habit of generating and compiling everything as an applet. To me the difference between application and applet is how the program is delivered, not how it is generated and compiled.

Jars or Individual Objects

Java Archives are like zip files used to package Java programs. Delivering client programs using jar files has the advantage that your users only need to download each jar once for each version, and they have the entire contents on their PC. Delivering with jar files has the disadvantage that your end users must wait for the entire jar(s) to load, before they can start running anything.

Delivering individual class objects has the advantage that your end users only need to load the class objects they will use in a given situation. Delivering individual class objects has the disadvantages that the objects can’t be compressed as they can be with jar files.

If you are deploying applications, the choice between distributing jars or individual class objects should be decided based on which method is the most convenient for you to distribute and update your application. I suggest you should always distribute the Sun and Plex class objects in the jars they come in, like rt.jar, i18n,jar, ObRun.jar and OBPTJAVA.JAR. I suggest you will find distributing your client application(s) in jars makes it easier to keep track of versions and avoid mixing incompatible versions of objects.

If you are deploying applets only from a web site, I suggest you will need to use jars only. I tried unzipping the ObRun.jar and OBPTJAVA.JAR objects and delivering these as individual class objects. I found that when running one simple display panel and one simple grid panel, that 104 of the ObRun .class objects downloaded with a total uncompressed size of 485kb. It would have downloaded more, but the JRE Plug-in failed with an “OutOfMemory” error message that displayed on the Plug-in Console. The total compressed size of the ObRun.jar is 760kb, and using it avoids the “OutOfMemory” error message. I suggest you put the Java applets you write into jars too.

Another approach is to distribute some jar objects directly to your end users and others via a web site. This approach will only make sense when you are dealing with an internal distribution and not the general public using the Internet. If you have a situation where you can control an internal distribution, I suggest that you deliver the big jar objects, which don’t change very often, directly to your end users and deliver the smaller jar objects, which change often, via a web site.

At release level 4.5 of Plex, the jar objects, which don’t change until the next releases (or service packs or versions wheedled out of CA developers who remember you still have the negatives from the Synon or Sterling farewell parties) are:

1) ObRun.jar
760kb.

2) OBPTJAVA.JAR
900kb.

These two objects total 1,660kb or over 1.5mb. Allot of data for your users to download, before they can run your programs.

What Does Not Work

The reason most people write Java programs is to deploy them from a web site. This section assumes that is what you will be doing. If you choose to deliver applets from your web site, they will run inside a web browser like Microsoft Internet Explorer (MSIE) or Netscape Navigator (NN).

The APPLET Tag

Both of the last few versions MSIE and NN have stopped supporting the APPLET tag in such a way that you can use it with Plex Java and many other Java programs. I tried the following HTML to start a Plex Java program with Internet Explorer versions 5.0 and 5.5. (This HTML is a hand-edited version of what you get if you generate the non-Plug in HTML):

<HTML>

 <HEAD>

 <TITLE>

 CustomerSignon

 </TITLE>

 </HEAD>

 <BODY>

 <APPLET

 CODE="ObRun.ObPanel.ObLaunch.class"

 CODEBASE="http://MyServer.com/MyAppRoot/HTML/Java/"

 ARCHIVE="ObRun.jar,OBPTJAVA.Jar,MyApplication.jar"

 WIDTH="355"

 HEIGHT="300"

 NAME="ObLaunch"

 ALIGN="baseline">

 <PARAM NAME="Function" VALUE="CLIENT.CustomerSignon">

 <PARAM NAME="Properties" VALUE="http://MyServer.com/MyAppRoot/HTML/Java/">

 The APPLET tag failed while trying to load a version 1.2.2 Java applet named CustomerSignon.

 This is problem with a program that you can't fix.

 </APPLET>

 </BODY>

</HTML>

The lines that read…

 The APPLET tag failed while trying to load a version 1.2.2 Java applet named CustomerSignon.

 This is problem with a program that you can't fix.

…only display if the APPLET tag fails to execute.

NOTE: I have removed all optional spaces from the HTML. Some browser versions have trouble with the spaces, especially spaces separating the names of multiple jar files. NOTE for IF/CW: Don’t use optional spaces in HTML.

The result of testing this HTML with Internet Explorer versions 5.0 and 5.5 is the display of the following four messages on the status line:

Opening Java archive ObRun.jar

Opening Java archive OBPTJAVA.jar

Opening Java archive CustomerAccess.jar

load: ObRun.ObPanel.ObLaunch can't be instantiated

I searched the CA support site for this, and found a) I no longer exist and, b) neither do 2E or Plex. Undaunted, and self-assured of my own existence, I looked up the “load: ObRun.ObPanel.ObLaunch can't be instantiated” error message on Microsoft’s web site. I found what I wanted after several days of searching, using the keywords, “Tell me what the ‘load: ObRun.ObPanel.ObLaunch can't be instantiated’ error message means or I will give a deposition to the US Department of Justice, Anti-Trust Division.” (The commas are required.) The answer reads that you should use the HTML OBJECT tag instead of the APPLET tag, because the APPLET tag has been “Deprecated” and because Janet Reno is no longer the US Attorney General. Phooey, on both counts.

By the way, somebody needs to buy Microsoft and Sun some dictionaries. They both use the word, “Deprecated” to mean discontinued, replaced, tossed in the trash, whatever… If you look up “Deprecated” in Webster’s New Twentieth Century Dictionary, Unabridged, Second Edition dictionary it has three definitions:

1. to pray against; to pray deliverance from; as to deprecate the return of war. [Archaic.]

2. to plead or argue earnestly against; to urge reasons against; to feel and express strong disapproval of.

3. to implore mercy of. [Obs.]

Since definition “1.” is Archaic and definition “3.” is Obsolete, I guess someone is expressing strong disapproval of the APPLET tag. Of course the Twentieth Century version of Webster’s is not Y2K compliant—so maybe that’s the problem.

The Microsoft support page I found the “Deprecated” business on has a link to the HTML 4.0 standards (along with a picture of former US Attorney General, Janet Reno with some of her teeth blacked out). I read the HTML 4.0 standards document and found definitions and examples of the OBJECT tag.

The OBJECT Tag (without the Sun Java Plug In)

Using the HTML 4.0 standards document examples as a model, I changed my HTML to the following:

<HTML>

 <HEAD>

 <TITLE>

 CustomerSignon

 </TITLE>

 </HEAD>

 <BODY>

 <OBJECT

 CODETYPE="application/java"

 CLASSID="ObRun.ObPanel.ObLaunch.class"

 CODEBASE="http://MyServer.com/MyAppRoot/HTML/Java/"

 NAME="ObLaunch"

 WIDTH="355"

 HEIGHT="300"

 ALIGN="baseline">

 <PARAM NAME="Function" VALUE="CLIENT.CustomerSignon">

 <PARAM NAME="Properties" VALUE="http://MyServer.com/MyAppRoot/HTML/Java/">

 The OBJECT tag failed while trying to load a version 1.2.2 Java applet named CustomerSignon.

 This is problem with a program that you can't fix.

 </OBJECT>

 </BODY>

</HTML>

The lines that read…

 The OBJECT tag failed while trying to load a version 1.2.2 Java applet named CustomerSignon.

 This is problem with a program that you can't fix.

…only display if the OBJECT tag fails to execute.

The result of this test is that Internet Explorer displays:

 The OBJECT tag failed while trying to load a version 1.2.2 Java applet named CustomerSignon.

 This is problem with a program that you can't fix.

Odd, the Microsoft documents say the OBJECT tag works? I had the Internet Explorer Java console open at the time, and it displayed no messages. Also, there were no error messages on the status line of Internet Explorer. Double Phooey!

I tried the OBJECT tag with my copy of the HelloWorld.class, which I created when I took the Sun Java tutorial, and got the same results.

I tried the APPLET tag with my HelloWorld.class, and this worked.

I don’t know why Microsoft says Internet Explorers supports the OBJECT tag. I could not get it to work without the Sun Java Plug-in.

What Does Work - The Sun Java Plug-In

You may be wondering why I went to all the trouble of trying to get the APPLET tag and the OBJECT tag to work without the Sun Java Plug-in (JRE), since the Plex documentation says to use the Plug-in. The reason is simple. The Sun Java Plug-in is a 5mb to 7.5mb download, which I wanted to avoid. There are several versions of the Plug-in you can choose. Currently these are:

Version 1.2.2_007 Standard Edition
jre-1_2_2_007-win.exe
5,251kb
Version 1.2.2_007 International Edition
jre-1_2_2_007-win-i.exe
7,321kb

Version 1.3.0_02 Standard Edition
j2re-1_3_0_02-win.exe
5,026kb

Version 1.3.0_02 International Edition
j2re-1_3_0_02-win-i.exe
7,576kb

If you use the Plug-in, your end users have to wait while their web browser downloads one of these. This creates a very bad, “out of the box” experience for your users, because the download means your end users have to wait through 5mb to 7.5mb of downloads—before they ever see one of your programs. Depending on how you need to configure the Plug-in, these downloads can occur without any messages or other indication that they are happening—other than the web browser not responding. I read an IBM study on user perceptions of response times a few years ago. IBM found users perceived:

Response time

User perception
Under ½ second

Instantaneous

Under 1 second

Good

1 to 2 seconds

Slow

2 to 5 seconds

Bad

Over 5 seconds

Computer is broken.

A download of 5mb to 7.5mb is going to take over 5 seconds, unless your users have direct, high-speed LAN connections to your web server. The user will most likely think the computer is broken, and either a) close the web browser, or b) hit Refresh—and start the download over.

Ugh!

If you have been reading the Plex documentation or have looked through some Plex example HTML code, you may be wondering why I have not mentioned the “jinstall-1_2_2-win.cab” Plug-in object. Plex version 4.5 generates Plug-in HTML that has the following line inside the scope of the OBJECT tag:

CODEBASE="http://java.sun.com/products/plugin/1.2.2/jinstall-1_2_2-win.cab#Version=1,2,2,0">

This is a 41kb object that contains the JavaBeanBridge [to ActiveX] and just enough code to start the download of the Java version 1.2.2 runtime engine or JRE Plug-in. There is one definite advantage to using this object. Your user only has to wait for a 41kb download, before this panel displays:

[image: image6.png]Do youwart tanstalland un "Java Plugin 1.2.2" signed
o 06/25/1339 8:32 P and disibuted by

Sun Microsystems.

Publsher authenticity veriied by VeriSign Commercial
Software Pubishers CA

Caution: Sun Microsystems, Inc. sssets that this contentis
safe. You should onl instalview this content f you st
Sun Microsystems, Inc. to make that asseiton.

I~ Always st cortent from Sun Microsystems,

Yes More Info

If the user clicks on “Yes”, they get this panel—which lets them pick between the 5,251kb “U.S. English” version (the “Standard Edition”) or the 7,321kb “International [Edition]” version:

[image: image7.png]» Please select the language, region and the
nearestlacation o dawnload the intalation.

Locale: [MENEFREMNG—_
Regon: [usa <

Avaiable Localions:

nstal

Once they click on Install, the user gets a progress screen that looks like this:

[image: image8.png]Downloading [

Dawn\aadwglava[TM] Plugin122

Eshmaled Time Left 2 min 27 sec (206K of 5250KB)

Unfortunately, there are problems with this approach. Your users have to be able to get to the Sun web site at http://java.sun.com. If you are deploying to an Intranet, locked inside a firewall, this may not be possible. Also, your user must pick the International Edition or the ASCII to EBDIC translation won’t work. (Big problem if you are using an IBM server.) My guess is most users in the US will pick the default “U.S. English” Edition, thinking they are making the correct choice.

