
CA Technologies Prerelease Documentation. Authorized Use Only.

Introduction ... 1

How to Implement SiteMinder Authentication for Mobile Apps ... 1

Application Programmer Uses the Sample App to Demonstrate or Develop a Native iOS App That Uses
SiteMinder Authentication .. 3

Application Programmer Uses the Sample App to Demonstrate or Develop a Native Android App That
Uses SiteMinder Authentication ... 12

Agent Owner Configures the Agent to Support Mobile Authentication ... 22

Policy Administrator Configures a Security Policy to Support Mobile Authentication 24

Copyright .. 37

Product: CA SiteMinder®

This scenario describes how to implement SiteMinder authentication for mobile apps
using the SiteMinder mobile authentication solution.

This Knowledge Base Article is subject to the following notices (see page 37), terms, and
conditions.

The SiteMinder mobile application authentication solution enables you to leverage your
existing SiteMinder infrastructure to secure mobile apps. This solution works by
configuring a Web Agent or Secure Proxy Server to expose SiteMinder authentication
operations as REST web services. Mobile apps can send requests to these services to do
the following operations:

■ Log in a user using Basic (username and password) authentication.

■ Verify the status of a SiteMinder session.

■ Log out a user.

CA Technologies Prerelease Documentation. Authorized Use Only.

The SiteMinder mobile application authentication solution includes the following kits:

Mobile Authentication iOS Source Kit

Provides a complete sample source code project that you can use to build a working
sample native iOS app that demonstrates the use of SiteMinder for authentication.
Mobile application developers can also use the source code as the basis for
developing their own native mobile apps that use SiteMinder authentication.

Mobile Authentication Android Source Kit

Provides a complete sample source code project that you can use to build a working
sample native Android app that demonstrates the use of SiteMinder for
authentication. Mobile application developers can also use the source code as the
basis for developing their own native mobile apps that use SiteMinder
authentication.

Mobile Authentication Agent Kit

Provides resources to deploy on a Web Agent or Secure Proxy Server (SPS) to
expose SiteMinder authentication operations as web services.

Note: The <stmdr> mobile application authentication solution is available for download
from the Scripts and Tools section of the CA SiteMinder General Discussion message
board in the Security Global User Community (Distributed).

https://communities.ca.com/web/ca-identity-and-access-mgmt-distributed-global-user-community/message-board/-/message_boards?_19_mbCategoryId=83572870&#p_19

CA Technologies Prerelease Documentation. Authorized Use Only.

To implement SiteMinder authentication for mobile apps, the application programmer,
agent owner, and Policy Server administrator must collaborate to perform the following
required processes:

■ Application programmer does one of the following:

– Application programmer uses the native iOS sample app to demonstrate or
develop a mobile app that uses SiteMinder authentication (see page 3)

– Application programmer uses the native Android sample app to demonstrate
or develop a mobile app that uses SiteMinder authentication (see page 12)

■ Agent owner configures an agent or Secure Proxy Server to support mobile
authentication (see page 22)

■ Policy administrator configures a security policy to support mobile authentication
(see page 24)

Note: For background information, see the following multimedia resources:

■ View a streaming video demonstrating the sample iOS app.

■ View a streaming video http://caqrcode.atgte.am/SMAuthDemo.mov
demonstrating the sample Android app.

■ View a webcast about enabling SiteMinder authentication for mobile applications.
(Free BrightTalk registration required.)

The Mobile Authentication iOS Source Kit contains complete source code for a sample
native iOS app that uses SiteMinder authentication. The sample app (AuthN) is written
in Objective-C and supplied as a complete Xcode project. You can run AuthN to
demonstrate SiteMinder mobile authentication functionality or use the source code to
develop your own mobile app.

Note: You require at least Xcode 4 running on a supported MacOS system to complete
the procedures in this process.

To demonstrate or develop your own mobile app that uses SiteMinder authentication,
complete the following process:

1. Build and run the AuthN app using one of the following procedures:

■ Run the app using the integrated iOS Simulator (see page 4).

■ Run the app on a physical iOS device (see page 4) (requires an iOS Developer
Program license).

2. Demo the AuthN app (see page 5).

3. Develop your own mobile app that uses SiteMinder authentication (see page 9).

http://www.youtube.com/watch?v=KZqco5pGXNg&feature=youtu.be&goback=%252Egde_957007_member_175445510&noredirect=1
http://caqrcode.atgte.am/SMAuthDemo.mov
http://www.brighttalk.com/webcast/7845/49821

CA Technologies Prerelease Documentation. Authorized Use Only.

Run the Sample Mobile Authentication App (AuthN) from within Xcode using the iOS
Simulator.

Note: To open the Xcode project to test the app, you require a MacOS system with the
Xcode developer tools package installed.

Follow these steps:

1. Start Xcode.

2. Open the AuthnN app project, AuthN.xcodeproj.

3. If necessary, configure the iOS Simulator as the run destination in the project
scheme using the following steps:

a. Click Product, Edit Scheme.

b. Select iOS Simulator in the Destination pop-up menu.

4. Click Run.

The AuthN app is built and launched in an iOS Simulator window.

Run the AuthN app on a physical iOS (5.0 or later) device.

Note: To open the Xcode project and test the app on a physical iOS device, you require a
MacOS system with the Xcode developer tools package installed. You also require an iOS
Developer Program license.

Follow these steps:

1. Start Xcode.

2. Open the AuthN app project, AuthN.xcodeproj.

3. In the AuthNproject Build Settings, specify your iOS Developer identity in the Code
Signing Identity fields.

4. Provision your iOS device using the following steps:

a. Connect your device to your Mac.

The Devices Organizer pane opens.

b. Select your device and click Use for Development.

CA Technologies Prerelease Documentation. Authorized Use Only.

5. Configure your iOS device as the run destination in the project scheme using the
following steps:

a. Click Product, Edit Scheme.

b. Select your device in the Destination pop-up menu.

6. Verify that your iOS device is unlocked.

7. Click Run.

The AuthN app is built and launched on your iOS device.

After you start AuthN, use the app to demo SiteMinder mobile authentication
functionality.

Note: The AuthN app is configured with default values that allow you to authenticate a
valid sample user (jsmith) using a test server that is hosted by CA.

Follow these steps:

1. Start the Authn app.

The app starts, showing the Login page.

CA Technologies Prerelease Documentation. Authorized Use Only.

2. To open the Configuration page, click the Config button.

By default, all fields are populated with default values to use AuthN with the
SiteMinder mobile authentication solution test server that is hosted by CA.

Note: If the fields are not populated the first time that you run the application, click
Reset and then Save.

To configure AuthN to use another SiteMinder-protected server (for instance, if you
configure your own SiteMinder environment to support mobile authentication),
change these values.

Show BizPage

Specifies what AuthN displays upon successful authentication. If set ON, AuthN
displays the Business Logic page. If set to OFF, detailed trace information is
displayed in the status area at the bottom of the Login page.

Default: ON

Target

Specifies the web page that AuthN displays in the Business Logic page upon
successful authentication.

Default: authn:http://www.ca.com

Note: authn is a custom URI handler which allows the target to be displayed in
the mobile browser (Safari).

LoginID

Specifies the default user identity for authentication.

Default: jsmith

CA Technologies Prerelease Documentation. Authorized Use Only.

Server

Specifies the address of the web server that hosts the SiteMinder mobile
authentication services. The default server address accesses the CA-hosted
mobile authentication services using the Mini-cookies session scheme.

Default: http://minicookie.forwardinc.mobi

To access the CA-hosted mobile authentication services using the SSL_ID
session scheme, change this value to "http://spstest.forwardinc.mobi."

Login

Specifies the pathname of the SiteMinder mobile authentication Login service
on the web server specified in the Server field.

Default: sma/loginonget.fcc

Logout

Specifies the pathname of the SiteMinder mobile authentication Logout service
on the web server specified in the Server field.

Default: sma/logout.fcc

Session

Specifies the pathname of the SiteMinder mobile authentication Session Status
service on the web server specified in the Server field.

Default: /status.asp

Click Clear to clear all fields. Click Reset to revert all fields to their default values.
Click Save to commit changes.

3. To return to the Login page, click the Login button.

4. Accept the default UserID and Password for jsmith and click Login.

A login success dialog appears.