An example of working HTML for this approach is:

<HTML>

 <HEAD>

 <TITLE>

 CustomerSignon

 </TITLE>

 </HEAD>

 <BODY>

 <OBJECT

 CLASSID="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

 WIDTH="355"

 HEIGHT="300"

 NAME="ObLaunch"

 ALIGN="baseline"

 CODEBASE="http://java.sun.com/products/plugin/1.2.2/jinstall-1_2_2-win.cab#Version=1,2,2,0">

 <PARAM NAME="CODE" VALUE="ObRun.ObPanel.ObLaunch.class">

 <PARAM NAME="CODEBASE" VALUE="http://MyServer.com/MyAppRoot/HTML/Java/">

 <PARAM NAME="NAME" VALUE="ObLaunch">

 <PARAM NAME="TYPE" VALUE="application/x-java-applet;version=1.2.2">

 <PARAM NAME="Function" VALUE="CLIENT.CustomerSignon">

 <PARAM NAME="Properties" VALUE="http://MyServer.com/MyAppRoot/HTML/Java/">

 The OBJECT tag failed while trying to load a version 1.2.2 Java applet named CustomerSignon.

 This is problem with a program that you can't fix.

 </OBJECT>

 </BODY>

</HTML>

I will explain all of this HTML code in a few pages.

Another big problem with this approach is your users may want to pick the US English version, because they are in the US and believe they speak English. They have to download the International version or they will get a panel that looks like the one in the Mysterious Error Messages… section of this document.

If you are locked inside a firewall, and can’t get to the Sun web site—there is another approach. The approach is to deliver the Plug-in directly. You do this by loading the Sun JRE Plug-in you want on your Intranet web server and changing the CODEBASE parameter in the HTML to one of the following four choices, depending on which version and variation of the JRE Plug-in you pick:

CODEBASE="http://MyServer.com/MyAppRoot/HTML/Java/jre-1_2_2_007-win.exe">
JRE 1.2.2_007 Standard
CODEBASE="http://MyServer.com/MyAppRoot/HTML/Java/jre-1_2_2_007-win-i.exe">
JRE 1.2.2_007 International
CODEBASE="http://MyServer.com/MyAppRoot/HTML/Java/j2re-1_3_0_02-win.exe">
JRE 1.3.0_02 Standard
CODEBASE="http://MyServer.com/MyAppRoot/HTML/Java/j2re-1_3_0_02-win-i.exe">
JRE 1.3.0_02 International
The problem with this approach is that your users don’t get any indication that the 5mb to 7.5mb object is downloading until the download has finished.

An example of working HTML for this approach is:

<HTML>

 <HEAD>

 <TITLE>

 CustomerSignon

 </TITLE>

 </HEAD>

 <BODY>

 <OBJECT

 CLASSID="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

 WIDTH="355"

 HEIGHT="300"

 NAME="ObLaunch"

 ALIGN="baseline"

 CODEBASE="http://MyServer.com/MyAppRoot/HTML/Java/jre-1_2_2_007-win-i.exe">

 <PARAM NAME="CODE" VALUE="ObRun.ObPanel.ObLaunch.class">

 <PARAM NAME="CODEBASE" VALUE="http://MyServer.com/MyAppRoot/HTML/Java/">

 <PARAM NAME="NAME" VALUE="ObLaunch">

 <PARAM NAME="TYPE" VALUE="application/x-java-applet;version=1.2.2">

 <PARAM NAME="Function" VALUE="CLIENT.CustomerSignon">

 <PARAM NAME="Properties" VALUE="http://MyServer.com/MyAppRoot/HTML/Java/">

 The OBJECT tag failed while trying to load a version 1.2.2 Java applet named CustomerSignon.

 This is problem with a program that you can't fix.

 </OBJECT>

 </BODY>

</HTML>

An alternative I have considered is prying apart the jinstall-1_2_2-win.cab object and changing it to point to an instance of one of the above four JRE objects loaded on a web server inside the firewall. This will destroy the VeriSign signatures in the jinstall-1_2_2-win.cab object, but, since we are talking about an Intranet distribution, signatures should not be as important as they would be in an Internet environment. If you need a VeriSign signature, you will have to get one and “sign” the new object. There are two objects inside this cab object. One of them is the jinstall_1_2_2.inf object, which has a line that reads:

run=%EXTRACT_DIR%\jinstall.exe http://java.sun.com/products/plugin/1.2.2/jinstall_1_2_2.ini

I suspect this line could be changed to point at a different URL. You would have to figure out what is in the jinstall_1_2_2.ini object and modify that as well. I have not tried this.

If you browsed around the Sun web site during the first releases of Java 1.3, you may have noticed there used to be a Plug-in object called plugin1_1_3-win.exe. For a time, Sun was distributing the version 1.3 Plug-in this way. With version 1.2.2 of Java, Sun only distributed the Plug-in as part of the total runtime engine or JRE, so you have to load the jre-1_2_2_007-win.exe or similar object. Sun seems to have changed back to the approach of only delivering the Plug-in as part of the total runtime engine package, because the plugin1_1_3-win.exe object is no longer available and you have to load the j2re-1_3_0_02-win.exe object or similar.

The primary differences between the various Plug-in objects are the version levels of the runtime engine and which jars are delivered.

For version 1.2.2_007, the jars for the “Standard Edition” are:

plugprov.jar
 13kb

rt.jar

9,001kb

jaws.jar

 498kb

For version 1.2.2_007, the jars for the “International Edition” are the “Standard Edition” jars plus:

i18n.jar

4,515kb

iiimp.jar
 82kb

For version 1.3.0_02, the jars for the “Standard Edition” are:

sunrsasign.jar
 85kb

rt.jar

11,394kb

jaws.jar

 812kb

For version 1.3.0_02, the jars for the “International Edition” are the “Standard Edition” jars plus:

i18n.jar

4,788kb

The rt.jar and i18n.jar from the Plug-ins are not the same jar objects you get when you load the same versions of the Java JDKs on your PC. These jars are smaller, because the developer .class and .gif objects have been removed.

A key difference between the “Standard Edition” and the “International Edition” is the i18n.jar object. It is only in the “International Edition” versions of the Plug-in. If you are not supporting multiple concurrent National Languages (French, English, Dutch, Finnish, Norwegian, Klingon, Romulan, etc.), you only need two objects from the i18n.jar object. These are:

CharToByteCp037.class 3.4kb

ByteToCharCp037.class .8kb

These are the objects used to do ASCII-EDCDIC conversions for Code Page 37. You only need these if, a) you have an AS/400 (or some other IBM EBCDIC platform) as a Web or back-end server, and, b) you are using Code Page 37 (US English). These two objects total 4.2kb in size—allot less that the 2.1mb to 2.5mb difference in the size of the Plug-in variations. There are a couple of ways to get around using the “International Edition” and reducing the size of the Plug-in needed by 2.1mb to 2.5mb. One approach is to load the ASCII-EDCDIC conversion objects on your web server. The full path names where Sun Java looks for these are:

…MyAppRoot\HTML\Java\sun\io\CharToByteCp037.class

…MyAppRoot\HTML\Java\sun\io\ByteToCharCp037.class

I tried this, and could not get it to work. I think the problem is that the Standard Edition of the Plug-in does not look for objects in the i18n.jar. If anyone figures out how to make this work, PLEASE let me know—so we call all save 2mb of downloads for our end users.

Another approach is to used Code Page 1252 (Latin characters) instead of 37 (US English). The same objects for Code Page 1252 are in the rt.jar object, and not in the i18n.jar object. Only the Code Page 1252 objects are in the rt.jar object. All other Code Page objects are in the i18n.jar object.

I have not tested this approach, because I can’t dictate the Code Page on the server. If anyone figures out how to make this work, PLEASE let me know—so we call all save 2mb of downloads for our end users.

Another point to consider when using the Sun Java Plug-in is that the rt.jar is delivered as part of the Plug-in. Obviously there is no need to load this on your web server, since your users will get it as part of the Plug-in.

In controlled Intranet environments, you might want to ship the Sun Java Plug-in, the ObRun.Jar, the OBPTJAVA.JAR and any other large objects that don’t change often, directly to your end users. This approach will only make sense when you are dealing with an internal distribution and not the general public using the Internet. If you have a situation where you can control an internal distribution, I suggest that you deliver the big objects, which don’t change very often, directly to your end users and deliver the smaller objects, which change often, via a web site.

Details of the OBJECT Tag

The OBJECT tag is similar, but not identical, to the APPLET tag. The following is a description of its parameters, and how to fill them out for Plex Java, the Sun Java Plug-in and Microsoft Internet Explorer version 4.01 and above.

This is the example of the OBJECT tag from an earlier page in this document.

<OBJECT

 CLASSID="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

 WIDTH="355"

 HEIGHT="300"

 NAME="ObLaunch"

 ALIGN="baseline"

 CODEBASE="http://MyServer.com/MyAppRoot/HTML/Java/jre-1_2_2_007-win-i.exe">

 <PARAM NAME="ARCHIVE" VALUE="ObRun.jar,OBPTJAVA.JAR">

 <PARAM NAME="CODE" VALUE="ObRun.ObPanel.ObLaunch.class">

 <PARAM NAME="CODEBASE" VALUE="http://MyServer.com/MyAppRoot/HTML/Java/">

 <PARAM NAME="NAME" VALUE="ObLaunch">

 <PARAM NAME="TYPE" VALUE="application/x-java-applet;version=1.2.2">

 <PARAM NAME="Function" VALUE="CLIENT.CustomerSignon">

 <PARAM NAME="Properties" VALUE="http://MyServer.com/MyAppRoot/HTML/Java/">

 The OBJECT tag failed while trying to load a version 1.2.2 Java applet named CustomerSignon.

 This is problem with a program that you can't fix.

</OBJECT>

The OBJECT tag must start with “<OBJECT” and end with “</OBJECT>”.

The first few parameters are directly within the scope of the “<OBJECT” tag. You must put these first and place a “>” after the last one to indicate you are finished with the direct parameters.

The CLASSID parameter must be set to "clsid:8AD9C840-044E-11D1-B3E9-00805F499D93" for Sun Java. This is the Windows registry key for all Sun Java runtimes and does not change from version to version or between the “Standard Edition” and the “International Edition”.

The WIDTH and HEIGHT parameters tell the web browser what size gray box to put around your panel. These should match your panel size if you are framing inside the web browser. If you are not framing inside a web browser, omit the WIDTH and HEIGHT parameters to avoid displaying a useless gray rectangle on the web browser.

The NAME parameter is used to refer to an instance of an applet. It can be set to anything you want. If you display the same applet twice on the same browser page, you need to give the instances different NAME parameter values if you want to be able to refer to the instances.

You can omit this parameter.

The ALIGN parameter tells the web browser how to align a framed panel on the page. You can set this to left, right, top, texttop, middle, absmiddle, baseline, bottom, or bsbottom.

The CODEBASE parameter is used to find the Sun Java Plug-in you are using. The various settings for these are described a few pages back in this document.