CA Technologies Prerelease Documentation. Authorized Use Only.

5. Click OK.

The Business Logic page, which represents the app payload, is revealed. By default,
AuthN displays the CA home page in an internal browser as an example. If you
develop your own app, your business logic—for example, a static set of fields whose
contents are driven by backend web services—would be displayed here.

6. To confirm that a valid SiteMinder session exists, click the Session Check field at the
bottom of the page.

A Session DOES exist dialog appears.

Note: If a valid session does not exist, the Login page is displayed.

7. Click OK.

CA Technologies Prerelease Documentation. Authorized Use Only.

8. Click the Logout field at the top of the page.

The user is logged out and a logout success dialog appears.

The AuthN iOS sample source code includes two classes (AuthNService and
AuthNContext) that comprise a simple SiteMinder mobile authentication SDK. The
storyboard and other classes demonstrate how to use AuthNService and AuthNContext
to authenticate users in a simple mobile app. Use the AuthN source as the starting point
to create your own app that uses SiteMinder authentication.

Note: This section is not intended to provide a detailed procedure for developing your
native iOS app. It is intended only to point you in the right direction.

To start developing your own mobile app that uses SiteMinder authentication, follow
this process:

1. Review the AuthN iOS app source code project in Xcode (see page 9).

2. Review the classes in the AuthN iOS source code (see page 11).

The AuthN app is a native iOS app written in Objective-C using the Xcode IDE. Review
the source to see how it uses the AuthNService and AuthNContext classes to implement
SiteMinder authentication requests.

Note: To use Xcode to manipulate the AuthN source or develop your own app, you
require an iOS Developer Program license.

CA Technologies Prerelease Documentation. Authorized Use Only.

Follow these steps:

1. Start Xcode.

2. Open the Sample Mobile Authentication App project, AuthN.xcodeproj.

The project opens and its contents are displayed in the Xcode project navigator as
shown in the following screenshot.

3.

Review the source and storyboard files.

CA Technologies Prerelease Documentation. Authorized Use Only.

This section describes the classes that implement the AuthN app. Review these classes
in the AuthN source code to see how the app interacts with the SiteMinder
authentication services.

main

Instantiates AuthNAppDelegate to start the app.

AuthNAppDelegate

Instantiates the app window, does any up-front setup, and then displays the Login
page. AuthNAppDelegate calls AuthNViewController after it is done setting up the
environment.

AuthNViewController

Displays the credential collector panel (username/password) on the Login page.
Executes calls to the SiteMinder authentication web services using AuthNService
when the Login, Logout, and Session Check buttons are pressed.

Note: In particular, see the button click methods, loginPressed(), logoutPressed(),
and isSessionPressed, to see how to use AuthNService to send requests to the
Login, Logout, and Status services.

AuthNService

Generates correctly formatted HTTP REST requests to the SiteMinder
authentication services. Takes information that is provided to its AuthNContext
instance to determine which service to call and the values to pass.

AuthNContext

Provides the contextual information that AuthNService requires to make an
authentication service call. Information such as service URL, query parameters,
headers, and how to process cookies are set on the AuthNContext instance.
The AuthNContext instance is obtained by asking the AuthNService for it. Once
you have it, you can set the values that are requires to define how to execute
the REST call to the authentication service. When the call is complete, the
results are returned in the AuthNContext instance.

BizPageViewController

If the Show Biz Page configuration setting is set to ON in the Configuration page,
displays the Business Logic page after a successful authentication. The web page
that is displayed to represent business logic is defined by the value of the Target
configuration setting. In your custom app, BizPageViewController would display
your business logic, for example, standard iOS fields using backend web services to
obtain the content.

CA Technologies Prerelease Documentation. Authorized Use Only.

ConfViewController

Displays the Configuration page within the app. Configuration values that are
entered on the page are stored in settings.bundle/Root.plist and the iOS
NSUserDefaults storage location.

Note: The configuration values can also be seen and manipulated in the traditional
iOS settings page for the AuthN app.

ProjectGlobals

A convenience class that provides access to the various configuration settings
(server url, login page, and so on).