This is the end of the parameters directly within the scope of the “<OBJECT” tag. You must place a “>” after the last one of the above that you have used.

Next come the “<PARAM” parameters. These come before the “</OBJECT>” tag, but have their own scope. These start with “<PARAM” and end with “>”. The PARAM parameters are used by the JRE to figure out what program to call. These can also be used by every Java applet called after that. The first four PARAM parameters in the example are used by the JRE. Plex Java uses the last two.

1) <PARAM NAME="ARCHIVE" VALUE="ObRun.jar,OBPTJAVA.JAR">

This is the ARCHIVE parameter, which is equivalent to the APPLET ARCHIVE parameter. If you are deploying jars, you list them here. It is essential that you do not put spaces between the names of multiple jars, because some browser versions will stop looking for more jars when they encounter a space.

2) <PARAM NAME="CODE" VALUE="ObRun.ObPanel.ObLaunch.class">

This is the CODE parameter, which is equivalent to the APPLET CODE parameter. You must set this to a VALUE of ObRun.ObPanel.ObLaunch.class to tell the JRE you want to run a Plex Java program.

3) <PARAM NAME="CODEBASE" VALUE="http://MyServer.com/MyAppRoot/HTML/Java/">

This is the CODEBASE parameter. This tells the JRE the path where your class objects and/or jar files are located. This path must be subordinate to the location of the HTML that calls the Java program. For example, if your HTML is in folder http://MyServer.com/MyAppRoot/HTML/, your CODEBASE parameter must point to that folder or a sub-folder of that folder. You can omit the CODEBASE parameter. If you do, your class objects and/or jar files must be in the same folder as the HTML, which calls them. In the Plex examples you will see in the help text and the generated objects, the CODEBASE parameter is always set to a value of “./”. This means use the same folder as the HTML—which means the same thing as omitting the CODEBASE parameter. Some descriptions of this parameter will tell you to use relative addressing. For example, if your HTML is located in folder…

http://MyServer.com/MyAppRoot/HTML/

…and your class objects and/or jar files are located in folder…

http://MyServer.com/MyAppRoot/HTML/Java/

…you could specify a relative CODEBASE parameter of “Java/”. I advise against this approach, because it does not always work. I suggest you always use a full path like “http://MyServer.com/MyAppRoot/HTML/Java/”.

The folder you put your applets into MUST be a sub-folder of the folder where the initiating HTML is found. For example, if your HTML is in folder http://MyServer.com/MyAppRoot/HTML, your applets must be that folder or a sub-folder, like http://MyServer.com/MyAppRoot/HTML/Java/.

If you get this parameter wrong, you will get messages saying class objects can’t be found.

4) <PARAM NAME="NAME" VALUE="ObLaunch">

This is the NAME parameter and works just like the NAME parameter within the direct scope of the OBJECT tag. This NAME parameter is also used to refer to an instance of an applet. It can be set to anything you want. If you display the same applet twice on the same browser page, you need to give the instances different NAME parameter values if you want to be able to refer to the instances. I don’t know why the Plex examples all use the same NAME parameter value of ObLaunch for both the NAME parameter within the direct scope of the OBJECT tag and the NAME parameter within the scope of the <PARAM NAME="NAME" parameter. The NAME parameter within the direct scope of the OBJECT tag is referring to the JRE. The NAME parameter within the scope of the <PARAM NAME="NAME" parameter is referring to the ObRun.ObPanel.ObLaunch.class. These are clearly not the same applets. Since the scope of these two parameters is different, you could not relate these objects. I think it would be clearer if the NAME parameter within the direct scope of the OBJECT tag was given the value “JRE” and the NAME parameter within the scope of the <PARAM NAME="NAME" parameter kept the value “ObLaunch”.

You can omit this parameter.

5) <PARAM NAME="TYPE" VALUE="application/x-java-applet;version=1.2.2">

This is the TYPE parameter and should be set to match the version of the JRE you are using. You can omit the “;version=1.2.2” portion of the parameter. If you leave in the “;version=1.2.2” portion of the parameter, you must update this whenever you change to a new version of the JRE Plug-in.

6) <PARAM NAME="Function" VALUE="CLIENT.CustomerSignon">

This is the Function parameter, and is the direct equivalent of the same parameter of the APPLET tag. The value of this parameter tells Plex Java which applet is the first program to run. In my example the applet is CustomerSignon, which was built as part of the CLIENT group. My example applet object’s full name is CustomerSignon.class.

7) <PARAM NAME="Properties" VALUE="http://MyServer.com/MyAppRoot/HTML/Java/">

This is the Properties parameter and is the direct equivalent of the same parameter of the APPLET tag. The value of this parameter tells Plex Java where to find the ob450client.properties object. If you get the value of this parameter this wrong, you will get null pointer error messages. Stop! Go find the world’s laziest programmer, whose forehead you have been using for yellow sticky notes and get back the one that reads “If you get a Null Pointer Message, check the location and name of your Client Properties file.” Add a bit to the end of the note that reads, “Especially on the Web Server.” Since the glue on the yellow sticky is probably wearing out, use a pushpin to stick it back to the idiot’s forehead. If they still don’t move, have them declared legally dead and have their body carted off (after you collect all your notes of course). Now you will have another PC to use. You’re going to need it to test your applets.

The final lines in the HTML before the </OBJECT> tag read:

 The OBJECT tag failed while trying to load a version 1.2.2 Java applet named CustomerSignon.

 This is problem with a program that you can't fix.

This will display on the web browser if there are any mistakes in your HTML or if you use a Netscape browser. Netscape does not support the OBJECT tag. Netscape uses the EMBED tag. More on that subject next.

Details of the EMBED Tag

The EMBED tag is the Netscape equivalent of the OBJECT tag. It too is similar, but not identical, to the APPLET tag. The following is a description of its parameters, and how to fill them out for Plex Java, the Sun Java Plug-in and Netscape Navigator version 4.07 and above. (I picked version 4.07, because the versions before that do not support multiple jar files, extraneous spaces or not. Single jar applet support was introduced with Netscape Navigator version 4.04.):

This is the example of the EMBED tag, and is the equivalent of the OBJECT tag from the previous example.

<EMBED

 TYPE="application/x-java-applet;version=1.2.2"
 java_ARCHIVE="ObRun.jar,OBPTJAVA.JAR"
 java_CODE="ObRun.ObPanel.ObLaunch.class"
 java_CODEBASE="http://MyServer.com/MyAppRoot/HTML/Java/"
 NAME="ObLaunch"
 WIDTH="355"
 HEIGHT="300"
 ALIGN="baseline"
 Function="CLIENT.CustomerSignon"
 Properties="http://MyServer.com/MyAppRoot/HTML/Java/"
 pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">
</EMBED>
The EMBED tag is identical to the OBJECT tag with a few minor parameter name and some other differences.

Unlike the OBJECT tag, all of the parameters of the EMBED tag are directly within the scope of the tag, and you place a “>” after the last parameter. There are no “<PARAM” parameters with the EMBED tag.

The ARCHIVE, CODE and CODEBASE parameters are prefixed with “java_”, but are otherwise identical.

The one major difference between the EMBED tag and the OBJECT tag is the way Netscape handles the Sun Java Plug-in. Netscape Navigator’s security does not allow the Sun Java Plug-in to be installed on the fly. You must download and save the Plug-in, install it from where you saved it, and stop and start Netscape. This is why the EMBED tag has a pluginspage parameter pointing to an HTML page. The pluginspage parameter in the example is the Sun URL to start this download. The example shown above assumes your users have Internet access. If your users are locked inside a firewall on some Intranet, you will have to create an equivalent to the plugin-install.html object, which points to a place on your web server to start the download. The Sun documentation tells you to copy the one from the above URL and change it.

This is the HTML code I found for doing this with the Netscape browsers. Since I don’t have one of these, I have no idea if it works:

<html>

 <head>

 <title>

 Install Java Plug-In 1.1.1 for Netscape Navigator

 </title>

 </head>

 <body bgcolor="white">

 <h1>

 Install Java Plug-In 1.1.1

 </h1>

 Click

 here

 to download the Java Plug-In installer program.

 Follow these steps to download and install the Java Plug-In:

 Download file plugin-111-win32.exe to a temporary directory on your PC.

 Exit your browser.

 Run plugin-111-win32.exe in the temporary directory.

 Restart the applet in your browser.

 </body>

</html>
This HTML example is pointing to version 1.1.1 of the Sun Java Plug-in, which is obviously not up to date.

Using the OBJECT and EMBED Tags on the Same HTML Page

If you have looked at the Plex documentation or any Plex generated HTML examples, you have already seen this combination of the OBJECT and EMBED HTML tags. The idea behind this HTML is that Internet Explorer and Netscape Navigator will both use the parts they want and ignore the parts they don’t understand. I have changed the indentation to make this point a little clearer:

<HTML>

 <HEAD>

 <TITLE>

 CustomerSignon

 </TITLE>

 </HEAD>

 <BODY>

 <OBJECT

 CLASSID="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

 WIDTH="355"

 HEIGHT="300"

 NAME="ObLaunch"

 ALIGN="baseline"

 CODEBASE="http://java.sun.com/products/plugin/1.2.2/jinstall-1_2_2-win.cab#Version=1,2,2,0">

 <PARAM NAME="ARCHIVE" VALUE="ObRun.jar,OBPTJAVA.JAR">

 <PARAM NAME="CODE" VALUE="ObRun.ObPanel.ObLaunch.class">

 <PARAM NAME="CODEBASE" VALUE="http://MyServer.com/MyAppRoot/HTML/Java/">

 <PARAM NAME="ARCHIVE" VALUE="ObRun.jar,OBPTJAVA.Jar">

 <PARAM NAME="NAME" VALUE="ObLaunch">

 <PARAM NAME="TYPE" VALUE="application/x-java-applet;version=1.2.2">

 <PARAM NAME="Function" VALUE="CLIENT.CustomerSignon">

 <PARAM NAME="Properties" VALUE="http://MyServer.com/MyAppRoot/HTML/Java/">

 <COMMENT>

 <EMBED type="application/x-java-applet;version=1.2.2"

 java_CODE="ObRun.ObPanel.ObLaunch.class"

 java_CODEBASE="http://MyServer.com/MyAppRoot/HTML/Java/"

 Java_ARCHIVE="ObRun.jar,OBPTJAVA.Jar"

 NAME="ObLaunch"

 WIDTH="355"

 HEIGHT="300"

 ALIGN="baseline"

 Function="CLIENT.CustomerSignon"

 Properties="http://MyServer.com/MyAppRoot/HTML/Java/"
 pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">

 <NOEMBED>

 </COMMENT>

 </NOEMBED>

 </EMBED>

 </OBJECT>

 </BODY>

</HTML>

I had to leave out the lines…

 The OBJECT tag failed while trying to load a version 1.2.2 Java applet named CustomerSignon.

 This is problem with a program that you can't fix.

…, because Netscape Navigator would display them every time.

Modifications to ob450client.properties

For web server applet delivery, you must modify the ob450client.properties file to specify the URL containing your panel resource files, graphic files, and any jar or class objects to be downloaded on demand. Referring back to the section of this document that deals with the ob450client.properties file, I have reproduced the three lines that deal with setting this to use a web server to deliver applets. The line number references are the same as in the section of this document that deals with the ob450client.properties file. The lines involved are 19, 20 and 78:

LK – The location of the Panel Resources file. For example, MyCleverJavaProgram.panelresource

LK – This example line 19 shows setup for a web server. The closing “/” is essential.

19 Environment.Default.Resources=http://MyServer.com/MyAppRoot/HTML/Java/

LK – The location of any GIFs you are using in your application. Same notes as previous line.

LK – This example line 20 shows setup for a web server. The closing “/” is essential.

20 Environment.Default.ImagePath=http://MyServer.com/MyAppRoot/HTML/Java/Images/

LK – Filling out line 78 is required for download on demand, which would only be used when

LK – serving Applets from a web server. The line points to your jar or class objects.

LK – The first line 78 is how this line should look when you are not using download on demand.

78 Environment.Default.RemoteLoadLocations=

LK – The second line 78 is filled out to use download on demand. The closing “/” is essential.
78 Environment.Default.RemoteLoadLocations=http://MyServer.com/MyAppRoot/HTML/Java/

There are other lines that control applet behavior. Refer back to the section describing the ob450client.properties file for further details.

Putting it all Together

Here are the steps to deploy a set of Plex Java programs.

First, collect all the objects you will need:

1) ObRun.jar

2) OBPTJAVA.jar (Patterns) and/or OBCLJAVA.jar (OBASE)

3) all of the .class files you created

4) all of the .panelresource files you created

5) an ob450client.properties file

6) all your .gif images

7) the HTML page that starts your first applet (web server deliver only).

If you have been using the folder names in this document, build a folder structure, which looks like this:

[image: image9.png]Root

= MybppRoot

=00 HTML

=00 Java

{23 CUENT
3 Images
20 Misc
1 Poate
(] SERVER

This structure could be on a web server (Internet/Intranet delivery) or on a network drive (LAN delivery). For LAN delivery you can leave out the HTML part of the structure.

Put all jars, all .panelresource files you created, and the ob450client.properties file into folder Root/MyAppRoot/HTML/Java/.

Put any .class files you created that you did not put in jars into the same sub-folder you generated and compiled them into:

Root/MyAppRoot/HTML/Java/CLIENT

Root/MyAppRoot/HTML/Java/MISC

Root/MyAppRoot/HTML/Java/PDate

Root/MyAppRoot/HTML/Java/SERVER
Note: I have been leaving out the PDate folder, because the only .class files I have ever found in it are exact duplicates of the objects in the in the OBPTJAVA.JAR jar.

If you are deploying on a web server, put the HTML page that starts your first applet into Root/MyAppRoot/HTML/.

Put all of your .gif images into Root/MyAppRoot/HTML/Java/Images

[image: image10.png](3 Roat
=00 MybppRoot
=00 HTML
=00 Java

23 CLIENT
2 Images
23 MIsC
] SERVER

If you make any mistakes with where you put things, you will get either “null pointer” or “class not found” error messages.

There is no longer any need to put everything into a single jar file like we used to have to do with Plex 4.0b or to build a manifest object to include in the jar.

Running Your Programs

In an Internet/Intranet Environment

To run an applet from an Internet/Intranet web site you use a web browser. Start the HTML page you built with the OBJECT and/or EMBED tags. I suggest you also open the Sun Java Plug-in Console, so you can see error messages.

In an non-Internet/Intranet Environment

To run an application from a PC, LAN, etc., you need a .bat file containing the below or some other way to run the below as a Windows system command. You can use the Windows System [command] API.

C:\“Program Files”\JavaSoft\JRE\1.2\bin\java –cp C:\MyAppRoot\ObRun.jar;C:\MyAppRoot\OBPTJAVA.jar;C:\MyAppRoot\MyApplication.jar ObRun.ObPanel.ObLaunch MyCleverJavaProgram Path=C:\MyAppRoot
The above example is a single line, which has wrapped onto three lines to fit the width of this page. Before this command will work, you must load the Java runtime engine (JRE) version 1.2.2 into its default folder on the “C:” drive of the client PC. If you have loaded this elsewhere (a different folder or on a LAN server), you will have to change the above folder references.

The –cp or ClassPath- parameter points to the jar files to be used. Notice that you do not need to specify the location of the Java classes. This is a new feature starting with Java 1.2.2. Java can now find it’s own base class jar objects like rt.jar and i18n.jar. It looks for them wherever you loaded the JRE. In the above example, which uses the default JRE installation folders, Java will find the rt.jar and i18n.jar in folder C:\Program Files\JavaSoft\JRE\1.2\lib.

MyCleverJavaProgram points to the first program to call. This is always a .class object. In this example, the full name of the object would be MyCleverJavaProgram.class.

The Path=C:\MyAppRoot points to the location of the ob450client.properties object.

Miscellaneous Deployment Information

Saving the User Id and Password from an Applet

My approach to back-end server user ids and passwords is that everybody gets the same one, and nobody ever sees it. I want a pseudo user making all the connections from the web server to the back-end server and I want this sign-on process to be invisible to the people who use the web site. I do this because, I can’t imagine giving every person who will log on to a web site an AS/400 or other back-end server a user id and password—especially if the web site is open to the general public.

If you have tested an applet from a web browser you will see this panel, which signs you onto the back-end server, where the data is stored:

[image: image11.png]fyCompany.com

Userld
JFou

Password

freeees

ok | cancel
[Java Applet Windon,

Notice there are no check boxes for Save System, User Id, and Password.

The next panel is the one you get when you run an application using the java or javaw commands from your PC.

[image: image12.png]Sign On Information
System

pyserver

Userld

JFou

Password

freeees

7 Save System
7 Save Userld

7 Save Password

ok || cancer

This panel does have check boxes for Save System, User Id, and Password. These are saved into the ob450client.properties object. You can enter the System and User Id directly into the ob450client.properties object, but you can’t enter the encrypted password. Here is how to save the encrypted password:

1) Set up the ob450client.properties object with both the settings for a local PC execution and a web server execution, with the web server settings commented out:

Environment.Default.Resources=file:C:\\MyAppRoot\\
Environment.Default.Resources=http://MyServer.com/MyAppRoot/HTML/Java/
Environment.Default.ImagePath=file:C:\\MyAppRoot\\Images\\
Environment.Default.ImagePath=http://MyServer.com/MyAppRoot/HTML/Java/Images/

2) Run your Java programs from your PC using the java command, so you get the version of the Sign-on Panel that lets you save the User Id and Password.

3) Save the User Id and Password and end the program.

4) Copy the ob450client.properties object with the saved user id and password to your web server, and change it to use the lines for the web server:

Environment.Default.Resources=file:C:\\MyAppRoot\\
Environment.Default.Resources=http://MyServer.com/MyAppRoot/HTML/Java/
Environment.Default.ImagePath=file:C:\\MyAppRoot\\Images\\
Environment.Default.ImagePath=http://MyServer.com/MyAppRoot/HTML/Java/Images/

5) Change this line from its default setting of No to Yes:

DefaultAS400.BypassAppletLogin=Yes
I had some problems with the Sun Java versions when doing this. The java (or javaw) command from Sun Java version 1.2.2_007 would save the System, User Id and Password. The java (or javaw) command from Sun Java version 1.3.0_02 would not save the System, User Id or Password. It didn’t matter if I created my Java programs with version 1.2.2_007 or 1.3.0_02. It also didn’t matter if I ran applets or applications. There must be some incompatibility between Plex version 4.5 and the rt.jar or the i18n.jar objects included with Sun Java version 1.3.0_02. My solution is to use Sun Java JRE version 1.2.2_007 to save the password, and switch to Sun Java JRE version 1.3.0_02 for production uses.

HTTP Server Pass Directives

Forget PASS directives you set up with an HTTP server when it comes to Plex Java programs. They ignore them. I have seen this first hand on an AS/400 HTTP e-Server and have been told the same is true for a Microsoft IIS [Server]. Some of the IBM manuals will tell you to add the below line to your HTTP configuration file…

PASS /applets/* /QIBM/ProdData/IBMWebAS/servlets/applets

…and to put all of your applets in folder /QIBM/ProdData/IBMWebAS/servlets/applets.

Forget it. Plex Java will ignore this PASS directive and look for your applets wherever your <PARAM NAME=“CODEBASE” parameter is pointing. Another problem with this is, Java wants to find its applets in a sub-folder of the folder where the initiating HTML is found. Unless you load your initiating HTML somewhere in the /QIBM/ProdData/IBMWebAS/servlets/ folder structure, your applets will not load. I advise against putting anything inside the /QIBM/ProdData/IBMWebAS/servlets/ folder structure, because it will get wiped out when you load OS/400 version upgrades.

I found the preceding PASS directive in an IBM Redbook that has allot of very interesting information about Java and Web Servers, that is mostly not IBM specific and describes CGI, applets, servlets, and a ton of other stuff. It is very well written. The RedBook is titled “Building AS/400 Internet-Based Applications with Java” SG24-5337-00, available from http://www.redbooks.ibm.com.

Using Your Development PC for Testing

Remember the additional PC you “inherited” when you had the world’s most useless programmer’s body carted away? Here are some reasons you will need it.

You need to set up your development PC with the Sun JDK, which includes the JRE, and you may have added to your PATH statement to make it easier to use the java, javac, javap, etc. commands; a ClassPath statement to find your jars or generate/compile folders, etc. You do not want to test with these settings, because they will cause your tests to fail (when they are okay) in some cases and make your programs look like they are working (when they are not) in other cases.

When you test, you want a PC that is not set up with a PATH statement to find the java commands, a ClassPath statement to find your jars or generate/compile folders. If you are testing the Java Plug-in, you don’t want your PC to already be set up with it.

You have two choices. Get rid of all of these settings on your development PC or use a different PC for testing.

Creating JAR Files

Starting with version 4.5 of Plex there is a “Generate JAR Batch File” command on the Gen and Build screen. With this you can point and click yourself some jars of Java. You have to get everything onto the Gen and Build screen at the same time, highlight all the objects you want in the same jar, and use the right-mouse menu to click the “Generate JAR Batch File” command. This creates a .bat file that you hand edit (or combine with others created from previous uses of the “Generate JAR Batch File” command), and finally run. Talk about reaching in your ear to scratch your nose…

The following is the alternate method I use to create jars. I find this allot simpler and less error prone. These are the steps to manually create a jar file of your Plex generated application.

1) Create a new directory structure that looks like this:

[image: image13.png](3 Roat
=00 MybppRoot
=00 HTML
20 Java

- CLENT
-1 Images
- MISC
- PDate
-1 SERVER

Note: I have been leaving out the PDate folder, because the only .class files I have ever found in it are exact duplicates of the objects in the in the OBPTJAVA.JAR jar.

2) Copy your .class files into the corresponding folders in this directory structure.

3) Open a DOS window and position the directory using the CD command or similar to root\MyAppRoot\HTML\Java.

4) Type this command C:\jdk1.2.2\bin\jar cf MyApplication.jar *.*

Where C:\jdk1.2.2\bin\ is the folder where you installed the Sun Java JDK.