The Mobile Authentication Android Source Kit contains complete source code for a
sample native Android app that uses SiteMinder authentication. The sample app
(AuthN) is written in Java and supplied as a complete Eclipse project. You can run AuthN
to demonstrate SiteMinder mobile authentication functionality or use the source code
to develop your own mobile app.

Note: The sample source code is intended for Android 4.x. You require the latest
versions of Eclipse IDE for Java Developers and the Android SDK, and JDK 6 to complete
the procedures in this process. If you install the ADT bundle from Google, verify that it
contains the requisite Eclipse IDE and Android SDK.

To demonstrate or develop your own mobile app that uses SiteMinder authentication,
complete the following process:

1. Build and run the AuthN app using one of the following procedures:

■ Run the app using the Eclipse Android Virtual Device (see page 12).

■ Run the app on a physical Android device (see page 13).

2. Demo the AuthN Android app (see page 14).

3. Develop your own mobile Android app that uses SiteMinder authentication (see
page 19).

Run the Sample Mobile Authentication App (AuthN) from within Eclipse using the
Android Virtual Device.

Note: To open the Android project to test the app, you require a system on which
Eclipse and the Android SDK are installed

CA Technologies Prerelease Documentation. Authorized Use Only.

Follow these steps:

1. Start Eclipse.

2. Import a project from the File menu.

3. Browse to and select the AuthN project folder.

4. If necessary, create a new Android Virtual Device using the following steps:

a. Select Android Virtual Device Manager from the window drop-down list.

b. Click the New button if no Android Virtual Device exists that is at least 2.3.3.

c. In the AVD Name field, enter a custom name (any name you want).

d. From the Device drop-down list, select "Galaxy Nexus" or any other screen size.

e. In the target drop-down list, ensure that a version higher than 2.3.3 is selected.

f. In the SD Card size text field enter "512" and ensure MiB is selected.

5. Click Run.

The AuthN app is built and launched in an Android Virtual Device window.

Note: If this is your first time creating an Android Virtual Device, this step can take
several minutes.

Run the AuthN app on a physical Android (2.3.3 or later) device.

Note: To open the Android project and test the app on a physical Android device, you
require a system with Eclipse and the Android SDK installed.

Follow these steps:

1. Start Eclipse.

2. Import a project from the File menu.

3. Browse to and select the AuthN project folder.

4. Connect your Android to a USB port.

5. Verify that your Android device is unlocked.

6. Place your android device in "Developer" mode.

7. Go to the Settings.

CA Technologies Prerelease Documentation. Authorized Use Only.

8. (Android versions below 4.0 ONLY) Go to Applications.

Note: To run the AuthN app on Android versions below 4.0, make code changes n
the AuthN source code to enable certificates. For more information, see Edit the
AuthN App Source Code to Run on Android Versions Below 4.0 (see page 21)

9. Select Development.

10. Verify that the USB Debugging option is set.

11. If you do not have a Nexus brand Android device, verify that the USB Drivers for
your device are installed (Samsung Kies Agent, HTC Android USB Drivers, Motorola
Android USB Drivers, and so on).

12. From the Run menu, select Run Configurations.

13. Select the Android Application item from the list.

14. Click the New Launch Configuration icon in the upper left corner.

15. Enter a name for the configuration (for example, “SMAndroidAuthLaunch”) in the
Name field.

16. Click the Browse button and select the LoginActivity for the AuthN project.

17. Select the Target tab.

18. Verify that the Always prompt to pick device option is set.

19. Click Apply.

20. Click Run.

21. In the popup window, select your physical Android device and click OK.

The AuthN app is built and launched on your Android device.

After you start AuthN, use the app to demo SiteMinder mobile authentication
functionality.

Note: The AuthNn app is configured with default values that allow you to authenticate a
valid sample user (jsmith) using a test server that is hosted by CA.

CA Technologies Prerelease Documentation. Authorized Use Only.

Follow these steps:

1. Start the Authn app.

The app starts, showing the Login page.

CA Technologies Prerelease Documentation. Authorized Use Only.

2. To open the Configuration page, press the Android menu button and then press
Config.

By default, the fields are not populated. Press the reset button to populate all the
fields with default values to use AuthN with the SiteMinder mobile authentication
solution test server that is hosted by CA.

Note: If the fields are not populated the first time that you run the application, click
Reset and then Save.