The HTML Template

Plex ships with a default HTML template object named DEFAULT122.TPL. Below is what the shipped version of this looks like:

<!-- CONVERTER VERSION 1.0 -->

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

$ObjectAttributes$ codebase="http://java.sun.com/products/plugin/1.2.2/jinstall-1_2_2-win.cab#V

ersion=1,2,2,0">

$ObjectParams$

<PARAM NAME="type" VALUE="application/x-java-applet;version=1.2.2">

$AppletParams$<COMMENT>

<EMBED type="application/x-java-applet;version=1.2.2" $EmbedAttributes$ $EmbedParams$ pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html"><NOEMBED></COMMENT>

$AlternateHTML$

</NOEMBED></EMBED>

</OBJECT>

<!--

$ORIGINALAPPLET$

-->

Below is an example of how you might customize this. The example uses the Sun Java version 1.2.2_007 cab Plug-in in an Internet environment:

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

CODEBASE="http://MyServer.com/MyAppRoot/HTML/Java/jinstall-1_2_2-win.cab#Version=1,2,2,0"

$ObjectAttributes$>

$ObjectParams$<PARAM NAME="type" VALUE="application/x-java-applet;version=1.2.2">

$AppletParams$ <COMMENT>

 <EMBED

 type="application/x-java-applet;version=1.2.2"

 $EmbedAttributes$

 $EmbedParams$

 pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">

 <NOEMBED>

 </COMMENT>

 $AlternateHTML$ </NOEMBED>

 </EMBED>

</OBJECT>

I have left out the last three lines, because they create a comment showing what the APPLET tag would look like for the same HTML:

<!--

$ORIGINALAPPLET$

-->

This is an example of the HTML that will generate from the customized template:

<html>

<head>

<title>CustomerSignon</title>

</head>

<body>

<hr>

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

CODEBASE="http://MyServer.com/MyAppRoot/HTML/Java/jinstall-1_2_2-win.cab#Version=1,2,2,0"

WIDTH="360" HEIGHT="220" NAME="ObLaunch" ALIGN="baseline">

<PARAM NAME = CODE VALUE = "ObRun.ObPanel.ObLaunch.class" >

<PARAM NAME = CODEBASE VALUE = "./" >

<PARAM NAME = NAME VALUE = "ObLaunch" >

<PARAM NAME="type" VALUE="application/x-java-applet;version=1.2.2">

<PARAM NAME = "Function" VALUE ="CLIENT.CustomerSignon">

<PARAM NAME = "Properties" VALUE ="file:C:\Plex\ObJava">

 <COMMENT>

 <EMBED

 type="application/x-java-applet;version=1.2.2"

 java_CODE = "ObRun.ObPanel.ObLaunch.class" java_CODEBASE = "./" NAME="ObLaunch" WIDTH="360" HEIGHT="220" ALIGN="baseline"

 Function = "CLIENT.CustomerSignon" Properties = "file:C:\Plex\ObJava"

 pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">

 <NOEMBED>

 </COMMENT>

 </NOEMBED>

 </EMBED>

</OBJECT>

<hr>

</body>

</html>
Don’t Let this Alarm You

The following two images are from installing the two Sun Java Plug-ins for Sun Java version 1.2.2_007. The one on the left is the “International Edition” and the one on the right is the “Standard Edition”. Or is it the one on the… hmmm… And they want us to Always trust content from Sun Microsystems… I actually got the correct Plug-ins. The Security Warning panel for the “International Edition”, on the left, is wrong. Or is it the one on the right?

[image: image25.png][/ Source code: ScanObject [[o[x]
[string[] ParmsIn

[string[] Parmsout
[ParmsIn[0]
lparmsou:

new String[1]; a

new Sering(2]; || fusb(l)SCFuPsh
&(1:) .toString(); t12) Scanfiesult
FregHex.main (ParmsIn) ; uas{3:] SeanStiing

fe(2:) . fromString (ParmsOuc[0])

Parameters

fs(3:) . fromSrring (ParmsOuc[1])

[image: image26.png]Do you want toinstalland un "Java(TW1 2 Furtime
Envionment SE 1.2.2" signed on 11/27/2000 1242 PM
and ditibuted by

Sun Microsystems.

Publsher authenticity veriied by VeriSign Commercial
Software Pubishers CA

Caution: Sun Microsystems, Inc. sssets that this contentis
safe. You should onl instalview this content f you st
Sun Microsystems, Inc. to make that asseiton.

I~ Always st cortent from Sun Microsystems,

Yes More Info

Java Consoles

Microsoft Internet Explorer has a Java Console that shows you what it going on. It only works if you are using the APPLET tag, which does not work with Plex and other types of Java programs. I don’t know what Netscape has to offer in this area, but I will bet it only works with either the APPLET tag, or maybe the APPLET and EMBED tags.

The Sun Java JRE versions 1.2.2_007 and 1.3.0_02 have Java consoles, which work with the Plug-in variant of the OBJECT tag. I would be lost without this. If you want an example, see the section of this document on debugging ObRun. I did not see the error messages that lead me into the debugging session described in that section until I loaded the Java Console that comes with the Plug-ins for versions 1.2.2_007 or 1.3.0_02 Sun Java.

I like the Sun Java version 1.3.0_02 Java console better, because it is less modal. The version 1.2.2_007 console stays locked the entire time your applet(s) are running. The version 1.3.0_02 console unlocks from time to time, apparently when your Java applets are not demanding the limelight.

Mysterious Error Messages, UFOs and Other Encounters of the Third Kind [or Fourth or Fifth…]

Take a picture of yourself before you start working with Java. Notice how much hair you have and what color it is. When you’re down to 2 or 3 hairs or it has all turned gray, you can declare yourself a Java expert. Until then, you may find some of the below information useful.

JDK 1.3 and Beyond

Sun has released JDK 1.3 and has made newer versions available. There is a tremendous temptation to use the latest releases, because they have lots of new COOL and Advantages stuff in them and because we technical types are all lemmings when it comes to new releases. WARNING LEMMINGS—CLIFF AHEAD, OCEAN BELOW.

I tried jumping forward a release once. I tried Sun’s JDK 1.2.2 with Plex 4.0b 131, and it worked fine until I tried to connect an NT client to an AS/400 server. I then started getting this mysterious error message, pictured below:

[image: image14.png]Log

/20030 @A$ EITIIIITIRLKURREL. @ITR@ITIHII
Failed to make connection between client and server. Chisck network s funclioning propery

I checked this against the alien markings from the Roswel, NM crash site and the Area 51 archives, but no luck. The program worked perfectly when I used a Windows 98 SE client. So what’s wrong with NT? Everybody told me I had to have the i18n.jar properly installed. I made sure I did, but I still got the same error. I never did figure this out.

I did figure out what the, “Ã×Æòòðô@ä¢��@�������@LKURREL @��£@��¤��K” gibberish was. It was EBCDIC characters from the AS/400 that had not been translated to ASCII, so that the PC could display them properly. It decoded to, “CPF2204 User profile LKURREL not found.” Huh? Noticed the “LKURREL” user profile is in the clear in the gibberish version of the error message. I deduced that the ASCII to EBCDIC translation process was not working properly. I made the assumption that, since the, “CPF2204 User profile xxxxxxxxxx not found.” part was not translating properly back to the client PC, then the “LKURREL” part was probably not translating properly on its way to the AS/400 security check. This probably means the problem is in the YOBSYTCPxx program running on the AS/400, but may be somewhere in between.

I switched to JDK version 1.1.8 for Plex 4.0b, recompiled my program and re-deployed it to the NT client. The problem went away. NOTE for IF/CW, “Do not use versions of the JDK that are not supported.” By the way, if the Useless Bum is still alive, you probably ought to apologize about the pushpin thing.

By the way, the panel image on the previous page is what I get when I try to run the Standard Edition of the Sun Java Plug-in, instead of the International Edition—another way to destroy the ASCII to EBCDIC conversion process.

I have a confession to make. I am using the JDK and JRE from version 1.3.0_02 with Plex 4.5 for four reasons:

1) The JRE has a better Java Console that really helps me debug my code from web browser.

2) The JRE displays various progress messages when starting up and downloading jar objects (examples below).

3) I didn’t dare mix and match the JDK and JRE versions, and I want the 1.3 JRE.

4) The programmer whose forehead I impaled with a pushpin ate my note warning me not to do this, right before they, er… ahh… expressed extreme displeasure in a significantly physical and demonstrative manner—with a whole box of pushpins.

[image: image15.png]Loading Java Applel
Sanding ovents 5 applot, LOAD

Sanding ovents > applet. INIT

Sanding ovents b applat. START

Opening hitp: /HT MLAJava/ObRun jar

[image: image16.png]Java Extension Installation

Downloading from URL :
http . HTMLiJavalObRun jar

]

The Limitations of the Browser “Sandbox”

Web browsers run Java applets in what it called the “SandBox” to limit what mayhem Java applets can commit. The “Sandbox” does not let Java applets:

1) access anything on the client PC except a cookie. (What? No doughnuts? This will never catch on with US law enforcement agencies.)

2) read the browser or other configuration information from the client PC (I think Sun did this just to annoy Big Brother at Microsoft).

3) start a new network connection to a server other than the current web server, like your back-end AS/400. Aieee!

The third limitation is creating problems for Java functions loaded on say a Microsoft IIS [server], which need to call a back-end AS/400 e-Server/iSeries or other server for data. People I have talked to tell me they have been told to load everything on their AS/400 using the HTTP server to avoid calls to a second server.

Below is an error message I got from one of the people having this problem (I have edited out their identity):

[image: image17.png]access denied (ava.net SocketPermission MyServer resolve)

Debugging ObRun

Because CA has left the ObRun classes exposed, you can actually debug them. You have to use the Sun Java javap command to get at the line numbers, so you can see where errors are occurring. The following is an example of a debugging session. This was quite a difficult debugging session, not being able to sit at the time—pushpins and all. The pneumatic nail hammer I prominently displayed on my desk, at-the-ready, loaded with eight-penny nails seems to be thwarting further problems in this area—although the noise from the air compressor is a bit annoying…

My problem, with the Java code—not the pushpins, started out with this error message, which displayed on the Sun Java version 1.3.0_02 Plug-in Control Panel:

java.lang.NullPointerException

 at ObRun.ObFunction.ObPanel.<init>(ObPanel.java:83)

 at CLIENT.CustomerSignon_ObFnc$CustomerSignon_ObPnl.<init>(CustomerSignon_ObFnc.java:191)

 at CLIENT.CustomerSignon_ObFnc.ObRun(CustomerSignon_ObFnc.java:117)

 at ObRun.ObFunction.ObLocalJavaCall.call(ObCall.java:185)

 at ObRun.ObFunction.ObCallMgr.obCallFunction(ObCallMgr.java:130)

 at ObRun.ObFunction.ObCallMgr.obCallFunction(ObCallMgr.java:108)

 at ObRun.ObFunction.ObApplication.obCallFunction(ObApplication.java:344)

 at ObRun.ObPanel.ObLaunch$ObApplet.run(ObLaunch.java:163)

If you’re not used to reading these, you may wonder if the error is on the first line or the last line. The error is on the first line. The rest of the lines are there to annoy you, and were created by a vengeful programmer with a small circular scar on their forehead:

 at ObRun.ObFunction.ObPanel.<init>(ObPanel.java:83)

So what’s at line 83? To find this out you must expose ObPanel (raincoat and false pants legs not required) using the javap command. The syntax for the javap command is bizarre, because it mixes forward slashes and backslashes. Below is an example of a working javap command that exposes the class ObPanel object.