To configure AuthN to use another SiteMinder-protected server (for example, if you
configure your own SiteMinder environment to support mobile authentication),
change these values.

CA Technologies Prerelease Documentation. Authorized Use Only.

Show BizPage

Specifies what AuthN displays upon successful authentication. If set ON, AuthN
displays the Business Logic page. If set to OFF, detailed trace information is
displayed in the status area at the bottom of the Login page.

Default: ON

Target

Specifies the web page that AuthN displays in the Business Logic page upon
successful authentication.

Default: authn:http://www.ca.com

Note: authn is a custom URI handler which allows the target to be displayed in
the default browser (Chrome or Android Browser).

LoginID

Specifies the default user identity for authentication.

Default: jsmith

Server

Specifies the address of the web server that hosts the SiteMinder mobile
authentication services. The default server address accesses the CA-hosted
mobile authentication services using the Mini-cookies session scheme.

Default: http://minicookie.forwardinc.mobi

To access the CA-hosted mobile authentication services using the SSL_ID
session scheme, change this value to "http://spstest.forwardinc.mobi."

Login

Specifies the pathname of the SiteMinder mobile authentication Login service
on the web server that is specified in the Server field.

Default: sma/loginonget.fcc

Logout

Specifies the pathname of the SiteMinder mobile authentication Logout service
on the web server that is specified in the Server field.

Default: sma/logout.fcc

Session

Specifies the pathname of the SiteMinder mobile authentication Session Status
service on the web server that is specified in the Server field.

Default: /status.asp

Click Clear to clear all fields. Click Reset to revert all fields to their default values.
Click Save to commit changes.

3. To return to the Login page, click the Sign In button.

CA Technologies Prerelease Documentation. Authorized Use Only.

4. Enter "P@ssword01" in the Password field.

5. Press the Login button.

A login success dialog appears.

The Business Logic page, which represents the app payload, is revealed. By default,
AuthN displays the CA home page in an internal browser as an example. If you
develop your own app, your business logic—for example, a static set of fields whose
contents are driven by backend web services—would be displayed here.

6. To confirm that a valid SiteMinder session exists, click the Session field at the
bottom of the page.

An "Authenticated" message appears and disappears on the screen

Note: If a valid session does not exist, the message "Not Authenticated" will appear.

CA Technologies Prerelease Documentation. Authorized Use Only.

7. Click the Logout button at the bottom left of the page.

The user is logged out and a logout success message appears.

The AuthN sample source code includes four classes (AuthComm, ConfView,
LoginActivity, and WvActivity) that comprise a simple SiteMinder mobile authentication
SDK. The storyboard and other classes demonstrate how to use AuthComm and
WvActivity to authenticate users in a simple mobile app. Use the AuthN source as the
starting point to create your own app that uses SiteMinder authentication.

Note: This section is not intended to provide a detailed procedure for developing your
native iOS app. It is intended only to point you in the right direction.

To start developing your own mobile app that uses SiteMinder authentication, follow
this process:

1. Review the AuthN app source code project in Eclipse (see page 20).

2. Review the classes in the AuthN source code (see page 21).

CA Technologies Prerelease Documentation. Authorized Use Only.

The AuthN App is a native Android app that is written in Java using the Eclipse IDE.
Review the source to see how AuthNuses the AutheComm and WvActivity classes to
implement SiteMinder authentication requests.

Follow these steps:

1. Start Eclipse.

2. Open the Sample Mobile Authentication App project or import the project from the
folder.

The project opens and its contents are displayed in the Eclipse project navigator as
shown in the following screenshot.

3. Review the source and storyboard files.

CA Technologies Prerelease Documentation. Authorized Use Only.

This section describes the classes that implement the AuthN app. Review these classes
in the AuthN source code to see how the app interacts with the SiteMinder
authentication services.

LoginActivity

Launches and initializes the app and displays the main login page.

Displays the credential collector panel (username/password) on the Login page.
Executes calls to the SiteMinder authentication web services using AuthNService
when the Login, and Status buttons are pressed.

AuthComm

Generates correctly formatted HTTP REST requests to the SiteMinder
authentication services. Takes information that is provided to it to determine which
service to call and the values to pass.