C:\jdk1.3.0_02\bin\Javap -classpath C:\Java\Lib\ObRun.jar -b -c -l -s -protected -private -verbose ObRun/ObFunction/ObPanel >> C:\Java\ObRun_ObFunction_ObPanel.txt

This single line command (wrapped onto two lines to fit the width of this page) runs the javap command for class ObPanel, and puts the output of what it finds into a text file named C:\Java\ObRun_ObFunction_ObPanel.txt. If you don’t pipe the output into a text file with the part of the command that reads “>> C:\Java\ObRun_ObFunction_ObPanel.txt”, the output displays about as fast as my kids move when I reach for my wallet or as fast as my kids drive to a mall, with money in hand.

The full contents of C:\Java\ObRun_ObFunction_ObPanel.txt would take up twenty-two pages in this document. I have shortened this to two pages with “~ ~ ~” indicating large numbers of lines I deleted.

There are two sets of line numbers to cope with. The relative line numbers of each code segment (method) and their equivalent absolute line numbers in the overall program (class). We are looking for absolute line number 83, not any of the relative lines number 83.

The code segments (methods) are shown first, with their relative line numbers. Somewhere below the methods is a list of the Line numbers for method, which relate the method line numbers back to the overall class, or absolute, line numbers.

Absolute line number 83 turns out to be inside method ObPanel, where it has a relative line number of 72.

Compiled from ObPanel.java

public abstract class ObRun/ObFunction/ObPanel extends java.lang.Thread

~ ~ ~

Method ObRun/ObFunction/ObPanel(ObRun.ObFunction.ObFunction,java.lang.String,int,java.lang.String)

 0 aload_0

 1 invokespecial #40 <Method java.lang.Thread.<init>()V>

 4 aload_0

 5 iconst_1

 6 putfield #89 <Field ObRun/ObFunction/ObPanel.m_flag Z>

 9 aload_0

 10 aconst_null

 11 putfield #93 <Field ObRun/ObFunction/ObPanel.m_owningFunction LObRun/ObFunction/ObFunction;>

 14 aload_0

 15 aconst_null

 16 putfield #97 <Field ObRun/ObFunction/ObPanel.m_resource LObRun/ObPanel/ObPanelUtils/ObPanelResource;>

 19 aload_0

 20 aconst_null

 21 putfield #90 <Field ObRun/ObFunction/ObPanel.m_language Ljava/lang/String;>

 24 aload_0

 25 aconst_null

 26 putfield #94 <Field ObRun/ObFunction/ObPanel.m_panelData LObRun/ObPanel/ObCtrlData/ObWindowData;>

 29 aload_0

 30 aconst_null

 31 putfield #95 <Field ObRun/ObFunction/ObPanel.m_panelName Ljava/lang/String;>

 34 aload_0

 35 iconst_0

 36 putfield #88 <Field ObRun/ObFunction/ObPanel.m_currentAction I>

 39 aload_0

 40 iconst_0

 41 putfield #91 <Field ObRun/ObFunction/ObPanel.m_mouseOver Z>

 44 aload_0

 45 aload_1

 46 putfield #93 <Field ObRun/ObFunction/ObPanel.m_owningFunction LObRun/ObFunction/ObFunction;>

 49 aload_0

 50 getfield #93 <Field ObRun/ObFunction/ObPanel.m_owningFunction LObRun/ObFunction/ObFunction;>

 53 aload_0

 54 invokevirtual #103 <Method ObRun.ObFunction.ObFunction.setPanel(LObRun/ObFunction/ObPanel;)V>

 57 aload_0

 58 aload 4

 60 putfield #95 <Field ObRun/ObFunction/ObPanel.m_panelName Ljava/lang/String;>

 63 aload_0

 64 aload_2

 65 putfield #92 <Field ObRun/ObFunction/ObPanel.m_name Ljava/lang/String;>

 68 aload_0

 69 invokevirtual #81 <Method ObRun/ObFunction/ObPanel.initResources()V>

 72 aload_0 (This is relative line number 72 in method ObPanel
~ ~ ~

Line numbers for method ObRun/ObFunction/ObPanel(ObRun.ObFunction.ObFunction,java.lang.String,int,java.lang.String)

 line 75: 0

 line 33: 4

 line 37: 9

 line 42: 14

 line 47: 19

 line 52: 24

 line 57: 29

 line 62: 34

 line 64: 39

 line 76: 44

 line 77: 49

 line 78: 57

 line 79: 63

 line 81: 68

 line 83: 72 (This shows that absolute line number 83 is relative line number 72 in method ObPanel
So, what’s up with line “72 aload_0”? In order to see the lines of code, you would have to decompile this function with a Java decompiler. Decompilers turn the bytescodes in the .class objects back into Java source code. Java programs run through the AS/400 “optimize” procedure can’t be de-compiled. I didn’t need a de-compile in order to figure out that aload_0 is loading something, so I looked at the line before it, which is relative line number 69.

 69 invokevirtual #81 <Method ObRun/ObFunction/ObPanel.initResources()V>

 72 aload_0
I don’t know exactly what relative line 69 is doing, but it looks to me like it is loading the panel resources file for one of my screens. I looked in the ob450client.properties object, and found the following two lines:

Environment.Default.Resources=http://adtdev/CBS/HTML/Java

Environment.Default.ImagePath=http://adtdev/CBS/HTML/Java/Images

Extra credit for anybody who can say what the mistake is. Okay, let’s not always see the same hands go up with every question. I left off the closing “/”s. I corrected the above lines to the two shown next, and my null pointer error message went away.

Environment.Default.Resources=http://adtdev/CBS/HTML/Java/

Environment.Default.ImagePath=http://adtdev/CBS/HTML/Java/Images/

If this had not solved my problem, I would have used the Mocha decompiler or one of the others you can find all over the Internet to show me the ObPanel code in all it original glory. The decompilers are able to recover everything, including the original names—if the person distributing the .class objects has not removed this visibility or “optimized”. The ObRun classes at release 4.5 are all visible except for the ones dealing with TCP/IP connectivity and server security.

If you still have your yellow sticky note about null pointer error messages, you should add, “and check the path names and existence of panel resource files.”

I have found that almost all null pointer error messages come from a path name being wrong or an object not being where it is supposed to be.

Meet Your New Best Friend

Compiling Java takes forever. In a code-and-fix debug cycle this can add up to allot of time. If you like to see your family, friends, barroom buddies, or fellow inmates from time to time, you will want to use the Build Selected Only option whenever you can:

[image: image18.png]View Source.

Generate
Generate and Buid

Generale JAR Batch Fil
Buid
Buid Selected Dy

Make

You have to Generate as a separate step. Then you Build Selected Only as a second separate step.

The Build Selected Only option cuts down on building related objects. If you change file definitions, function parameters, or make other “public” changes, which affect the relationships between functions—you will not be able to use this option successfully. When you make a “private” change to an object, the Build Selected Only option is a big time saver. A private change would be to the lines of code within a function, the panel definition, or some other change that does not affect how a function interacts with other functions.

Dots—Not Backslashes

If you’re not used to Java, path name syntax will surprise you. Java uses periods (dots) “.” to separate folders names. For example, in Windows (or DOS or UNIX. Etc.), we type:

ObRun\ObPanel\ObLaunch.class

In Java this is written:

ObRun.ObPanel.ObLaunch

Both of these mean the same thing. In Java the backslashes are replaced by “.” and the suffix “.class” is implied.

This difference is important when you start taking apart jars and putting them back together. What is important to understand is that “ObRun” and “ObRun\ObPanel” are just path names—not objects. Only the last segment, “ObLaunch.class” is the name of an object.

You can take apart the “ObRun.jar” using WinZip. If you UnZip “ObRun.jar”, you get a folder structure that looks like this (I left out the development only, ObBldMgr folder):

[image: image19.png](3 ObRun
{23 0bComms.
{21 ObDatabase
{23 ObEnvironment
{23 ObFunction
= ObPanel
{21 ObCHData
=21 ObCHiGui
2 Images
{21 ObPanelUis
] OBbRTTypes

The Mysteries of Wrapped Beans

Plex 4.5 ships with two “Wrapped Beans”. These are PVTree and PVCalendar, which are the Java Bean equivalents of the Microsoft TreeView and Calendar ActiveX controls. Beans are “Wrapped” so the Plex panel designer can display them. The Plex panel designer can’t display beans at version 4.5. The beans are wrapped with the Beans.ocx ActiveX control, which the Plex panel designer can display.

Sun does not call these “Wrapped Beans”. Sun calls this the JavaBeansBridge [to ActiveX].

In order to use wrapped beans in the development environment, you must add some Windows registry entries. Plex ships incomplete examples of these for PVTree and PVCalendar. The example objects are named PVCalendar.reg, and PVTree.reg. Below are the contents of PVTree.reg as it is shipped. I have added line numbers to the left of each line so I can reference them:

01 REGEDIT4

02 [HKEY_CLASSES_ROOT\PVTree.Bean]

03 @= "PVTree Bean Control"

04 [HKEY_CLASSES_ROOT\PVTree.Bean\CLSID]

05 @= "{12088ABC-7B62-11D3-8323-00C04F72C63F}"

06 [HKEY_CLASSES_ROOT\PVTree.Bean\CurVer]

07 @= "1"

08 [HKEY_CLASSES_ROOT\PVTree.Bean.1]

09 @= "PVTree Bean Control"

10 [HKEY_CLASSES_ROOT\PVTree.Bean.1\Insertable]

11 [HKEY_CLASSES_ROOT\PVTree.Bean.1\CLSID]

12 @= "{12088ABC-7B62-11D3-8323-00C04F72C63F}"

13 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}]

14 @= "PVTree Bean Control"

15 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\InprocServer32]

16 @= "C:\\Program Files\\JavaSoft\\JRE\\1.2\\bin\\beans.ocx"

17 "ThreadingModel" = "Apartment"

18 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\ToolboxBitmap32]

19 @= "C:\\Program Files\\JavaSoft\\JRE\\1.2\\bin\\beans.ocx,0"

20 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\TypeLib]

21 @= "{12088ABD-7B62-11D3-8323-00C04F72C63F}"

22 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\ProgID]

23 @= "PVTree.Bean.1"

24 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\VersionIndependentProgID]

25 @= "PVTree.Bean"

26

27 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\PropPage]

28 @= "{12088ABE-7B62-11D3-8323-00C04F72C63F}"

29 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\JarFileName]

30 @= "C:\\PVApps\\pvBeans11\\jars\\pvTree.jar"

31 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\JavaClass]

32 @= "pv.awt.PVTree"

33 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\InterfaceClass]

34 @= "sun/beans/ole/OleBeanInterface"

35

36 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\Control]

37 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\Programmable]

38 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\Insertable]

39 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\MiscStatus]

40 @= "0"

41 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\MiscStatus\1]

42 @= "18833"

43 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\DefaultIcon]

44 @= "\\\\patterntm\\class450\\PatternLibs\\Javaapi\\Beans\\awt.ico"

45

46 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\Version]

47 @= "1.0"

48 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\DataFormats\GetSet\0]

49 @= "2,1,16,1"

50 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\DataFormats\GetSet\1]

51 @= "3,1,32,1"

52

53 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\DataFormats\GetSet\2]

54 @= "14,1,64,1"

55

56 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\DataFormats\GetSet\3]

57 @= "1,1,1,1"

58 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\verb\0]

59 @= "&Edit,0,2"

60 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\verb\-1]

61 @= "Show,0,0"