WvActivity

If the Show Biz Page configuration setting is set to ON in the Configuration page,
displays the Business Logic page after a successful authentication. The web page
that is displayed to represent business logic is defined by the value of the Target
configuration setting. In your custom app, BizPageViewController would display
your business logic, for example, standard Android fields using backend web
services to obtain the content.

ConfView

Displays the Configuration page within the app. Configuration values that are
entered on the page are stored in the App config bundle.

To run the AuthN app on Android versions below 4.0, edit the AuthN source code to
enable certificates (certificates are enabled automatically in Android 4.0 and above).

Follow these steps:

1. Open AuthComm.java in the Eclipse Java editor.

2. Locate and uncomment the code that encapsulates the InsecureSSLSocketFactory
class (near the top of the file).

Important! The InsecureSSLSocketFactory class in AuthComm.java is not secure —
it is intended for testing purposes only. If you develop your own app, replace
InsecureSSLSocketFactory with a certificate checking function that uses your own
generated certificates.

3. Uncomment the code in the constructor for AuthComm.

4. Compile and run as normal.

CA Technologies Prerelease Documentation. Authorized Use Only.

To configure a Web Agent to support mobile authentication for your own mobile app,
the agent owner deploys the SiteMinder Mobile Authentication Agent Kit on a web
server that supports Active Server Pages (ASP).

To reduce the bandwidth requirements of <stmdnr> session cookies, you can also
deploy some of the files on a Secure Proxy Server and configure the Mini-cookies or
SSL_ID session scheme.

The Mobile Authentication Agent Kit contains the following files:

■ loginonget.fcc—Provides a login web service that a mobile app can access to make
login requests.

■ loginonget.unauth—Defines a required login failure message.

■ logout.fcc—Provides a logout web service that a mobile app can access to make
logout requests.

■ status.asp—Provides a status service that a mobile app can access to obtain the
status of a user session.

■ success.html—Login success page. The agent redirects to this page if login is
successful.

■ fail.html—Login failure page. The agent redirects to this page if login is
unsuccessful.

To configure an agent or Secure Proxy Server to support mobile authentication, do one
of the following procedures:

■ Configure a Web Agent to support mobile authentication (see page 22)

■ Configure a Secure Proxy Server to support mobile authentication (see page 23)

To configure a Web Agent to support mobile authentication, copy the files from the
Mobile Authentication Agent Support Kit into the web server directory structure.

Note: The web server must support Active Server Pages (ASP).

CA Technologies Prerelease Documentation. Authorized Use Only.

Follow these steps:

1. Extract the Mobile Authentication Agent Support Kit archive into a temporary
location.

2. Copy the following files from the temporary location to web_server_root/sma:

■ loginonget.fcc

■ loginonget.unauth

■ logout.fcc

web_server_root

Specifies the web server root directory.

3. Copy the following files from the temporary location to web_server_root:

– status.asp

– success.html

– fail.html

4. Configure Secure Sockets Layer (SSL) security on the website that hosts the Mobile
Authentication Agent Kit. Otherwise, user credentials are transmitted in clear text
over an unsecured connection.

5. Restart the SiteMinder Agent.

6. Supply the host address for mobile authentication requests to the application
programmer developing your mobile app.

With tiered bandwidth structures for mobile data services being the norm, conserving
every bit of available bandwidth is paramount to controlling overall costs. Traditional
SiteMinder session (SMSESSION) cookies add approximately 2 KB to the HTTP payload
each time a user requests a protected resource.

The SiteMinder Secure Proxy Server provides the following alternative session schemes
that require less bandwidth than traditional SiteMinder session cookies:

Mini-cookie

The Mini-cookie session scheme reduces the HTTP payload by using only a 10-byte
cookie. The original full sized cookie is stored in the Secure Proxy Server internal
session store. This mini-cookie serves as an artifact to link the mini-cookie to the full
sized cookie.

SSL_ID

The SSL_ID session scheme places no cookie on the client device at all. The unique
identifier that is generated at the time of the SSL handshake serves as the identifier
for the session. SSL_ID is the most secure option, but also has the most limitations.

CA Technologies Prerelease Documentation. Authorized Use Only.