62 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\verb\-2]

63 @= "Open,0,0"

64 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\verb\-3]

65 @= "Hide,0,1"

66

67 [HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\verb\1]

68 @= "Properties...,0,2"

69

70 [HKEY_CLASSES_ROOT\TypeLib\{12088ABD-7B62-11D3-8323-00C04F72C63F}]

71 @= "PVTree Bean Control Type Library"

72 [HKEY_CLASSES_ROOT\TypeLib\{12088ABD-7B62-11D3-8323-00C04F72C63F}\1.0]

73 @= "PVTree Bean Control "

74 [HKEY_CLASSES_ROOT\TypeLib\{12088ABD-7B62-11D3-8323-00C04F72C63F}\1.0\0\win32]

75 @= "\\\\patterntm\\class450\\PatternLibs\\Javaapi\\Beans\\PVTree.tlb"

76 [HKEY_CLASSES_ROOT\TypeLib\{12088ABD-7B62-11D3-8323-00C04F72C63F}\1.0\FLAGS]

77 @= "2"

78 [HKEY_CLASSES_ROOT\TypeLib\{12088ABD-7B62-11D3-8323-00C04F72C63F}\1.0\HELPDIR]

79 @= "\\\\patterntm\\class450\\PatternLibs\\Javaapi\\Beans"

80 [HKEY_CLASSES_ROOT\CLSID\{12088ABE-7B62-11D3-8323-00C04F72C63F}]

81 @= "PVTree Bean Property Page"

82 [HKEY_CLASSES_ROOT\CLSID\{12088ABE-7B62-11D3-8323-00C04F72C63F}\PropPage]

83 [HKEY_CLASSES_ROOT\CLSID\{12088ABE-7B62-11D3-8323-00C04F72C63F}\JavaClass]

84 @= "pv.awt.PVTreeCustomizer"

85 [HKEY_CLASSES_ROOT\CLSID\{12088ABE-7B62-11D3-8323-00C04F72C63F}\InprocServer32]

86 @= "C:\\Program Files\\JavaSoft\\JRE\\1.2\\bin\\beans.ocx"

87 "ThreadingModel" = "Apartment"

There are several lines that need to be completed, before you add PVTree.reg to your Windows Registry. Below is a list of the lines that must be completed. I have removed all of the lines from the original list in the list below that you should not change, unless you are some Windows Wizard, who actually understands the registry—and wants to further customize these to see how many critical stop error messages and sounds you can produce.

16 @= "C:\\Program Files\\JavaSoft\\JRE\\1.2\\bin\\beans.ocx"

19 @= "C:\\Program Files\\JavaSoft\\JRE\\1.2\\bin\\beans.ocx,0"

30 @= "C:\\PVApps\\pvBeans11\\jars\\pvTree.jar"

44 @= "\\\\patterntm\\class450\\PatternLibs\\Javaapi\\Beans\\awt.ico"

75 @= "\\\\patterntm\\class450\\PatternLibs\\Javaapi\\Beans\\PVTree.tlb"

79 @= "\\\\patterntm\\class450\\PatternLibs\\Javaapi\\Beans"

86 @= "C:\\Program Files\\JavaSoft\\JRE\\1.2\\bin\\beans.ocx"

Notice all the backslashes have been doubled (“\\” instead of “\”). This is essential, and you’ve got to make sure all the backslashes are doubled when you are done editing.

Lines 16 and 19 must point to beans.ocx, which installed when you installed JDK 1.2.2 or 1.3.0. Find it and make sure the path is correct. I found mine in two places including folder “C:\Program Files\JavaSoft\JRE\1.2\bin”, which is the same as the shipped lines 16 and 19, so I left these lines alone.

Line 30 points to pvTree.jar. Plex ships this in “C:\Plex\Class450\PatternLibs\ACTIVE\Beans\PVApps\pvBeans11\jars”, so I changed my line 30 to look like this:

30 @= "C:\\Plex\\Class450\\PatternLibs\\ACTIVE\\Beans\\PVApps\\pvBeans11\\jars\\pvTree.jar"
Line 44 points to awt.ico. Plex ships this in folder “C:\Plex\Class450\PatternLibs\ACTIVE\Beans”, so I changed my line 44 to look like this:

44 @= "C:\\Plex\\Class450\\PatternLibs\\ACTIVE\\Beans\\awt.ico"

Line 75 points to the PVTree.tlb. Plex ships this in folder “C:\Plex\Class450\PatternLibs\ACTIVE\Beans”, so I changed my line 75 to look like this:

75 @= "C:\\Plex\\Class450\\PatternLibs\\ACTIVE\\Beans\\PVTree.tlb"

Line 79 points to the Beans folder. For some reason the closing “\\” is not needed. Plex ships this folder as path “C:\Plex\Class450\PatternLibs\ACTIVE\Beans”, so I changed my line 79 to look like this:

79 @= "C:\\Plex\\Class450\\PatternLibs\\ACTIVE\\Beans"

Line 86 points to Beans.ocx. Sun ships this in folder “C:\Program Files\JavaSoft\JRE\1.2\bin”, so I changed my line 86 to look like lines 16 and 19:

86 @= " C:\\Program Files\\JavaSoft\\JRE\\1.2\\bin\\beans.ocx"
To recap, my modified lines look like this:

16 @= "C:\\Program Files\\JavaSoft\\JRE\\1.2\\bin\\beans.ocx"

19 @= "C:\\Program Files\\JavaSoft\\JRE\\1.2\\bin\\beans.ocx,0"

30 @= "C:\\Plex\\Class450\\PatternLibs\\ACTIVE\\Beans\\PVApps\\pvBeans11\\jars\\pvTree.jar"
44 @= "C:\\Plex\\Class450\\PatternLibs\\ACTIVE\\Beans\\awt.ico"

75 @= "C:\\Plex\\Class450\\PatternLibs\\ACTIVE\\Beans\\PVTree.tlb"

79 @= "C:\\Plex\\Class450\\PatternLibs\\ACTIVE\\Beans"

86 @= " C:\\Program Files\\JavaSoft\\JRE\\1.2\\bin\\beans.ocx"

My full, modified version of the PVTree.reg object is shown below, in case you want to copy/paste it. I have reduced the font size to 9pt so this takes up less room in this document:

REGEDIT4

[HKEY_CLASSES_ROOT\PVTree.Bean]

@= "PVTree Bean Control"

[HKEY_CLASSES_ROOT\PVTree.Bean\CLSID]

@= "{12088ABC-7B62-11D3-8323-00C04F72C63F}"

[HKEY_CLASSES_ROOT\PVTree.Bean\CurVer]

@= "1"

[HKEY_CLASSES_ROOT\PVTree.Bean.1]

@= "PVTree Bean Control"

[HKEY_CLASSES_ROOT\PVTree.Bean.1\Insertable]

[HKEY_CLASSES_ROOT\PVTree.Bean.1\CLSID]

@= "{12088ABC-7B62-11D3-8323-00C04F72C63F}"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}]

@= "PVTree Bean Control"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\InprocServer32]

@= "C:\\Program Files\\JavaSoft\\JRE\\1.2\\bin\\beans.ocx"

"ThreadingModel" = "Apartment"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\ToolboxBitmap32]

@= "C:\\Program Files\\JavaSoft\\JRE\\1.2\\bin\\beans.ocx,0"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\TypeLib]

@= "{12088ABD-7B62-11D3-8323-00C04F72C63F}"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\ProgID]

@= "PVTree.Bean.1"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\VersionIndependentProgID]

@= "PVTree.Bean"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\PropPage]

@= "{12088ABE-7B62-11D3-8323-00C04F72C63F}"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\JarFileName]

@= "C:\\Plex\\Class450\\PatternLibs\\ACTIVE\\Beans\\PVApps\\pvBeans11\\jars\\pvTree.jar"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\JavaClass]

@= "pv.awt.PVTree"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\InterfaceClass]

@= "sun/beans/ole/OleBeanInterface"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\Control]

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\Programmable]

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\Insertable]

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\MiscStatus]

@= "0"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\MiscStatus\1]

@= "18833"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\DefaultIcon]

@= "C:\\Plex\\Class450\\PatternLibs\\ACTIVE\\Beans\\awt.ico"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\Version]

@= "1.0"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\DataFormats\GetSet\0]

@= "2,1,16,1"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\DataFormats\GetSet\1]

@= "3,1,32,1"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\DataFormats\GetSet\2]

@= "14,1,64,1"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\DataFormats\GetSet\3]

@= "1,1,1,1"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\verb\0]

@= "&Edit,0,2"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\verb\-1]

@= "Show,0,0"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\verb\-2]

@= "Open,0,0"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\verb\-3]

@= "Hide,0,1"

[HKEY_CLASSES_ROOT\CLSID\{12088ABC-7B62-11D3-8323-00C04F72C63F}\verb\1]

@= "Properties...,0,2"

[HKEY_CLASSES_ROOT\TypeLib\{12088ABD-7B62-11D3-8323-00C04F72C63F}]

@= "PVTree Bean Control Type Library"

[HKEY_CLASSES_ROOT\TypeLib\{12088ABD-7B62-11D3-8323-00C04F72C63F}\1.0]

@= "PVTree Bean Control "

[HKEY_CLASSES_ROOT\TypeLib\{12088ABD-7B62-11D3-8323-00C04F72C63F}\1.0\0\win32]

@= "\\\\patterntm\\class450\\PatternLibs\\Javaapi\\Beans\\PVTree.tlb"

[HKEY_CLASSES_ROOT\TypeLib\{12088ABD-7B62-11D3-8323-00C04F72C63F}\1.0\FLAGS]

@= "2"

[HKEY_CLASSES_ROOT\TypeLib\{12088ABD-7B62-11D3-8323-00C04F72C63F}\1.0\HELPDIR]

@= "C:\\Plex\\Class450\\PatternLibs\\ACTIVE\\Beans"

[HKEY_CLASSES_ROOT\CLSID\{12088ABE-7B62-11D3-8323-00C04F72C63F}]

@= "PVTree Bean Property Page"

[HKEY_CLASSES_ROOT\CLSID\{12088ABE-7B62-11D3-8323-00C04F72C63F}\PropPage]

[HKEY_CLASSES_ROOT\CLSID\{12088ABE-7B62-11D3-8323-00C04F72C63F}\JavaClass]

@= "pv.awt.PVTreeCustomizer"

[HKEY_CLASSES_ROOT\CLSID\{12088ABE-7B62-11D3-8323-00C04F72C63F}\InprocServer32]

@= " C:\\Program Files\\JavaSoft\\JRE\\1.2\\bin\\beans.ocx"

"ThreadingModel" = "Apartment"

To install this in your Windows registry, make the changes to the PVTree.reg object, and double click on it. Windows adds the registry entries when you double click. If you need to make changes after this point, you will have to hand edit the registry. I find searching the registry using a search string of “beans.ocx” gets me to the right place.

The only way you will know if you have done all of this correctly is to try to add one of these beans to a panel using the Plex panel designer. You do this by adding an ActiveX control to the controls section of a panel with Create ActiveX control.

Save your model before you try this, because Plex will GPF if the registry entries are not perfect.

If you get a message that looks like this…

[image: image20.png]This program has performed an legal speration
and wil be shut don.

Ifthe problem perssts, cortact the progiam

vend.

[PLEX caused an invalid page fault in =
fuodule BEANS.0CK st 0187:039fhb2s.

Registers

Bast-o0n fades c:
ex-o0000001 s
cx-o0000000 D
x-00000000 3
[oyees ac cs:xzp
ob 06 o 56 04 52 50 o 08 £f 51 76 b 2ze b a8 x|

39¢bbze EFLGS=000L0216
Obfesec EEP=O87cegse
0000000 Fs=1827
a7ces6e GE=0000

…there is something, which is not letter perfect in your registry.

If you hand edit your registry to fix it, you will notice all of the double backslashes “\\” have been changed to single backslashes “\”, which is how these should be in the registry.

The next two pages show what the path entries look like in the Windows registry of a Windows 98 Second Edition PC set up correctly (well, at least it works). The red lines show where I have skipped over unrelated parts of the registry. I have shown values next to entries where there are path names, which came from lines 16, 19, 30, 44, 75, 79 and 86 of the PVTree.reg object.

The first image illustrates the HKEY_CLASSES_ROOT section of this registry.

[image: image21.png]=& My Computer
= (1 HKEY_CLASSES ROOT
£ oS
= {1208846C-7B6211D3-8323-00C04F 72C63F)
{3 Control
{2 DataFomats
{2 Defaulicon [2B)Defaul) "C:\Plesclass450\PatterLibshlavaspiBeans\awt ico”
3 nprocServers2 [(Defoul) "C:\Program Fles\JavaSoltRE 2bintbeans e
{2 Insertable
{2 InterfaceClass
{2 JarFileName [2B)(Defaul) "C:\Ples ClassdS0VPattemL ibs\ACTIVE \Beans\PVApps\pvBeansT T\jars\py Tres ja”
{2 Javallass
{2 MiscStatus
Q3 Progd
{2 Programmable
Q0 ProgPage
Q0 TodborBimap32 (28] Defaull) "C:\Program FilestJavaSoftJREA1 2\bintbeans oo
Q0 Topelo
0 veb
{3 Version
{2 VersiorindependentProglD
=1 {120884BE -7B6211D3.8323-00C04F72C63F}
00 InprocServer32 3] Default] “C:\Program Fles\avaSoftuRENT 2ibintbeans oc”
3 Javallass
3 ProgPage
= {84DICB4D.D44E-11D1B3ES-D0BDF433DI3}
{3 Control

O3 InpocSeneniz] Defaut) "CAPROGRAM FILESAAVASOFTUREN] ABNBEANS OCX"
20 MiscStaus

{2 Progp

@ Froganmable

20 TooboiBinep®2 (] Defaul) “CAPROGAAM FLES\AVASOFTUREN] 2A8IN\BEANS. 00X 1"
{3 Typelib

& verson

{53 VersionindependentProglD

The second image illustrates the HKEY_LOCAL_MACHINE section of this registry.

[image: image22.png]=& My Computer
= (1 HKEY_LOCAL_MACHINE
£ Soltware
500 CLASSES
=0 osio

= {1208846C-7B6211D3-8323-00C04F 72C63F)
{3 Control
{2 DataFomats
O Defaulcon BB)(Defaul) "CAPlestclassdSONPatemLbstavaspiBeansiatico”
0 InprocServer22 (3B (Defaul) "CAProgam FiestJavaSoft\JRE\1 2binbeans ock”
{2 Insertable
{2 InterfaceClass
3 JaFieName 8] Defaull "CAPles\Class4508PaterLbs\ACTIVE Beans\PVAppstanBeans 1 arsTree
{2 Javallass
{2 MiscStatus
{3 ProgiD
{2 Programmable
{2 PropPage.
3 TooborBimp32 BB)(Defaut) "CAProgam Fles\avaSoJREV. 2binbears o
2 Typeld
0 ve
{3 Version
{0 VersionindependentProglD

=1 {120884BE -7B6211D3.8323-00C04F72C63F)
3 InprocServer32 (38](Defoul) "C:AProgram FilsbJavaSaft JRE\ 2binkbeans s
3 Javallass
{1 PropPage.

- {84DICB4D.D44E-11D1B3ES-D0BDF433DI}
{3 Control
Q0 InprocServer2 [38](Defaut) "CAPAOGRAM FILESVIAVASOFT\IREN! 2BINABEANS 0K
{2 MiscStatus
{3 ProgiD
{2 Programmable
{2 TookboxBitmap32 (28] Defauit) "C:\PROGAAM FILESWAVASOFT\RENL. 2ABINVBEANS.OCK, 1"
2 Typeld
{3 Version
(& VersionindependentProglD

None of the other shipped ProtoView beans have been wrapped at release 4.5 of Plex. I don’t know if we will be getting more wrapped beans in future releases, or if we are supposed to build our own registry entries for the others—or if CA has other plans. There are instructions for how to use the Sun ActiveX bridge for unwrapped Java Beans in the help text.

Plex GPFs allot at version 4.5 when working with wrapped beans. You should save your model often, especially when you are getting ready to work directly with a wrapped bean object using the panel designer. CA Support contacted me about revision 1 of this document, and asked me to point out there are instructions for “Moving wrappered JavaBeans between computers” in the Plex documentation. This can be found from the table of contents under:

Platforms,

Java Platform Guide

Designing Java Applications

Using Java Beans on panels

Moving wrappered JavaBeans between computers.

CA support points out that correctly following this procedure, especially Step 3, “…should reduce the GPF frequency.” CA support says, “The topic applies equally when moving/installing the shipped Protoview Javabeans for the first time.” Step 3 tells you to make your changes to the PVTree.reg object, copy them all to the end of the file, and change the HKEY_CLASSES_ROOT references in the copy to read HKEY_LOCAL_MACHINE. Odd, I didn’t do this and mine worked fine—including getting registry entries in both the HKEY_CLASSES_ROOT section of this registry and the HKEY_LOCAL_MACHINE section of this registry. This may have worked because I used the Windows 98 SE operating system and not the Windows NT or the Windows 2000 operating systems. Bottom line, I suggest you make sure your registry looks like the examples provided on the previous two pages.

Any Hair Left?

Wait until you get this error message a hundred or so times during a Java generation:

[image: image27.png]Message Details : GEN59570

Date: 1/14/01
Time:: 1232PM ™ iter Out Message

[Fied Patert Locaton Type P o gid cobamn heading and has |
loeenignered Ficase modiy your design to inclide a coimn
Ineading which s aava requiement.

o

Remember all those top labels we deleted from grids instead of hiding them, because deleting them cuts down on Windows resource usage? Well, Java wants them all back—and won’t compile your programs until you put them all back.

You have two choices. Delete the columns entirely or put the top labels (a.k.a. column headings) back. Deleting the columns entirely is not a good idea for Edit panels or where you are using the hidden grid data for internal operations or to pass along to another function.

Multiple JDKs on the Same PC

If you’ve ever tried to put two versions of the MSVC++ compiler on one PC at the same time, you know this is about as possible as World Peace, finding an Honest Politician, and validating the phase, “Military Intelligence”. Having two versions of the JDK is not only possible—it’ child’s play. So, go find a child—you’ll need one. I use my 16-year old. He hates working on my PC, but he hates losing his Internet connection to Microsoft’s Gaming Zone even more.

If you have read through the SUN documentation, you may have noticed that ClassPath statements can be included on all commands that need them, like the commands JAVA, JAVAW, JAVAP, JRE, etc. To run multiple JDK’s on the same PC you will need to start using these.

There are two changes you have to make to your PC to run multiple JDK versions:

1) Remove the ClassPath statement from your AutoExec.bat file or Windows NT/2000/XP environment variables.

2) Remove the Java portion of your Path statement from your AutoExec.bat file or Windows NT/2000/XP if you have this.

When you need to run a Java command, you will now have to fully qualify it: for example:

C:\JDK118\Bin\Java~~~ or C:\JDK1.2.2\Bin\Java~~~
You also need to include a classpath parameter to tell Java where your jars are:

C:\jdk1.2.2\bin\java –cp C:\Java\Lib\ObRun.jar;C:\Java\Lib\OBPTJAVA.JAR;feller\GEN\;C:\Java\Source\~~~
The “–classpath” part is abbreviated “–cp”:

C:\jdk1.3.0_02\bin\java –cp C:\Java\Lib\ObRun.jar;C:\Java\Lib\OBPTJAVA.JAR;feller\GEN\;C:\Java\Source\~~~
I use .bat files to run compiles and tests so I don’t have to keep typing these things. If you use a .bat file, you can transplant the SET statements as is from your AutoExec.bat files and forget about the –classpath parameters on the Java commands.

Panels and the Plex 4.5 Implementation of the Swing Class

I’m sure they’re working on this one in the lab, because the current implementation of the Swing Class by Plex doesn’t give you everything we have with Windows C++.

The first thing you will notice is that text seems to touch on the edge of edit boxes and grid columns. I have compensated for this four ways.

1) I set my edit boxes to no border. This text looks better, but I’m not sure users will realize the boxes are input capable.

2) I set my read-only boxes to no border and a background that matches the foreground.

3) I set most of my grid columns up to center everything.

4) I add a leading space to Grid columns I can’t center, like with a long text field.

For example:

[image: image23.png]Userld LoU1

| J——

Euiar |

Hello Lou Kunslreyer

Aceount 99999999 Kunelmayer Konsultng.

I have tried to figure out how to replace the coffee cup with the icon for my application, but no luck so far. The image is called JavaCup.gif and it is in the following three jars for Sun Java version 1.2.2_007:

C:\Program Files\JavaSoft\JRE\1.2\Lib\rt.jar

C:\jdk1.2.2\src.jar

C:\jdk1.2.2\jre\lib\rt.jar
I’ve tried deleting this .gif from all of those places and substituting my own gif with the same name, but a different image. Java still finds the coffee cup image. If you set up your panel as a top application, the coffee cup is replaced with a blackish void.

Forget .bmp objects. I tried putting .bmp objects on three buttons on one panel, and Java would not display the third one. I switched the .bmp objects to .gif objects, and Java displayed everything just fine. I tried putting a customer’s large logo .bmp on a panel and it would not display. I switched the logo to a .gif, and it displayed just fine. NOTE for CW/IF: Java wants .gif objects, not .bmp objects.

�

� EMBED PBrush ���

�

� EMBED PBrush ���

Page: 72

 Copyright © 2000-2001 Louis H. Kurrelmeyer, Jr. (except as noted) all rights reserved.

[image: image28.png]Message Details : GEN59570

Date: 1/14/01
Time:: 1232PM ™ iter Out Message

[Fied Patert Locaton Type P o gid cobamn heading and has |
loeenignered Ficase modiy your design to inclide a coimn
Ineading which s aava requiement.

o

[image: image29.png][/ Source code: ScanObject [[o[x]
[string[] ParmsIn

[string[] Parmsout
[ParmsIn[0]
lparmsou:

new String[1]; a

new Sering(2]; || fusb(l)SCFuPsh
&(1:) .toString(); t12) Scanfiesult
FregHex.main (ParmsIn) ; uas{3:] SeanStiing

fe(2:) . fromString (ParmsOuc[0])

Parameters

fs(3:) . fromSrring (ParmsOuc[1])

_1040982577

_1042201552.doc
[image: image1.png]Userld LoU1

| J——

Euiar |

Hello Lou Kunslreyer

Aceount 99999999 Kunelmayer Konsultng.

_1014726118