Follow these steps:

1. Do the following steps on a web server:

a. Extract the Mobile Authentication Agent Support Kit archive into a temporary
location.

b. Copy the following files from the temporary location to web_server_root:

■ status.asp

■ success.html

■ fail.html

web_server_root

Specifies the web server root directory.

2. Do the following steps on the Secure Proxy Server:

a. Configure a virtual host for mobile authentication requests that specifies the
Mini-cookie or SSL_ID session scheme.

b. Extract the Mobile Authentication Agent Support Kit archive into a temporary
location on the SPS.

c. Copy the following files from the temporary location to sps_home/sma:

■ loginonget.fcc

■ loginonget.unauth

■ logout.fcc

sps_home

Specifies the Secure Proxy Server home directory.

■ Configure a proxy rule that forwards requests that are sent to the virtual
host that you configured in step 2a to the web server that hosts status.asp,
success.html, and fail.html.

3. Supply the virtual host address for mobile authentication requests to the
application programmer developing your mobile app.

The policy administrator configures a security policy to support mobile authentication
by defining an application object.

Note: You can also configure the required security policy using domain objects (realms,
rules, and so on).

.

CA Technologies Prerelease Documentation. Authorized Use Only.

To configure the security policy, use the following process:

1. Create an application object to define the security policy for the mobile app (see
page 25)

2. Configure resources for mobile authentication (see page 27)

3. Create roles that identify the users that can access the mobile app (see page 32)

4. Configure responses to associate with authentication success and failure events
(see page 33)

5. Configure the policy for mobile authentication (see page 35)

Create an application object and configure the following general properties of the
security policy to support the mobile authentication solution.

Follow these steps:

1. Log in to the SiteMinder Administrative UI.

2. Click Policies, Application.

3. Click Applications.

4. Click Create Application.

The Create Application page appears.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

5. Enter the name and description of the application using the following values:

Name

Mobile Authentication Security Policy

Description

Allows mobile applications to access the login service using REST calls.

6. In the Components section, define general security requirements for the mobile
authentication resources. Follow these steps:

a. Click Create Component.

b. Enter "Mobile Authentication" in the Name field.

c. Click Lookup Agent/Agent Group.

d. Select the agent that protects that web server on which the authentication web
services are exposed.

CA Technologies Prerelease Documentation. Authorized Use Only.

e. Enter the following values:

Resource Filter

/login

Default Resource Protection

protected

Authentication Scheme

Basic

7. In the User Directories section, perform the following steps to select the directory
(or directories) of users who are authorized to use the mobile application:

a. Click Add/Remove.

b. Select one or more user directories from the list of Available Members, and
click the right-facing arrows.

The user directories are removed from the list of Available Members and added
to the list of Selected Members.

Note: To select more than one member at one time, hold down the Ctrl key
while you click the additional members. To select a block of members, click the
first member and then hold down the Shift key while you click the last member
in the block.

c. Click OK.

The selected user directories are listed under User Directories on the Create
Application page.

8. Click OK.

CA Technologies Prerelease Documentation. Authorized Use Only.

Configure application resources to protect your mobile app and to configure the policy
to handle authentication attempt, acceptance, and failure events. Configure the
following resources:

■ onAuthAccept (see page 27)

■ onAuthAttempt (see page 28)

■ onAuthReject (see page 30)

■ success (see page 31)

To specify that the security policy handles mobile app authentication acceptance events,
configure a resource. The policy binds a response to this resource to determine how to
handle the event.

Follow these steps:

1. On the Create Application page, click the Resources tab.

2. Click Create.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

3. Specify the following resource properties:

Name

onAuthAccept

Resource

/*

Action

Authentication events: OnAuthAccept

CA Technologies Prerelease Documentation. Authorized Use Only.

4. Click OK

The resource is created.

To specify that the security policy handles mobile app authentication attempt events,
configure a resource. The policy binds a response to this resource to determine how to
handle the event.

Follow these steps:

1. On the Create Application page, click the Resources tab.

2. Click Create.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

CA Technologies Prerelease Documentation. Authorized Use Only.

3. Specify the following resource properties:

Name

onAuthAttempt

Resource

/*

Action

Authentication events: OnAuthAttempt

4. Click OK

The Resource is created.

CA Technologies Prerelease Documentation. Authorized Use Only.

To specify that the security policy handles mobile app authentication reject events,
configure a resource. The policy binds a response to this resource to determine how to
handle the event.

Follow these steps:

1. On the Create Application page, click the Resources tab.

2. Click Create.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

3. Specify the following resource properties:

Name

onAuthReject

Resource

/*

Action

Authentication events: OnAuthReject

CA Technologies Prerelease Documentation. Authorized Use Only.

4. Click OK

The resource is created.

Configure a resource for successful mobile authentication requests.

Follow these steps:

1. On the Create Application page, click the Resources tab.

2. Click Create.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

3. Specify the following resource properties:

Name

success

Resource

/*

Action

Web Agent Actions: Get

CA Technologies Prerelease Documentation. Authorized Use Only.

4. Click OK

The Resource is created.

Specify roles that define the set of users who have access to the mobile app.

Follow these steps:

1. On the Create Application page, click the Roles tab.

2. Click Create Role.

3. Verify that the Create new object of type Role option is selected, and click OK.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

4. Enter a name and optionally, a description for the role.

5. Specify whether the role applies to All Users or Selected Users in the configured
user directories.

Note: The Users Setup and Advanced sections do not apply when the All Users
option is set and are no longer displayed.

CA Technologies Prerelease Documentation. Authorized Use Only.

6. Define the groups, organizations, and user attribute expressions that define the
members of the role by making selections in the Users Setup group box.

7. Click OK.

8. Repeat steps 2 through 8 for each additional required role.

Configure responses to associate with resources to define how the policy responds
when a resource is accessed or an event occurs. In this case, configure responses to
redirect the mobile application to resources to inform it of the success or failure of an
authentication attempt.

Configure the following responses:

■ success (see page 33)

■ fail (see page 34)

Configure a success response to associate with the onAuthAccept resource in the policy.

Follow these steps:

1. On the Create Application page, click the Response tab.

2. Click Create Response.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

3. Enter "success" in the Name field.

4. Create a response attribute:

a. Click Create Response Attribute.

b. Select WebAgent-HTTP-OnAccept-Redirect attribute type.

c. Select Static as the Attribute Kind.

The details in the Attribute Fields are updated to match the specified attribute
kind.

d. Enter "/success.html" in the Variable Value field.

CA Technologies Prerelease Documentation. Authorized Use Only.

e. Click OK.

The response attribute is added to the Attribute List.

5. Click OK.

The success response is created.

Configure a failure response to associate with the onAuthAttempt and onAuthFailure
resources in the policy.

Follow these steps:

1. On the Create Application page, click the Response tab.

2. Click Create Response.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

3. Enter "failure" in the Name field.

4. Create a response attribute:

a. Click Create Response Attribute.

b. Select WebAgent-HTTP-OnReject-Redirect attribute type.

c. Select Static as the Attribute Kind.

The details in the Attribute Fields are updated to match the specified attribute
kind.

CA Technologies Prerelease Documentation. Authorized Use Only.

d. Enter "/fail.html" in the Variable Value field.

e. Click OK.

The response attribute is added to the Attribute List.

5. Click OK.

The failure response is created.

Configure a policy that allows all defined user roles to access all configured resources
and to associate specific resources with appropriate responses. Associate the
onAuthAccept resource with the success response so that success.html is returned to
the app when authentication is successful. Also, associate the onAuthAttempt and
onAuthReject resources with the fail response so that fail.html is returned to the app
when authentication is unsuccessful.

CA Technologies Prerelease Documentation. Authorized Use Only.

Follow these steps:

1. On the Create Application page, click the Policies tab.

The Policies tab displays two tables, one that lists resources and roles, the other
that lists resources and responses.

Note: Click Help for descriptions of settings and controls, including their respective
requirements and limits.

2. In the resources table, associate all roles with all resources.

3. In the responses table, associate resources with responses as shown in the
following table:

Resource Response

onAuthAccept success

onAuthAttempt fail

onAuthReject fail

success None

4. Click Submit.

A confirmation screen appears. The mobile authentication security policy is created.

This policy allows all users defined in defined roles to use the mobile application.

CA Technologies Prerelease Documentation. Authorized Use Only.

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2012 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

